
Acta Scientiarum 

 

 
http://periodicos.uem.br/ojs 

ISSN on-line: 1807-8664  

Doi: 10.4025/actascitechnol.v44i1.57398 

 
MATHEMATICS 

 

Acta Scientiarum. Technology, v. 44, e57398, 2022 

Measuring the effectiveness of extrapolation techniques 

associated with the multigrid method applied to the Navier-

Stokes equations  

Bruno Benato Rutyna¹, Marcio Augusto Villela Pinto²* , Reverton Luis Antunes Neundorf¹, Marcio 

Alexandro Maciel de Anunciação¹ and Marcio André Martins³ 

¹Programa de Pós Graduação em Métodos Numéricos em Engenharia, Universidade Federal do Paraná, Curitiba, Paraná, Brasil. ²Departamento de Engenharia 

Mecânica, Universidade Federal do Paraná, Av. Cel. Francisco Heráclito dos Santos, 230, 81530-000, Centro Politécnico, Bloco IV, Curitiba, Paraná, Brasil. 

³Departamento de Matemática, Universidade Estadual do Centro-Oeste, Guarapuava, Paraná, Brasil. *Author for correspondence. E-mail: marcio_villela@ufpr.br 

ABSTRACT. In this work, we applied different extrapolation techniques in association with the multigrid 

method to discover which one is the most effective in reducing the iteration error and the processing time 

(CPU time), as well as in improving the convergence factors. The mathematical model studied refers to the 

two-dimensional laminar flow of an isothermal time-dependent incompressible fluid modeled by the 

Navier-Stokes equations, with 𝑅𝑒 = 1, solved iteratively with the projection method and the Finite Volume 

Method. The extrapolation methods used were: Aitken, Empiric, Mitin, scalar Epsilon, scalar Rho, 

topological Epsilon, and topological Rho. A two-step application was performed: first, extrapolators 

methods were applied individually after the use of the multigrid method. Then, the best-performing 

extrapolation techniques were used in the second step, where they were applied between the cycles of the 

multigrid method. The methods that presented the best convergence properties in the first stage were 

topological and scalar Epsilon. In the second stage, both methods maintained their performance, however, 

the topological Epsilon method presented more significant convergence rates than the scalar Epsilon. The 

other parameters analyzed were: the storage memory peak, the dimensionless norm of the residual based 

on the initial estimate, and the error norms of iteration. Thus, it was possible to state which extrapolation 

technique performed best and to compare it with the multigrid method with no extrapolation, which in this 

study was the topological Epsilon method. 
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Introduction 

In Computational Fluid Dynamics (CFD), determining the solution for large systems is an important task, 

since these problems require increasingly faster and more efficient methods for finding solutions.  

In this paper, we solved the problem of a two-dimensional laminar flow in a transient and isothermal 

regime of an incompressible fluid modeled by the Navier-Stokes equations with Dirichlet boundary conditions 

numerically. To overcome the dependence between pressure and velocity in this problem, several numerical 

schemes were developed. The Projection method (Chorin, 1968), which splits the solution into parts, stands 

out for solving a local process at each time step. 

To solve a problem numerically, it is required to transform the continuous into a discrete domain. After 

this, the equations are represented by Finite Volume Method (FVM) (Versteeg & Malalasekera, 2007). A 

feature of the discretization of Partial Differential Equations (PDEs) through the FVM is that a linear system 

of the type  

𝐴𝐮 = 𝐟  (1) 

is obtained, in which A is the coefficient matrix, 𝐟 is a vector of independent terms and 𝐮 is a vector of 

unknowns. Generally, these systems generate sparse and large matrices. To achieve the solution of such 

systems, iterative methods are widely applied (Burden, Faires, & Burden, 2016). These approaches may result 

in difficulties related to the slow convergence of the iterative process applied.  
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The multigrid method has been very efficient in improving the convergence of the iterative methods 

(Trottenberg, Oosterlee, & Schuller, 2001). Its philosophy is based on the use of a set of several grids with 

several degrees of refinement in which the iterations are performed during the process. This happens from 

the level with the highest refinement, i.e., the finest grid (which is the original discretization of the problem) 

to the less refined levels, i.e., coarser grid. The relationship between two grids with different levels of 

refinement is typically called coarsening ratio.  

To improve the convergence of the multigrid method, we can also use extrapolation techniques or 

convergence acceleration associated with iterative methods (Brezinski & Zaglia, 2013), thus obtaining 

numerical solutions with a lower computational cost. 

In the literature, many other techniques enhance the multigrid method. For example, multigrid-based 

preconditioners using Incomplete LU decomposition (ILU) solvers are used in conjunction with the Conjugate 

Gradient methods in Anunciação, Pinto, and Neundorf (2020). Another technique to reduce the CPU time is 

parallelization using Graphics Processing Unit (GPU) in the solution, as shown in Liu, Yang, and Cheng (2015). 

Moreover, the use of several sweeps for temporal discretization for parallelization purposes is shown in 

Franco, Gaspar, Pinto, and Rodrigo (2018) and Franco, Rodrigo, Gaspar, and Pinto (2018). In Zhang, Zhang, 

and Xi (2010), the Pseudospectral Chebyshev method is used along with the multigrid method to solve the 

Navier-Stokes equations in primitive variables. Repeated Richardson Extrapolations (RRE) is used to reduce 

the discretization error in solving CFD equations (Marchi et al., 2013; Marchi et al., 2016).  

We emphasize that the focus of this work is the use of extrapolation techniques together with the multigrid 

method to accelerate the convergence of the resolution of systems generated from projection methods applied 

to the Navier-Stokes equations. 

Material and methods 

Mathematical model 

The Navier-Stokes equations can be written in many forms depending on the properties of the fluid and 

the flow (Versteeg & Malalasekera, 2007). In this study, they are treated as a two-dimensional laminar flow 

of an isothermal time-dependent incompressible fluid modeled by 

𝛻 ⋅ 𝐮 = 0, (2) 

𝜕𝑢

𝜕𝑡
+ 𝐮 ⋅ 𝛻𝑢 =  −

𝜕𝑝

𝜕𝑥
+

1

𝑅𝑒
𝛻2𝑢, (3) 

𝜕𝑣

𝜕𝑡
+ 𝐮 ⋅ 𝛻𝑣 =  −

𝜕𝑝

𝜕𝑦
+

1

𝑅𝑒
𝛻2𝑣, (4) 

being 𝑥 and 𝑦 the spatial coordinates; 𝑡 the temporal coordinate; 𝑢 and 𝑣 the components of the velocity 

vector 𝐮 in the directions 𝑥 and 𝑦, respectively; 𝑝 the fluid pressure; 𝑅𝑒 the Reynolds number; 𝛻 ⋅ 𝐮 the 

divergence of 𝐮; 𝛻 the gradient and 𝛻2, the Laplacian operators. To complete, there is 

𝑅𝑒 =
𝜌 𝑣𝑚𝐷

𝜇
, (5) 

where ρ is the specific mass of the fluid; μ its dynamic viscosity; 𝑣𝑚 its average speed and 𝐷, the tube diameter. 

Equation (2) is known as the mass conservation (or continuity) equation, and Equations (3) and (4) are known 

as the conservation equations of the linear momentum in the 𝑥 and 𝑦 directions, respectively.  

This work solves the Taylor-Green vortex problem (Anunciação et al., 2020), whose domain is given by 

{(𝑥, 𝑦) ∈ ℝ2: −𝜋 ≤ 𝑥 ≤ 𝜋  and − 𝜋 ≤  𝑦 ≤ 𝜋}. The analytical solutions for 𝑅𝑒 = 1 are: 

𝑢 = −(cos𝑥. sin𝑦)𝑒−2𝑡 ,  (6) 

𝑣 =  (sin𝑥. cos𝑦)𝑒−2𝑡 , (7) 

𝑝 =  −
1

4
(cos2𝑥 + sin2𝑦)𝑒−4𝑡 , (8) 

where 𝑡 = 𝑛ℎ𝑡, with 𝑛 being the time step where the solution is considered, and ℎ𝑡, the temporal refinement. 

The analytical solutions generate the initial and boundary conditions of the problem. 
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Projection methods 

Projection methods are often divided into three classes: pressure-correction schemes, velocity-correction 

schemes, and consistent splitting schemes. The simplest pressure-correction scheme was proposed by Chorin 

(1968). It uses the Euler method in the time discretization and creates an auxiliary or provisional velocity 

field. 

The projection methods have the property of solving at each time step a sequence of elliptic and decoupled 

equations for the velocities and pressure variables. The method used in this work, which is a variation of 

Chorin’s (1968), is shown below: 

First step: 

(3𝐮𝑡 − 4𝐮𝑛 + 𝐮𝑛−1)

2ℎ𝑡

= 𝛽1𝑔1(𝐮𝑛) + 𝛽0𝑔0(𝐮𝑛−1) + 𝜔𝛻2𝐮𝑡 + 𝛻𝑝𝑛 , (9) 

𝐮𝑡|𝜕𝛺 = 𝐛𝑛 , (10) 

where 𝐮𝑡 is the auxiliary velocity field, 𝐮𝑛 is the velocity field, 𝑝𝑛 is the pressure, 𝐛𝑛 are the boundary 

conditions, all cases in the time step 𝑛; β0 and β1 are constants, and 𝑔0 and 𝑔1 are the convective terms 𝐮 ⋅ 𝛻𝐮. 

The choices of β0 and β1 imply whether the convective terms will be treated explicitly or implicitly. In this 

work, we use the second-order-explicit Adams-Bashforth scheme for the convective terms, that is  β0 = 1/2 

and β1 = −3/2 (Burden et al., 2016; Anunciação et al., 2020). 

Second step: 

𝛻2𝜙𝑛+1 =  
3

2ℎ𝑡

𝛻 ⋅ 𝐮𝑡 ,  (11) 

𝐮𝑛+1 =  𝐮𝑡 −
2ℎ𝑡

3
𝛻𝜙𝑛+1, (12) 

𝑝𝑛+1 =  𝑝𝑛 + 𝜙𝑛+1 − 𝜔𝛻 ⋅ 𝐮𝑡 , (13) 

where 𝜙 is the pressure correction term and ω = 1/𝑅𝑒. This version of the projection method has Neumann 

boundary conditions in the pressure given by 

𝜕𝑛𝑝𝑛+1|𝜕𝛺 = −𝜔(𝛻 × 𝛻 × 𝑢𝑛+1) ⋅ 𝐧|𝜕𝛺 , (14) 

where n being the unit normal vector external to the boundary of 𝛺, while × represents the cross product. 

These consistent boundary conditions for the pressure (Guermond, Miney, & Shen, 2006) show that this 

version used in this work, also called incremental version in rotational form, is of second order for velocities 

in the 𝐿2, 𝐿1, and 𝐿∞ norms. For the pressure, the scheme is of second order in the 𝐿2 and 𝐿1 norms, and of a 

3/2 order in the 𝐿∞ norm. Several other projection methods are improved versions of Chorin’s (1968) but do 

not reach the same convergence orders used in this paper. 

The use of the projection method has advantages over others such as the SIMPLE method. The resulting 

equations avoid coupling in the velocities variables and are treated separately, reducing the complexity of the 

algorithm (Griffith, 2009). For a generalization of projection methods see Guermond et al. (2006). 

Discretization 

This article uses FVM with staggered grids. The velocities are placed on the faces and the pressure in the 

centers of the control volumes, thus avoiding pressure instabilities (Versteeg & Malalasekera, 2007). 

As shown in the Figure (1), the inner volumes (solid lines) are the real volumes, whose numerical 

methodology – as described in Versteeg and Malalasekera (2007) – is normally applied, and in this paper, we 

applied with lexicographic ordering. The volumes with dashed lines represent the ghost volumes, i.e., volumes 

that do not belong to the physical domain of the problem created only as a numerical strategy to impose 

boundary conditions. However, they facilitate the computational implementation since they are treated 

similarly to those in the interior. The boundary conditions for the variable 𝑢 are prescribed in the east and 

west contours. In the north and south boundaries, linear extrapolation is required to compute u. Analogously, 

the variable 𝑣 is prescribed the north and south contours, and linear extrapolation is required in the other two 

directions. Details on the grids used and spatial discretization by FVM to this problem can be found in 

Anunciação et al. (2020). 
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Figure1. An example of a staggered grid. 

The temporal discretization is done semi-implicitly by the Semi-Backward Difference Formula (SBDF) 

(Guermond et al., 2006). Anunciação et al. (2020) found satisfactory results when employing it in association 

with the multigrid method. The SBDF has three steps and requires parameter tuning, depending on the type 

of problem it is being applied to. In the first, the solutions are obtained from the initial and contour conditions 

of the problem. In the latter, the Euler Method is used to solve the equations related to the first advance in 

time, and only then the SBDF is normally used. Thus, we managed to obtain second-order convergence in the 

temporal discretization of the variables 𝑢 and 𝑣 in the Navier-Stokes equations. Based on how the projection 

method solves the pressure in the contours, there is a numerical boundary layer that degenerates the 

convergence order to approximately 1.5, as discussed in remark 3.2 in Guermond et al. (2006). 

To guarantee the stability of the solutions, the time step ℎ𝑡 must respect the following criterion (Versteeg 

& Malalasekera, 2007): 

ℎ𝑡 <
1

2𝑅𝑒

ℎ𝑥
2ℎ𝑦

2

ℎ𝑥
2 + ℎ𝑦

2
, (15) 

or, when ℎ = ℎ𝑥 = ℎ𝑦: 

ℎ𝑡 <
ℎ2

4𝑅𝑒
. (16) 

In general, projection methods cause the boundary conditions on the pressure to be of the Neumann type. 

To guarantee the existence and uniqueness of the solution, they should have (Trottenberg et al., 2001): 

∫ 𝛻2

𝛺

𝜙𝑛+1 = ∫
3

2ℎ𝑡
𝛺

𝛻 ⋅ 𝐮𝑡 = 0. (17) 

More details on projection methods can be found in Guermond et al. (2006). 

Multigrid method 

The multigrid method is applied to systems of equations of type Equation (1), with a discretized domain 

𝛺ℎ (where ℎ is the size of the control volume). To begin, simply apply an iterative solver, also called smoother 

(Oliveira, Pinto, Gonçalves, & Rutz, 2018), such as weighted Jacobi or Gauss-Seidel, but only a reduced 

number of iterations. After this, the residual can be computed with: 

𝐫ℎ = 𝐟ℎ − 𝐴ℎ𝐯ℎ 
(18) 

in which 𝐯ℎ is the approximation of 𝐮 obtained in the mesh 𝛺ℎ. 
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After the above procedure, the residual is transferred to the subsequently coarser grid using a restriction 

operator. The coarsening ratio of the mesh will be equal to 2 (Trottenberg et al., 2001). Thus, the following 

system is obtained: 

𝐴2ℎ𝐞2ℎ = 𝐫2ℎ , 𝑖𝑛 𝛺2ℎ , 
(19) 

where 𝐞2ℎ is the error to be estimated. 
After obtaining an error approximation in the grid 𝛺2ℎ, the process of correction of the approximation 𝐯ℎ 

begins. First, we use an operator that transfers the error to the finer grid by using a prolongation operator, 

then we perform the following operation: 

𝐯ℎ ← 𝐯ℎ + 𝐞2ℎ . 
(20) 

Finally, we once again apply the chosen smoother in the approximation 𝐯ℎ obtained. More details about 

restriction and prolongation operators are found in Trottenberg et al. (2001). 

This procedure can be performed using coarser grids. Each time we return to the finest grid with the 

correction, there is what it is called a V-cycle, as shown in Figure 2, in which R represents the restriction 

operator, P represents the prolongation operator and S, the smoothing. 

 
Figure 2. V-cycle applied in 5 grids. S = smoothing, R = restriction and P = prolongation. 

The number of times to perform the solver iteration in each level of the V-cycle must be set by a fixed 

quantity defined by user or by parameters that involve the convergence of the solution. They are called 

number of pre- and post-smoothing in the restriction and prolongation, respectively. 

Extrapolation methods 

The iterative processes used in solving systems of equations may present slow and undesired convergence 

in the applications. One way to get around this is through extrapolation techniques, which are based on 

numerical sequence transformations. That is, if one sequence converges slowly, it is possible to transform it 

into another, as long as the original limit remains, and this new sequence may converge faster than the first 

one. These sequences must satisfy certain conditions, as seen in Brezinski and Zaglia (2013).  

Suppose that a real or complex sequence 𝑆𝑛 is converging to s. A sequence transformation (𝑇𝑛) converging 

to 𝑠, according to Brezinski and Zaglia (2013), where 𝑇𝑛 is the newly generated sequence, is also called 

extrapolator. 

This paper uses seven well-known extrapolators, being five of the scalar type and two of the vector type. 

When C1, C2, . . . , Ck, . . . , C∞ are obtained through an iterative process and 𝜙1 = C1(k), 𝜙2 = C2(k), 𝜙𝑖 = Ci(k) are 

the scalars for all 𝑘-th components of the vectors Ci, then the Aitken extrapolator (Burden et al., 2016) is 

defined by: 

𝜙∞
𝐴𝑖𝑡𝑘𝑒𝑛 =

𝜙1𝜙3 − 𝜙2
2

𝜙3 − 2𝜙2 + 𝜙1

. (21) 

There are also the Empirical Estimator proposed by Martins and Marchi (2008), 
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𝜙∞
𝐸𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙

= 𝜙3 +
(𝜙3 − 𝜙2)2

2𝜙2 − 𝜙3 − 𝜙1

, (22) 

and 

𝜙∞
𝑀𝑖𝑡𝑖𝑛 =

𝜙1𝜙5 − 𝜙3
2

𝜙5 − 2𝜙3 + 𝜙1

, (23) 

which is the formula used in Mitin extrapolation (Mitin, 1985). 

The two other extrapolators used in this work, Epsilon and Rho, have a formal similarity between them 

but differ in terms of convergence capabilities. The Epsilon extrapolator is a powerful accelerator of iterative 

methods that solve discrete differential equations, however, it fails when applied to sequence that converge 

logarithmically (Delahaye, 2012). Conversely, the Rho extrapolator does not accelerate sequences with linear 

convergence but is very efficient for logarithmically convergent sequences (Gao, Jiang, Liao, & Song, 2010). 

For a sequence (𝑆𝑛), the scalar Epsilon extrapolator is defined as found in Brezinski and Zaglia (2013) by: 

𝜖−1
(𝑛)

= 0,   𝜖0
(𝑛)

= 𝑆𝑛 ,   𝑛 = 0,1, . .. (24) 

𝜖𝑘+1
(𝑛)

= 𝜖𝑘−1
(𝑛+1)

+
1

𝜖𝑘
(𝑛+1)

− 𝜖𝑘
(𝑛)

,   𝑛, 𝑘 = 0,1, . .. (25) 

for denominators other than zero. The superscript of 𝜖 represents the element, and the subscript, the 

iteration.  

 Remark 1: The expressions given by Equations (24) and (25) only make sense because Brezinski and 

Zaglia (2013) assumed infinite sequences. In our case, we always admitted a finite sequence, which depends 

on the number of iterations. 

 Remark 2: In Equation (25), the structure 𝑛, 𝑘 = 0,1, . .. is understood, for a recursive procedure, as 

For 𝑛 = 0,1, . . . (For 𝑘 = 0,1, . ..). 

Similar, the scalar Rho extrapolator is given as found in Brezinski and Zaglia (2013) by: 

𝜌−1
(𝑛)

= 0,   𝜌0
(𝑛)

= 𝑆𝑛 ,   𝑛 = 0,1, . . ., (26) 

𝜌𝑘+1
(𝑛)

= 𝜌𝑘−1
(𝑛+1)

+
𝑘 + 1

𝜌𝑘
(𝑛+1)

− 𝜌𝑘
(𝑛)

,   𝑛, 𝑘 = 0,1, . . .. (27) 

Both Epsilon and Rho extrapolation methods have scalar and topological variations. While the former 

preserves individual characteristics of each component of the vector, the latter considers the properties of the 

vector as a whole. These two variations are covered in this work. The Topological Epsilon extrapolator is given 

by the equations: 

𝜖̃−1
(𝑛)

= 0,   𝑛 = 0,1, . . ., (28) 

𝜖̃0
(𝑛)

= 𝑆𝑛 ,   𝑛 = 0,1, . . ., (29) 

𝜖̃2𝑘+1
(𝑛)

= 𝜖̃2𝑘−1
(𝑛+1)

+
𝑦

< 𝑦, 𝜖̃2𝑘
(𝑛+1)

− 𝜖̃2𝑘
(𝑛)

>
,   𝑘, 𝑛 = 0,1, . . ., (30) 

𝜖̃2𝑘+2
(𝑛)

= 𝜖̃2𝑘
(𝑛+1)

+
𝜖̃2𝑘

(𝑛+1)
− 𝜖̃2𝑘

(𝑛)

< 𝜖̃2𝑘+1
(𝑛+1)

− 𝜖̃2𝑘+1
(𝑛)

, 𝜖̃2𝑘
(𝑛+1)

− 𝜖̃2𝑘
(𝑛)

>
,   𝑘, 𝑛 = 0,1, . . ., (31) 

where 𝑆𝑛 represents elements of vectorial space 𝐸, 𝑦 is an arbitrary vector such that y ∈ 𝐸∗ (the algebric dual 

space of 𝐸) (Brezinski & Redivo-Zaglia, 2014), and the operator <. , . > represents an inner product. Morover, 

the topological Rho extrapolator is given bellow as seen in Brezinski and Zaglia (2013): 

𝜌
−1
(𝑛) = 0,   𝑛 = 0,1, . . ., (32) 

𝜌
0
(𝑛) = 𝑆𝑛 ,   𝑛 = 0,1, . . ., (33) 
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𝜌
2𝑘+1
(𝑛) = 𝜌

2𝑘−1
(𝑛+1) +

(2𝑘 + 1)𝑦

< 𝑦, 𝜌
2𝑘
(𝑛+1) − 𝜌

2𝑘
(𝑛) >

,   𝑘, 𝑛 = 0,1, . . ., (34) 

𝜌
2𝑘+2
(𝑛) = 𝜌

2𝑘
(𝑛+1) +

(2𝑘 + 2) 𝜌
2𝑘
(𝑛+2) − 𝜌

2𝑘
(𝑛+1)

< 𝜌
2𝑘
(𝑛+2) − 𝜌

2𝑘
(𝑛+1) , 𝜌

2𝑘+1
(𝑛+1) − 𝜌

2𝑘+1
(𝑛) >

,   𝑘, 𝑛 = 0,1, . . .. (35) 

More details of Epsilon and Rho extrapolation methods can be found in Brezinski and Zaglia (2013). 

Applications of the methods can be seen in Gao et al. (2010). 

Results and discussion 

Linear systems for the variables 𝑢 and 𝑣 must be solved at each time step of the projection method. The 

multigrid method combined with different extrapolation techniques was used to solve these systems. 

The experiment was divided into two stages. In the first one, the extrapolation was performed after the cycles 

of the multigrid method whereas in the second one, it was applied between cycles. The simulations were performed 

in different grid sizes and using different stopping criteria. We expected the use of the extrapolation in the Navier-

Stokes equations to be as advantageous as the Richardson-Lucy’s algorithm, as shown in Gao et al. (2010). 

It is noteworthy that the implemented algorithms were validated in other applications, such as in 

Anunciação et al. (2020), who applied the extrapolators seen in this work in Poisson and Burgers equations. 

Implementation data 

The multigrid method used was implemented with the correction scheme (CS) and V-cycle, grid coarsening ratio 

τ = 2 (standard coarsening), and it was solved until the coarsest grid possible was reached (Trottenberg et al., 2001). 

The maximum number of coarsening levels, called Lmax, was used. Gauss-Seidel Red-Black smoothing, with pre- and 

post-smoothing numbers equal to 3, that is, ν = ν1 = ν2 = 3 was applied (Oliveira, Pinto, Marchi, & Araki, 2012). Full 

weighting restriction and prolongation using bilinear interpolation was performed. 𝑅𝑒 = 1 was adopted. 

At each time step of the projection method, Equation (9), which is a reaction-diffusion equation, is solved 

in variable 𝑢, and Equation (11), which is a Poisson equation, is solved for variable 𝜙. This means that each of 

these variables is solved separately, that is, without a general stopping criterion based on the Navier-Stokes 

solutions. In this paper, we used the Euclidean-norm of the residual dimensionless by the initial estimate as 

a stopping criterion in the iterative method (Trottenberg et al., 2001): 

‖𝒓‖2 =  
‖𝒓𝑖𝑡‖

2

‖𝒓0‖2

, (36) 

where 𝐫𝑖𝑡 and 𝐫0 represent the residual of the current iteration and initial estimate, respectively. At the 

end of each V-cycle, Equation (36) is calculated, and when smaller values than the tolerance 𝜀 are reached, 

the process is terminated. 

The algorithms were implemented in the Fortran 2003 language with double precision. The tests were performed 

in a computer with 2.50 GHz x 4 Intel processor, 4GB of RAM, and 64-bit Windows operating system. 

Use of post-multigrid extrapolation 

During this procedure, we executed the multigrid method until the established tolerance ε was reached. 

Then, one of these two paths were taken: 

• an additional cycle of multigrid was performed - denoted as “MG + 1 ITE”; or 

• one extrapolation method was applied - denoted as “MG + Extrapolator”. 

Table 1 shows the number of approximations used for each extrapolation method. 

Table 1. Number of approximations per extrapolation method. 

Extrapolator Number of solutions 

MG + Aitken 3 

MG + Empirical 3 

MG + Mitin 5 

MG + Scalar Epsilon 5 

MG + Scalar Rho 5 

MG + Topological Epsilon 5 

MG + Topological Rho 5 
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The results were measured with the following parameters: processing time or CPU time (tcpu), in seconds 

[s]; memory peak (M) reached during the execution of the algorithm, in Megabytes [MB]; the dimensionless 

residual based on the initial estimate (‖𝒓‖2), given by Equation (36); the mean empirical convergence factor 

(𝑞
(𝑘)

), defined by Trottenberg et al. (2001): 

𝑞̂(𝑘) = √ 
‖𝒓𝑖𝑡‖2

‖𝒓0‖2

𝑘

, (37) 

where 𝑘 represents the 𝑘-th iteration. Values of 𝑞
(𝑘)

 considered good are close to zero (Burden et al., 2016). 

Finally, the Euclidian-norm ‖𝒆‖2, is also measured of variables 𝑢, 𝑣 and 𝑝, with 𝒆 being the numerical error in 

the 𝑛-th time step, that is, the difference obtained between the approximation in the 𝑛-th time step and the 

analytical solution. 

For the simulations to be validated in different sets, variations were made regarding grid size and the 

chosen stopping criteria. The experiments are classified according to Table 2. Every scenario uses 𝑛 = 10 as 

the number of time step, which is interpreted as 10 × ℎ𝑡, where ℎ𝑡 is calculated differently for each grid used, 

respecting the criterion of Equation (16). 

Table 2. Classification of the post-multigrid applications. 

Identification Grid size Stopping criterion (𝜖) 

A1 512 × 512 10−10 

B1 1024 × 1024 10−6 

 

To highlight the performance of the different extrapolation methods studied, we measured 𝑞
(𝑘)

 and ‖𝐫‖2 

for the variable 𝑣. The measurements were obtained at each instant of time 𝑡 at the resolution step of the 

linear system to calculate the correction of velocity 𝑣, which can be seen in Figure 3. Based on this evaluation, 

the topological Epsilon extrapolator had the best performance, followed by the Empirical and scalar Epsilon 

extrapolators. 

 

Figure3. 𝑞
(𝑘)

 and ‖𝐫‖2 at each instant of time for the variable 𝑣. 

It is worth emphasizing that both parameters 𝑞
(𝑘)

 and ‖𝐫‖2, presented very similar results when measured 

for variable u, as seen in Figure 3. 

Table 3, which refers to application A1, shows that Empirical, scalar and topological Epsilon had the best 

performance, with a slight advantage of scalar and topological Epsilon. Note that their computational time is 

smaller than that of the multigrid with no extrapolation, which hereinafter we will call pure multigrid, and 

the other parameters presented similar numbers, except for the memory. The memory usage when performing 

the multigrid method coupled with an extrapolation method is always greater than without it due to the 

storage of solutions necessary for the method to operate. 
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Table 3. A1 application results. 

Methodology tcpu [s] M(MB) ‖𝒆‖2(𝑢) ‖𝒆‖2(𝑣) ‖𝒆‖2(𝑝) 

MG + 1 ITE 78.5 101.784 7.385E-08 7.385E-08 1.055E-04 

MG + Aitken 66.3 116.204 2.339E-02 2.100E-02 7.368E+00 

MG + Empirical 75.4 116.148 8.476E-08 8.476E-08 1.055E-04 

MG + Mitin 69.2 116.196 4.625E-04 4.567E-04 3.148E-01 

MG + Scalar Epsilon 75.8 116.164 7.463E-08 7.463E-08 1.055E-04 

MG + Scalar Rho 72.0 116.196 2.082E-06 2.082E-06 1.122E-04 

MG + Topological Epsilon 74.6 134.644 7.459E-08 7.459E-08 1.055E-04 

MG + Topological Rho 74.3 134.684 2.083E-06 2.083E-06 1.121E-04 

 

Table 4. shows the results of the post-multigrid application B1 – with a more refined grid. 

Table 4. B1 application results. 

Methodology 𝑡𝑐𝑝𝑢 [s] 𝑀(MB) ‖𝒆‖2(𝑢) ‖𝒆‖2(𝑣) ‖𝒆‖2(𝑝) 

MG + 1 ITE 197.5 378.868 4.214E-06 4.214E-06 1.408E-04 

MG + Aitken 181.6 424.944 6.870E-05 6.670E-05 1.142E-02 

MG + Empirical 194.6 430.34 5.724E-05 5.724E-05 1.598E-03 

MG + Mitin 181.5 430.364 5.830E-07 5.838E-07 5.385E-04 

MG + Scalar Epsilon 188.7 424.952 2.763E-08 2.763E-08 5.390E-05 

MG + Scalar Rho 190.8 430.384 1.061E-02 1.061E-02 2.563E-01 

MG + Topological Epsilon 196.0 504.052 1.078E-08 1.077E-08 5.371E-05 

MG + Topological Rho 192.9 504.028 1.061E-02 1.061E-02 2.551E-01 

 

The results depicted in Table 4 are the most promising, with highlights to the scalar and topological 

Epsilon extrapolators. They outperform pure multigrid in every parameter, except for memory usage, 

which will have a more thorough analysis towards the end of this paper. Noticeably, the decrease of the 

‖𝒆‖2(𝑝) was equivalent to one order of magnitude over pure multigrid in both methods. These two 

methods were selected based on their performance, as shown in this section, and are analyzed in the 

second stage of results. 

Use of extrapolation between cycles 

In this section, scalar and topological Epsilon extrapolators were applied between the multigrid cycles. 

This occurs as follows: given the initial estimate for the problem, five cycles of the multigrid are then 

performed (see Table 1). Subsequently, five more cycles and a new extrapolation are performed, and so on, 

until the stopping criterion is reached. 

The simulations were organized according to the grid and stopping criteria used (Table 5). The number of 

time steps n = 10 was used in all cases analyzed. 

Table 5. Classification of applications in-between multigrid cycles. 

Identification Grid size Stopping criterion (𝜖) 

C1 512 × 512 10−10 

D1 1024 × 1024 10−8 

D2 1024 × 1024 10−10 

 

Table 6 shows the application of the scalar and topological Epsilon extrapolation between the multigrid 

cycles for application C1. Noticeably, the use of the extrapolation produced equal or slightly better than 

without extrapolation, except for memory usage, as expected. Moreover, the scalar Epsilon presented better 

memory usage and CPU time results than the topological version. 

Table 6. C1 application results. 

Methodology tcpu [s] M(MB) ‖𝒆‖2(𝑢) ‖𝒆‖2(𝑣) ‖𝒆‖2(𝑝) 

MG 65.1 97.568 8.476E-08 8.476E-08 1.055E-04 

MG + Topological Epsilon 57.5 130.72 7.492E-08 7.492E-08 1.055E-04 

MG + Scalar Epsilon 53.3 112.264 7.585E-08 7.585E-08 1.055E-04 
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Table 7 shows the data for application D1 application – case with the most refined grid. The most 

successful extrapolator was the scalar Epsilon, which had better results than pure multigrid and topological 

Epsilon in all the parameters, except for memory and norm of the error of p in former, and a small difference 

in tCPU, in latter. In turn, the lowest computational time was reached with the topological Epsilon, which was 

slightly better than pure multigrid concerning the norms ‖𝒆‖2(𝑢) and ‖𝒆‖2(𝑣). 

Table 7. D1 application results. 

Methodology tcpu [s] M(MB) ‖𝒆‖2(𝑢) ‖𝒆‖2(𝑣) ‖𝒆‖2(𝑝) 

MG 197.0 374.788 2.999E-07 2.999E-07 5.384E-05 

MG + Topological Epsilon 183.4 499.984 2.305E-07 2.305E-07 8.969E-05 

MG + Scalar Epsilon 184.8 426.428 6.380E-08 6.308E-08 5.529E-05 

 

To conclude the analysis of the behavior of the scalar and topological Epsilon extrapolation between the 

multigrid cycles, the Table 8 brings the results of application D2 – case with the most refined grid and the 

most rigorous stopping criterion. 

Table 8. D2 application results. 

Methodology tcpu [s] M(MB) ‖𝒆‖2(𝑢) ‖𝒆‖2(𝑣) ‖𝒆‖2(𝑝) 

MG 225.8 378.816 3.171E-08 3.171E-08 5.376E-05 

MG + Topological Epsilon 226.0 504.124 9.674E-09 9.675E-09 5.370E-05 

MG + Scalar Epsilon 230.5 426.428 1.146E-08 1.146E-08 5.371E-05 

 

Although the computational times of multigrid associated with extrapolation methods were slightly 

higher than pure multigrid, both techniques had better results concerning all norms (except for ‖𝒆‖∞(𝑝),  

obtained with the scalar Epsilon). Due to the outstanding results obtained in application D2 and 

presented in Table 8, only the topological Epsilon extrapolator will be analyzed in the next  figures 

(Figures 4-5).  

Figure 4 shows the measurements ‖𝐫‖2 for the variable v at each iteration, with the number of time steps 

n = 10 while displaying data from application D2. The variable u presents similar results. Note that by applying 

extrapolation between multigrid cycles, the 𝐿2-norm of residual (in logarithmic scale) has a greater decrease 

(about 100 times smaller) than pure multigrid. 

 
Figure4. 𝐿2-norm of residual for the variable v at each iteration and n = 10. 

To obtain clearer results regarding CPU time and memory usage, we performed additional tests. The first 

one relates to CPU time. For this, simulations with N ranging from 64 × 64 to 1024 × 1024, tolerance of 10−8, 

and the number of time steps n = 1000 for the proposed problem were made. 

Then, we calculated the speed-up parameter, given by Trottenberg et al. (2001) 
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𝑆𝑝 =
𝑡𝐶𝑃𝑈(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐴)

𝑡𝐶𝑃𝑈(𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝐵)
. (38) 

In this case, the algorithm A represents the multigrid method without the extrapolation and, algorithm B, the 

multigrid method coupled with the topological Epsilon extrapolation. Values of 𝑆𝑝 greater than one indicate that 

the multigrid combined with extrapolation is faster than without it. This result can be seen in Figure 5(a). 

 
Figure 5. Additional tests: (left) speed-up value and (right) memory RAM usage concerning pure multigrid. 

To analyze the effect on RAM memory usage, we compared the memory percentage of the method with 

and without extrapolation as we increased the number of points in the grid. The results are summarized in 

Figure 5(b). 

Figure 5(b), shows that in addition to decreasing, the relative memory usage has an asymptotic stability 

behavior with the refinement of the grids. This means that there is no exponential growth when increasing 

the number of volumes in the domain, making extrapolation techniques feasible. 

Conclusion 

We solved the Navier-Stokes equations using projection methods, FVM, and the multigrid combined with 

different extrapolation techniques. The multigrid method was set with Gauss-Seidel red-black smoother and 

V-cycle. 

We can state that: 

1 For more refined grids and rigorous stopping criteria, topological Epsilon proved to be the most 

effective; 

2 Regarding memory usage, the topological Epsilon presented an asymptotic stability behavior as the 

grid is refined; 

3 The topological Epsilon reduced the mean empirical convergence factor, the residual norm, and the 

computational time for problems in refined grids and when many time steps are used. 
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