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ABSTRACT 
Multiphase problems in porous media involve the complex 
flow of multiple fluid phases within porous structures, cover-
ing areas of Engineering, Medicine, Geology, among others. 
Understanding these phenomena is crucial in natural proc-
esses, resource management, and Engineering system design. 
Due to its great importance, several researchers have contrib-
uted by developing different formulations to describe the 
multiphase problem. Through laboratory experiments, research 
lines emerged to numerically determine relative permeability 
and capillary pressure, parameters that were previously 
obtained only through experiments, giving rise to two distinct 
models to solve the flow problem: the van Genuchten and 
Brooks-Corey parameterizations. This work aims to analyze, 
through numerical simulations, the resolution of multiphase 
problems in rigid porous media using both parameterization 
models, in order to compare the efficiency of each method in 
different settings. Apparently, this study is unique in its focus, 
uncovering valuable insights into performance and applicabil-
ity of both parameterization, providing a comprehensive view 
of their advantages and constraints in several settings. The 
results of this study have indicated an advantage in employ-
ing Brooks-Corey parameterization, particularly in reducing the 
error between the numerical and analytical solutions. The find-
ings of this study can help, for example, to better understand 
oil recovery from naturally fractured reservoirs.
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1. Introduction

The modeling of problems involving fluid flow in a porous structure is 
done by adaptations to the mass conservation law, which states that the 
change in mass (over time) in a given infinitesimal control volume is equal 
to the variation in the mass flow of fluid that passes through the control 
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volume together with the contribution of sources and sinks within this 
same volume (Bastian 1999).

Applying this law to two immiscible fluids, wetting (w) and non-wetting 
(n), both flowing through the same porous medium, we obtain the math-
ematical model of interest. This model consists of a highly nonlinear sys-
tem of partial differential equations, making its resolution by common 
analytical or iterative methods difficult, with one possible solution being 
the use of suitable numerical methods. To solve these equations, it is neces-
sary to perform spatial and temporal discretization, as well as linearization. 

Nomenclature 
Abbreviations 

BC Brooks-Corey 
VG van Genuchten  

Alphabetic Letters 

Cu Coefficient of uniformity
Fa Source term of phase a
g Gravitational acceleration vector
h Space between the grid control 

volumes
itmeL Average of linearization 

iterations
itmeMG Average of Multigrid cycle 

iterations
K Absolute permeability
kra Relative permeability of phase a
L Spatial domain length
m, n van Genuchten parameters
N Number of samples of timeCPU

Nt Number of time steps
Nx Number of spatial discretization 

volumes
p Fluid pressure
�p Average pressures
pc Capillary pressure
pe Entry pressure
q Volumetric flow vector
jj � jj1 Infinity norm
resit it-th residual iteration
res0 Initial estimate residual
C:V: Coefficient of variation
S Saturation
�S Effective saturation

Sar Residual saturation of phase a
timeCPU CPU time
T Final time
TOL Multigrid method tolerance 

Greek Letters 

� Gradient operator
dp Pressure correction
c Arithmetic mean of timeCPU
k Brooks-Corey parameter
ka Fluid mobility of phase a
l Fluid viscosity
X Continuous domain
Xh Fine grid
X2h Coarse grid
q Fluid density
/ Porosity of the medium
s Time interval 

Subscripts 

a Fluid phase
bc0 Boundary condition at x 
0
bcL Boundary condition at x 
L
n Non-wet phase of the fluid
w Wet phase of the fluid 

Superscripts 

n Time step iteration
m Linearization method iteration 
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In the literature, there are numerous discretization models for partial dif-
ferential equations. For spatial discretization, there are various methods 
such as the finite difference method (LeVeque 2007), finite volume method 
(Versteeg and Malalasekera 2007), and finite element method (Hughes 
2000), among others. For temporal discretization, Euler, Crank-Nicolson, 
and Runge-Kutta methods (Ferziger and Peric 2002) are widely used. In 
this work, we chose to use the Finite Volume Method and Implicit Euler 
for spatial and temporal discretization, respectively.

Given the nonlinearity of the model in question, we apply a linearization 
method to the nonlinear system in order to approximate it to a system of 
linear equations. Some examples of linearization methods are Newton’s and 
Picard’s method (Ferziger and Peric 2002; Burden and Faires 2016). In our 
analysis, we use a method derived from Picard’s method, the Modified 
Picard (Celia and Binning 1992).

With the use of these discretization and linearization methods, linear sys-
tems are generated that need to be solved at each linearization step (Burden 
and Faires 2016). Such systems can be solved using direct or iterative methods. 
The chosen discretization and linearization methods for this problem generate 
large sparse matrices, often making the use of direct methods impractical for 
their resolution. In the specific case of this work, which deals with a simplified 
one-dimensional problem, the generated matrices are tridiagonal, and they can 
be easily solved using the Tridiagonal Matrix Algorithm (TDMA) (Burden 
and Faires 2016). However, in order to generalize our study, we have chosen 
to use only iterative methods. The main methods for solving linear problems 
are the Jacobi and the Gauss-Seidel methods (Burden and Faires 2016). 
However, these iterative methods lose the ability to reduce the full spectrum of 
errors as the number of iterations increases. The Multigrid method 
(Trottenberg, Oosterlee, and Schuller 2001; Oliveira, Franco, and Pinto 2018; 
De Oliveira et al. 2018; Malacarne, Pinto, and Franco 2022) is a numerical 
technique used to solve this type of problem. This method uses a hierarchy of 
grids to cover the entire spectrum of errors and thus accelerate convergence.

The use and development of multipahse flow in porous media simula-
tions can be applied in supervision, study, control, and the development of 
new techniques, such as deep-sea oil extraction, as the soil filled with this 
fossil fuel can be considered a porous medium (Wang et al. 2020). Similarly, 
we can apply this model to study soil contaminated by toxic waste, such as 
pesticides and liquids from improper waste disposal (Brewer, Dror, and 
Berkowitz 2022), monitor tumor growth in patients, and even control and 
seek more effective and less aggressive methods in chemotherapy treatment 
for oncology (Mascheroni, Santagiuliana, and Schrefler 2019).

A real application on multiphase flow in porous media can be discussed 
in Chamkha (2000a). That study considers flow of two immiscible fluids 
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viscous, incompressible, and electrically heat-conducting in an impermeable 
channel filled with a uniform porous medium. That study is useful in 
understanding the effects of thermal buoyancy and a magnetic field on 
enhanced oil recovery and filtration systems.

Applications in multiphase flow and heat transfer in a horizontal channel 
and free-convective flow of micropolar and viscous fluids in a vertical 
channel can be seen in Umavathi et al. (2005) and Kumar et al. (2010).

The problem of flow and heat transfer in an electrically conducting fluid 
or the hydromagnetic natural convection heat transfer using a two-phase 
model in porous media, both in the presence of a magnetic field, are studied 
in Chamkha (2000b) and Khanafer and Chamkha (1998).

In Chamkha (2002) and Chamkha and Al-Naser (2001) can be found 
double-diffusive convection in the cases where is analyzed a porous enclos-
ure with cooperating temperature gradient and heat generation/absorption 
effects, or an inclined porous enclosure with opposing temperature gradi-
ent, both with concentration gradients.

A research line of interest in multiphase flow is the search for parameter-
izations, that is, the search for analytical relationships to determine variables 
so that it is no longer necessary to define them through laboratory experi-
ments. Two of these parameterizations seek to model the relationships 
between fluid saturation and the variables of capillary pressure and relative 
permeability, namely the well-known parameterizations of van Genuchten 
(van Genuchten 1980) and Brooks-Corey (Brooks and Corey 1964).

An important application of the van Genuchten (VG) and Brooks-Corey 
(BC) models can be discussed in Dejam and Hassanzadeh (2011). That 
work develops a mechanistic model for the formation of liquid bridges that 
cause interaction between blocks in fractured porous media, thus advancing 
the understanding of two-phase flows in this type of media.

This work aims to analyze the effectiveness of each of these parameter-
izations in solving one-dimensional multiphase problems in rigid porous 
media. Through numerical analysis, we will compare various parameters, 
such as the infinity norm of the errors of the variables of interest (pressure 
and saturation), average number of linearizations, average number of itera-
tions in the multigrid method, and number of iterations in the coupled 
Gauss-Seidel solver. A representation of this problem is illustrated in 
Figure 1, where two phases, such as water and oil, flow through a one- 
dimensional rigid porous medium.

This study distinguishes itself from existing references by focusing on the 
comparative analysis of two distinct parameterization methods, whereas 
most literature primarily emphasizes parameter estimation (Yang and You 
2013; Han, Shao, and Horton 2010; Wang, Horton, and Shao 2002) and 
applications (Liang et al. 2016; Akhmetov, Kuleshova, and Mukhametshin 
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2019) of these methods, but rarely incorporates both parameterizations in 
their research. Works that do consider both methods typically focus only 
on finding parameters that approximate the parameterization models rather 
than directly comparing them (Lenhard, Parker, and Mishra 1989; Benson 
et al. 2014; Pan et al. 2019). In our work, we propose a method that that 
calculates the approximation between the relative permeabilities by measur-
ing the difference between the areas under these curves.

There are also studies that make such comparisons (Abbaspour et al. 2012; 
Goorabjiri and Rasoulzadeh 2016; Pan et al. 2019), but they are often more 
focused on the aspect of fluid flow in soils, which makes them more specific 
than the present work. Those studies often involve experimental soil analysis 
to determine specific parameters tailored to the problem they aim to solve. 
In contrast, our study places a stronger emphasis on the theoretical and 
mathematical aspects, striving to achieve the best numerical model perform-
ance without considering specific cases and physical parameters.

Furthermore, our research introduces a new perspective by incorporating 
the multigrid method to aid in the convergence of the numerical model. 
The inclusion of the multigrid method enhances the robustness and effi-
ciency of our numerical model, setting our work apart from others in the 
same domain.

One significant advantage of this study is that it proposes an equation 
that relates the parameters of VG and BC. Another notable advantage is 
the ease of extending the problem to two dimensions, because the parame-
ters of VG and BC are independent of them.

However, there are also some limitations to the study. One drawback is 
that transitioning to a three-phase scenario might not be as immediate due 
to the inherent complexity involved. Another limitation is that the capillary 
pressure expressions were not included in the numerical models and were 
replaced by a single expression proposed by Illiano (2016).

The rest of this article is organized as follows: Section 2 develops the 
mathematical and numerical model underlying the problem; Section 3
presents the equations of the analyzed parameterizations; Section 4 introdu-
ces the Multigrid method; Section 5 demonstrates the results of the simula-
tions, and finally, in Section 6 we present the conclusions.

Figure 1. Illustration of a one-dimensional porous medium filled with two fluids, water and oil.
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2. Mathematical and numerical models

Flow in rigid porous media, for two immiscible fluids, follows the model of 
the mass conservation differential equation for each phase a (Bastian 1999)

@ðqahaÞ

@t
þr � ðqaqaÞ ¼ Fa, in X� s, (1) 

where a ¼ w, n with w representing the wetting phase and n the non-wet-
ting phase, qa is the fluid density, ha ¼ /Sa where / is the porosity of the 
medium and Sa is the saturation, qa is the volumetric flow rate, Fa is the 
source term corresponding to phase a, and r � is the divergence operator. 
Since we are dealing with a one-dimensional problem, the domain of the 
flow differential equation is X ¼ Rþ and s is a given time interval (0, T], 
where T is the final time. The volumetric flow rate is given by Darcy’s law 
adapted for multiphase flow (Bastian 1999)

qa ¼ −kaKðrpa − qagÞ, (2) 

where ka ¼
kra
la 

is the mobility, with kraðSaÞ being the relative permeability 
(dimensionless value), la is the dynamic viscosity of the fluid, K is the 
absolute permeability, which depends only on the porous medium, pa is 
the pressure of phase a fluid, g is the acceleration due to gravity vector, 
and r is the gradient operator.

Remark 1. Darcy’s law is valid for the slow flow, therefore, convective 
effects can be neglected (Bastian 1999).

By substituting Equation (2) into Equation (1), considering incompress-
ible fluids and zero gravity acceleration, we obtain the equation for the 
problem, given by the pressure-saturation formulation (Illiano 2016):

@ha

@t
−r � ðkaKrpaÞ ¼

Fa

qa

: (3) 

In multiphase flow problems, the interaction between different phases gives 
rise to a pressure at the interface between the fluids, called capillary pressure:

pc ¼ pn − pw: (4) 

To complete the mathematical formulation of the problem, we use 
Dirichlet boundary conditions given by pað0, tÞ ¼ pabc0 and paðL, tÞ ¼ pabcL, 
where pabc0 and pabcL are the known boundary conditions, and L is the 
length of the spatial domain.

Remark 2. It can be noted that this work assumes thermal equilibrium 
of the multiphase with the porous medium. This case appears in real situa-
tions. In Smaï (2023), the main assumptions of the formulation for multiphase 
compositional flows are: the solid matrix is inert and non deformable and the 
porous system is always at thermal local equilibrium. Thermodynamic 
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equilibrium is also assumed in Coatleven and Meiller (2021), which deals with 
applications in real cases.

Remark 3. It can also be noted that the non-Darcian inertia effects have 
been neglected. But there are cases where these effects must be considered. 
For more details, see Chamkha (1996, 1997), where continuous and vol-
ume-mean equations governing the non-Darcy hydromagnetic free and 
mixed convection flows are developed.

In order to obtain the numerical model, we discretize Equation (3) with 
respect to time using the implicit Euler method with Dt ¼ T

NT
, where NT is 

the number of time steps. We then use the modified Picard method to lin-
earize the resulting equations. For simplicity, we use the notations Ca ¼

@ha

@pc 

and Ka ¼ K kra
la
: This process is performed for both phases w and n, result-

ing in the following equations:

Cnþ1, m
w

dpnþ1, mþ1
n − dpnþ1, mþ1

w
Dt

−
@

@x
Knþ1, m

w
@

@x
ðdpnþ1, mþ1

w Þ

� �

¼

@

@x
Knþ1, m

w
@

@x
ðpnþ1, m

w Þ

� �

þ Fnþ1
w −

hnþ1, m
w − hn

w
Dt

,
(5a) 

−Cnþ1, m
w

dpnþ1, mþ1
n − dpnþ1, mþ1

w
Dt

−
@

@x
Knþ1, m

n
@

@x
ðdpnþ1, mþ1

n Þ

� �

¼

@

@x
Knþ1, m

n
@

@x
ðpnþ1, m

n Þ

� �

þ Fnþ1
n −

hnþ1, m
n − hn

n
Dt

,
(5b) 

where dpnþ1, mþ1
a ¼ pnþ1, mþ1

a − pnþ1, m
a is the pressure correction for phase a. 

In Equations (5a, 5b) the superscripts nþ 1 and mþ 1 represent the cur-
rent time level and the current iteration of linearization, respectively.

Additionally, we use the Finite Volume Method with a uniform mesh for 
the spatial discretization of Equations (5a, 5b). In this process, we use 
the Gauss divergence theorem (Kreyszig 2011) and calculate the resulting 
integrals using the matrix form of the volume locations. By using nodal 
values to calculate the approximations at the faces for pressures and their 
corrections, we obtain the following linear expression:

Cw½ �
nþ1, m
j dpn½ �

nþ1, mþ1
j − dpw½ �

nþ1, mþ1
j

� �Dx
Dt

−

(

Kw½ �
nþ1, m
jþ1

2

dpw½ �
nþ1, mþ1
jþ1 − dpw½ �

nþ1, mþ1
j

Dx

 !

− Kw½ �
nþ1, m
j−1

2

dpw½ �
nþ1, mþ1
j − dpw½ �

nþ1, mþ1
j−1

Dx

 !)
1
lw
¼

(

Kw½ �
nþ1, m
jþ1

2

pw½ �
nþ1, mþ1
jþ1 − pw½ �

nþ1, mþ1
j

Dx

 !

− Kw½ �
nþ1, m
j−1

2

pw½ �
nþ1, mþ1
j − pw½ �

nþ1, mþ1
j−1

Dx

 !)
1
lw
þ

Fw½ �
nþ1, m
j

qw
−

hw½ �
nþ1, m
j − hw½ �

n
j

Dt

" #

Dx,

(6) 
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where Dx ¼ L
Nx 

is the distance between the centers of the volumes in the 
discretized domain, L is the length of the domain X and Nx is the number 
of volumes.

Rearranging Equation (6) to solve for the correction of the wetting 
pressure dpw and repeating the entire process for the correction of the 
non-wetting pressure dpn, we obtain the following linear system that must 
be solved at each linearization step (De Oliveira et al. 2020),

Aw B
B An

� �
dpw
dpn

� �

¼
fw
fn

� �

, (7) 

where,

Aa ¼

bc 0
aa½ �i−1 aa½ �i aa½ �iþ1 0

0 aa½ �i−1 aa½ �i aa½ �iþ1 0

. .
. . .

. . .
. . .

.

0 aa½ �i−1 aa½ �i aa½ �iþ1
0 bc

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

,

B ¼

bc 0
0 ci 0

0 ci 0
. .

. . .
. . .

.

0 ci 0
0 bc

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

, 

with

aa½ �i ¼ − Cnþ1, m
w

� �

i þ
Dt
Dx2 Knþ1, m

a

� �

i−
1
2

þ Knþ1, m
a

� �

iþ
1
2

 !
,

aa½ �iþ1 ¼ −
Dt
Dx2 Knþ1, m

a

� �

iþ
1
2

,

aa½ �i−1 ¼ −
Dt
Dx2 Knþ1, m

a

� �

i−
1
2

,

ci ¼ Cnþ1, m
w

� �

i,

fa½ �i ¼
Dt
Dx2 Knþ1, m

a

� �

iþ
1
2

pnþ1, m
a

� �

iþ1 −
Dt
Dx2 Knþ1, m

a

� �

i−
1
2

þ Knþ1, m
a

� �

iþ
1
2

 !
pnþ1, m

a

� �

i

þ
Dt
Dx2 Knþ1, m

a

� �

i−
1
2

pnþ1, m
a

� �

i−1 þ DtFa − hnþ1, m
a

� �

i þ hn
a

� �

i:
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3. Parameterizations

Capillary pressure and relative permeabilities are parameters usually deter-
mined through laboratory experiments. In this section, we will discuss two 
methods found in the literature to determine these parameters: van 
Genuchten (VG) and Brooks-Corey (BC) parameterizations.

3.1. Van Genuchten parameterization

In the van Genuchten (VG) parameterization, capillary pressure and rela-
tive permeabilities of the w and n phases can be expressed as follows 
(Bastian 1999):

pcðSaÞ ¼ pe �S
−1
m
a − 1

� �1
n
, (8) 

krwðSwÞ ¼
ffiffiffiffiffi
�Sw

p
1 − 1 − �S

1
m
w

� �m
� �2

, (9) 

krnðSwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − �Sw

p
1 − �S

1
m
w

� �2m
, (10) 

where pe and n are free parameters of VG, �Sa is the effective saturation of 
phase a, and m ¼ 1 − 1

n : The parameter pe is called the entry pressure and 
represents the critical pressure required for the non-wetting phase to enter 
the larger pores of the medium (Bastian 1999). The parameter n is physic-
ally related to the symmetry in the distribution of pore sizes. According to 
Lenhard, Parker, and Mishra (1989) and Benson et al. (2014), n takes on 
low values when the medium has a highly asymmetric pore size distribu-
tion, and high values for a more uniform distribution.

The relationship between the free parameter n and the physical proper-
ties of the medium was explored by Benson et al. (2014) through empirical 
tests using the coefficient of uniformity (Cu), which is a physical parameter 
indicating the degree of pore size uniformity in the medium. In this case, a 
large Cu refers to an asymmetric medium, and as Cu tends to 1, the pores 
tend to have a constant size. The Figure 2 (adapted from (Benson et al. 
2014)) illustrates the relationship between Cu and the free parameter n. It 
can be observed that for media with low asymmetry (small Cu values 
close to 1), the typical values of n can vary significantly, mainly concentrat-
ing in the range between 2 and 8. On the other hand, for highly asymmet-
ric media (high Cu), the values of this parameter remain close to 2. 
Therefore, it can be concluded that when there is high asymmetry, an 
approximation can be made by taking the value of n as 2, unlike the 
opposite case (high degree of symmetry) where there is no strict criterion 
for the choice of n.
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Finally, �Sa represents the effective saturation of phase a and can be 
described as:

�Sw ¼
Sw − Swr

1 − Swr − Snrð Þ
, (11) 

where Sar is the residual saturation of phase a (a ¼ w and n).

3.2. Brooks-corey parameterization

For the model developed by Brooks and Corey (1964) (BC), the capillary 
pressure and relative permeabilities of the w and n phases can be obtained 
through the following equations:

pcðSaÞ ¼ pe�S
−1
k

a , (12) 

krwðSwÞ ¼ �S
2þ3k

k

w , (13) 

krnðSwÞ ¼ 1 − �Swð Þ
2 1 − �S

2þk
k

w

� �

, (14) 

where pe and k are the free parameters. Similarly to the VG model, pe rep-
resents the entry pressure. The parameter k is physically related to the dis-
tribution of pore sizes: the more uniform the porous medium, the higher 
the value of k. The opposite occurs for non-uniform media.

According to Bastian (1999), typical values for k range from 0.2 to 3. 
Corey (1994) suggests typical values of k around 2. In natural sandbanks, 
this value concentrates between 5 and 6, especially if the material is well- 
mixed and compacted. For untouched soils (highly asymmetric), values of 
k below 1 are not uncommon (Corey 1994).

Figure 2. n versus Cu adapted from Benson et al. (2014).
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4. Solver and multigrid method

After temporal discretization, linearization, and spatial discretization using 
the MVF of the studied model, as shown in Section 2, large sparse systems 
arise, such as those given by Equation (7), in each step of linearization 
of the two-phase problem equation system. Such systems can be 
solved using direct or iterative methods (referred to as solvers here). 
Nevertheless, the direct method is not efficient for solving this type of sys-
tem (Barrett et al. 1994; Burden and Faires 2016), so we prioritize the 
results generated using solvers, particularly the Gauss-Seidel coupled 
method (Gaspar et al. 2004).

Despite the method rapidly reducing the high-frequency components of 
the error (oscillatory modes), it encounters difficulties in reducing the low- 
frequency components (smooth modes). This results in a rapid decay of 
the error in the early iterations of the process, but as the iterations pro-
gress, the reduction rate starts to decrease, and the error begins to decrease 
slowly, eventually stabilizing. To overcome this situation, we use the 
Multigrid method, which is a robust method designed to accelerate the 
convergence of the solver by efficiently eliminating the smooth components 
of the error. During the problem resolution, this method goes through a 
hierarchy of grids with different levels of refinement, so that the smoothed 
errors in a fine grid are transferred to coarser grids where they gradually 
become more oscillatory, and convergence becomes more efficient.

For this method, two transfer operators between grids are necessary: the 
restriction operator, which transfers information from a fine grid (Xh) to 
the immediately coarser grid (X2h); and the prolongation operator, which 
transfers information from the coarser grid to the immediately finer grid. 
In this work, we use the arithmetic mean of volumes as the restriction 
operator and piecewise constant interpolation as the prolongation operator 
(Trottenberg, Oosterlee, and Schuller 2001).

During the execution of the Multigrid method, grids can be gone 
through in various ways, which gives rise to Multigrid cycles, the main 
ones being the V-, W-, F-cycles (details in Trottenberg, Oosterlee, and 
Schuller (2001); Wesseling (1992)). Figure 3 illustrates the W-cycle, the 
Multigrid cycle used in our study.

Figure 3. W-cycle for four mesh levels.
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The linear system (Equation 7) originated from the discretization by the 
Modified Picard method (Algorithm 2) is then solved using the multigrid 
method (Algorithm 1).

Algorithm 1: MG-W-Cicle (l) 
if l ¼ Lmax (coarsest grid level) then  

Solve AðlÞvðlÞ ¼ f ðlÞ in coarse grid X2l−1h:

else  
Smooth �1 times AðlÞvðlÞ ¼ f ðlÞ on grid X2l−1h with initial guess vðlÞo :

Calculate and restrict the residual: f ðlþ1Þ ¼ I2lh
2l−1hðf

ðlÞ − AðlÞvðlÞÞ:
for cicle ¼ 1 : 2 do   

Solve in the next level: MG-W-cicle ðlþ 1Þ:
end for  
Correct using prolongation: vðlÞ  vðlÞ þ I2l−1h

2lh vðlþ1Þ:

Smooth �2 times AðlÞvðlÞ ¼ f ðlÞ on mesh X2l−1h with initial guess vðlÞ:
end if  

Where IH
h and Ih

H are, respectively, the generic restriction and prolonga-
tion operators.  

Algorithm 2: Modified Picard for two-phase problems in rigid porous media 
Enter the data and initial and boundary conditions. 
for n ¼ 1 : NT  

Update ha:

while not reaching the stopping criterion for the linearization step do   
Calculate Cw, kra and Fa:

Update ha:

while not reaching the stopping criterion for the Multigrid do    
One Multigrid cycle in the system (7) using MG-W-cicle(1).   

end while  
end while 

end for  

5. Results 

5.1. Numerical experiments 

The algorithms used in this work were implemented in MATLAB R2016a with 
double precision on a device equipped with an AMD Ryzen 5-5500 U 2.1 GHz 
processor, 8GB of RAM, and the Windows 11 64-bit operating system. 

In order to verify the implemented codes, we compared the obtained 
numerical solutions with the analytical solution of the problem proposed 
by Illiano (2016), which has simple data, facilitating the calculations 
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involved. The analytical expressions for the saturation of the wetting phase 
w (Sw) and the average of the pressures (�p ¼ pwþpn

2 ) are given by Swðx, tÞ ¼
�pðx, tÞ ¼ xtð1 − xÞ, with initial and boundary conditions given by f ðx, 0Þ ¼
f ð0, tÞ ¼ f ð1, tÞ ¼ 0: Additionally, Illiano (2016) also proposes an analytical 
expression for the capillary pressure; which in practice means that we will 
not use the parameterization for this variable. This expression is given 
by pcðSwÞ ¼ 1 − 1

2 Sw
2:

For the pressure-saturation formulation (given by Equation 3), our 
approach involves solving the linearized systems in the variables dpw and 
dpn (pressure corrections) (according to Equation (7)). Some modifications 
were necessary for Illiano (2016) problem to fit our simulations and enable 
the use of pw and pn instead of �p: Using Equation (4) we obtain the follow-
ing expressions:

pw ¼ �p −
pc

2
and pn ¼ �p þ

pc

2
:

In order to obtain an analytical model that relates the VG and BC param-
eterizations, we used comparable free parameters from each of them, namely 
n for VG and k for BC. These parameters were employed to ensure that the 
curves of the relative permeabilities (krw and krn) approximate each other. 

There are already analytical expressions in the literature that relate n and 
k as a function k ¼ g(n) (Lenhard, Parker, and Mishra 1989; Benson et al. 
2014; Pan et al. 2019). In this work, we propose the choice of these param-
eters based on the calculation of the total area between the curves of the 
relative permeabilities (krw and krn). This method will be referred to as the 
Area Difference method. It involves calculating the area between the curves 
of the relative permeabilities. This area, denoted as

Aðn, kÞ ¼
ð1

0
jkrwVG − krwBCj þ jkrnVG − krnBCj½ �dSw, (15) 

where Aðn, kÞ represents the area between the curves, kraP denotes the rela-
tive permeability of phase a (where a ¼ w or n), P denotes the parameter-
ization method (P¼VG or BC), and Sw represents the saturation of the 
wetting phase. The objective of this method is to find a k value, given an n 
value, that minimizes the area between the curves of the relative permeabil-
ities (with n for VG and k for BC). This calculation can be expressed as

min
k

Aðn, kÞ, for a given n: (16) 

To test the effectiveness of the expressions found in the literature and 
the Area Difference method, we calculated the corresponding k values for 
certain specific n values (see Table 1). In this case, the last column 
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represents the minimum area achieved with the specified n value and the k 

value shown in the column related to the Area Difference method.
Despite the differences in the results obtained between the functions 

defined by Lenhard, Parker, and Mishra (1989), Benson et al. (2014) and 
Pan et al. (2019) and the Area Difference method proposed in this work, a 
similar behavior can be observed, especially with the expressions of Benson 
et al. (2014) and Pan et al. (2019).

Figure 4 shows the remarkable linear relationship between k and n for 
the proposed method (column” Area Difference” in Table 1). By perform-
ing a linear fit (Devore 2012; Burden and Faires 2016), we obtain the fol-
lowing relationship

kðnÞ ¼ 0:51n − 0:7986: (17) 

The derived expression establishes a relationship between the free param-
eters of each parameterization, resulting in the smallest area between the 
curves of the relative permeabilities. However, it is important to note that 
even though this relationship exists, it does not guarantee that the resulting 
areas will always have values small enough to be considered comparable 

Table 1. k values corresponding to certain n values for four different methods.
(Lenhard, Parker, and Mishra 1989) (Benson et al. 2014) (Pan et al. 2019) Area Difference Area

n k ¼ ðn − 1Þ 1 − 0:5
n

n−1ð Þ k ¼ 0:05þ 0:39n k ¼ 0:451n − 0:263 k from Equation (16) –

2 0.75 0.83 0.64 0.28 2.078
3 1.29 1.22 1.09 0.72 1.321
4 1.81 1.61 1.54 1.20 1.000
5 2.32 2.00 1.99 1.71 0.847
6 2.82 2.39 2.44 2.25 0.768
7 3.33 2.78 2.89 2.79 0.726
8 3.83 3.17 3.35 3.31 0.702

Figure 4. Linear fit between k and n for the Area Difference method.
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parameters. An illustrative example of this is when n¼ 2 and k ¼ 0:28 
which yields an area between curves of 0.2078. This value is relatively high 
compared to the areas obtained with larger n. Nevertheless, it is crucial not 
to disregard comparisons using the free parameter from VG. As discussed 
in Section 3.1, n¼ 2 provides the best approximation for media with highly 
asymmetric pore sizes, which is a realistic setting.

Establishing this new correspondence model between VG and BC param-
eters, validated through a comparison with the Lenhard, Parker, and 
Mishra (1989), Benson et al. (2014) and Pan et al. (2019) models and built 
upon a robust method, which is the Area Difference method, we can con-
firm that this procedure is correct and will be employed throughout the 
rest of the study.

Taking this into consideration, we used a few integer values for n, 
adjusted the value of k using the proposed expression (Equation (17)) and 
selected three pairs of parameters for our comparisons (see Table 2). The 
value n¼ 2 was considered because it represents a realistic situation of 
highly asymmetric pores. The other values (n¼ 4 and 5) were selected 
because they have relatively low area between the curves of the relative per-
meabilities of the two phases (see Table 1 and Figure 5) and because they 
are typical parameters (see Figure 2). The parameters for Test 4, in addition 
to having a small area between the curves (Figure 5), also have a typical k 

(see Section 3.2).
The plots of the curves of the relative permeabilities of the two phases 

for the chosen parameters are shown in Figure 5.
In our simulations, we used a porosity of / ¼ 0:9 (highly porous phys-

ical medium), densities and viscosities of each phase as qw ¼ qn ¼ lw ¼

ln ¼ 1: Additionally, in order to simplify the calculations, we disregarded 
the residual saturations, i.e., Sar ¼ 0 (a ¼ w and n).

The simulations performed using the data from Test 1 in Table 2 gener-
ated the graphs in Figures 6 and 7, respectively, for the VG and BC param-
eterizations, comparing the analytical and numerical solutions of the 
saturation of the wetting phase (Sw) at certain time steps and mesh sizes. It 
is possible to observe that in all cases we have excellent numerical approxi-
mations for both parameterizations.

Therefore, a code verification was performed using the analytical solution 
proposed by Illiano (2016), confirming the validity of both models.

Table 2. Free parameters n and k used in the numerical simulations.
n k

Test 1 5.00 1.75
Test 2 4.00 1.24
Test 3 2.00 0.22
Test 4 5.48 2.00
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5.2. Results analysis

In order to facilitate comparisons between the VG and BC parameteriza-
tions, we conducted multiple simulations using different values for the free 
parameters of each method, as outlined in Table 2. All the results discussed 
in this section were obtained utilizing the Multigrid method. The stopping 
criterion for the iterative process was determined based on the infinity 
norm of the dimensionless residual,

jjresitjj1
jjres0jj1

� TOL, 

where resit is the residual of a given iteration, res0 is the residual in the ini-
tial estimate, and TOL is the tolerance, adopted as 10−5: For the lineariza-
tion process, the stopping criterion used was the maximum, in absolute 
value, of the corrections to the pressures of the wetting and non-wetting 
phases, dpw and dpn, with a tolerance of 10−8:

Table 3 presents the main data obtained in the simulations of Tests 1 to 
4 for the VG and BC parameterizations, where itmeL is the average of 

Figure 5. Curves of the relative permeabilities of the wetting and non-wetting phases for vari-
ous n and k parameters for VG and BC parameterizations.
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linearization iterations, itmeMG is the average of Multigrid cycle iterations, 
and c is the program execution time. In the column cVG=cBC, values 
greater than 1 indicate that VG had the longest execution time, and values 
smaller than 1 indicate the opposite.

Since the Matlab timeCPU function is sensitive to short times, c was cal-
culated as the arithmetic mean of a certain number of samples N, where N 
was defined based on the standard deviation (s) and the coefficient of vari-
ation (C.V.) (Santos and Dias 2021)).

According to Costa (2015) a C.V. value �15% indicates a distribution 
with low dispersion, implying homogeneity in the analyzed data. Thus, for 
selecting suitable sample sizes, we only considered samples with C.V. 
<15%. Consequently, the majority of simulations presented in Table 3
exhibited an average computational time c with C.V. <5%.

Analyzing Table 3 we can observe that the obtained values of itmeL and 
itmeMG for both methods are low and very similar, confirming the 

Figure 6. Numerical and analytical solutions for Sw using the VG parameterization with n¼ 5 at 
different time steps for a mesh (a) Nx ¼ Nt ¼ 16 and (b) Nx ¼ Nt ¼ 32:
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robustness and efficiency of both parameterizations. Based on the execution 
times (c) of both methods and the ratio cVG=cBC between them, we noticed 
a slight advantage of the BC parameterization over the VG parameteriza-
tion, with cVG=cBC > 1 in tests 1 and 2, and a slight advantage of VG, with 
cVG=cBC < 1, in tests 3 and 4. Since the values are very close, a new criter-
ion is needed to determine which parameterization is more suitable. 
Considering this situation, we will analyze the decrease in error as the 
number of variables increases.

Figure 8 shows the infinity norm of the errors for pw and pn for the 
parameters of the four settings presented in Table 2. In this case, the infin-
ity norm of the error is shown as a function of the variation of Nx ¼ Nt. 
The results obtained demonstrate that the BC parameterization tends to 
reduce the errors more efficiently for values of the VG free parameter n 
different from 2. However, when n¼ 2, both parameterizations have similar 
capabilities in reducing such errors.

Figure 7. Numerical and analytical solutions for Sw using the BC parameterization with k ¼

1:75 at different time steps for a mesh (a) Nx ¼ Nt ¼ 16 and (b) Nx ¼ Nt ¼ 32:
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Table 3. itmeL, itMG, c and cVG=cBC for different VG and BC parameters and mesh sizes.
VG BC

Test Nx ¼ Nt itmeL itMG c itmeL itmeMG c cVG=cBC

8 6.50 2 0.25 6.00 2 0.23 1.0870
16 5.50 3 1.25 5.31 3 1.28 0.9766

1 32 5.09 3 6.13 5.13 3 5.91 1.0372
64 4.48 3 24.92 4.30 3 23.41 1.0645

128 4.06 3 107.63 4.07 3 106.99 1.0060

8 6.13 2 0.26 5.88 2 0.23 1.1304
16 5.38 3 1.45 5.31 3 1.32 1.0985

2 32 5.09 3 5.92 5.13 3 6.11 0.9689
64 4.38 3 24.79 4.27 3 24.47 1.0131

128 4.05 3 108.06 4.07 3 109.43 0.9875

8 5.63 2.4 0.24 5.75 2 0.22 1.0909
16 5.25 3 1.41 5.31 3 1.28 1.1016

3 32 4.59 3 5.34 5.00 3 6.21 0.8599
64 4.16 3 23.16 4.25 3 23.57 0.9826

128 4.04 3 106.13 4.07 3 107.06 0.9913

8 6.50 2 0.38 6.13 2 0.36 1.0556
16 5.50 3 1.50 5.31 3 1.65 0.9091

4 32 5.09 3 6.15 5.13 3 6.30 0.9762
64 4.55 3 25.58 4.34 3 25.41 1.0067

128 4.06 3 108.55 4.07 3 114.93 0.9445

Figure 8. Infinity norm of errors for some VG and BC parameters.
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6. Summary and conclusions

In this study, we compared the two main parameterizations found in the 
literature for solving multiphase flow problems in rigid porous media: van 
Genuchten and Brooks-Corey. Throughout the work, we presented the 
expressions that compose each parameterization method, and the relation-
ships between mathematical and physical parameters. We verified our code 
by comparing the numerical solution with the analytical one.

1. The results obtained in the simulations demonstrated that both parame-
terizations are robust and have similar average iterations for both linear-
ization and Multigrid.

2. Regarding the decrease in the infinity norm of numerical errors, the 
Brooks-Corey parameterization has a significant advantage when the 
analyzed media has more uniform pore sizes (n 6¼ 2).

3. In a highly asymmetric porous media (n¼ 2), both parameterizations 
reduce the infinity norm of the error similarly, with the Brooks-Corey 
parameterization having a slight advantage due to lower CPU time.
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