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PREFACE

This book is intended for multigrid practitioners and multigrid students: for engineers,
mathematicians, physicists, chemists etc.

We will give a systematic introduction to basic and advanced multigrid. Our intention
is to give sufficient detail on multigrid for model problems so that the reader can solve
further applications and new problems with appropriate multigrid techniques. In addition,
we will cover advanced techniques (adaptive and parallel multigrid) and we will present
applications based on these new developments.

Clearly, we would not have written this book if we had thought that there was a better
book that fulfilled the same purpose. No doubt, there are a number of excellent multigrid
books available. However, in our opinion all the other books emphasize multigrid aspects
different from those that we are interested in and which we want to emphasize.

Mathematical results that can be rigorously proved may be formulated in different ways.
Practically oriented mathematicians often prefer a presentation in which the assumptions
and results are motivated by some typical examples and applications. These assumptions
are usually not the most general ones, and thus the results may not be the strongest that
can be obtained. We prefer such a presentation of results, as we want to provide as much
motivation and direct understanding as possible. However, in many cases, we add some
remarks about generalizations and extensions, and about weaker assumptions.

With respect to multigrid theory, we give (elementary) proofs, wherever we regard them
as helpful for multigrid practice. All the theoretical tools which we use should be understood
by mathematicians, scientists and engineers who have a general background in analysis,
linear algebra, numerical analysis and partial differential equations (PDEs). Wherever more
sophisticated mathematical tools are needed to derive practically relevant theoretical results,
we cite the appropriate literature. However, we are not interested in theory as an end in
itself.

This book has three authors and, in addition, three guest authors. While the guest con-
tributions are supposed to be fully consistent with the contents of the book and fit with its
general philosophy and message, they are still independent and self-contained. The guest
authors are experts in the fields they present here and they use their own style to express
their views and approaches to multigrid.

xiii
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The three main authors, on the other hand, have agreed on all the material that is
presented in this book. They did not distribute the chapters among themselves and did not
distribute the responsibility. They also agreed on the way the material is presented.

Multigrid methods are generally accepted as being the fastest numerical methods for
the solution of elliptic partial differential equations. Furthermore, they are regarded as
among the fastest methods for many other problems, like other types of partial differential
equations, integral equations etc. If the multigrid idea is generalized to structures other than
grids, one obtains multilevel, multiscale or multiresolution methods, which can also be used
successfully for very different types of problems, e.g. problems which are characterized by
matrix structures, particle structures, lattice structures etc. However, the literature does not
have a uniform definition of the terms multigrid, multilevel etc.

This book is devoted to PDEs and to the “algebraic multigrid approach” for matrix
problems.

We assume that the reader has some basic knowledge of numerical methods for PDEs.
This includes fundamental discretization approaches and solution methods for linear and
nonlinear systems of algebraic equations. Implicitly, this also means that the reader is
familiar with basics of PDEs (type classification, characteristics, separation of variables
etc. see, for example, [395]) and of direct and iterative solvers for linear systems.

We will not, however, assume detailed knowledge about existence theories for PDEs,
Sobolev spaces and the like. In this respect, the book is addressed to students and practition-
ers from different disciplines. On the other hand, in some sections, advanced applications
are treated, in particular from computational fluid dynamics. For a full understanding of
these applications, a basic knowledge of general PDEs may not be sufficient. In this respect,
we will assume additional knowledge in these sections and we will give references to back-
ground material in the corresponding fields.

We do not assume that the reader works “linearly” with this book from the beginning
to the end though this is suitable to obtain a good insight into multigrid and its relation to
similar approaches. The multigrid beginner may well skip certain sections. We will lead
the reader in this respect through the book, pointing out what can be skipped and what is
needed.

The overall structure of the book is determined by its chapters. The first half of the book
(Chapters 1–6) discusses standard multigrid, the second half (Chapters 7–10) deals with
advanced approaches up to real-life applications. Accordingly, the style and presentation
in the first half is more detailed. In addition to the basic techniques introduced in the first
six chapters, we add many more specific remarks and algorithmical details. These may not
be so interesting for beginners but should be helpful for practitioners who want to write
efficient multigrid programs. Mistakes that are easily made are mentioned in several places.

The second part of the book (Chapters 7–10) is presented in a more condensed form,
i.e. in a more research oriented style.

This structure of the book is also reflected by the nature of the equations and applications
we deal with. There is no doubt about the fact that multigrid methods work excellently for
“nicely” elliptic PDEs. This is confirmed by rigorous mathematical theory.

For typical real-life applications (PDE systems with nonelliptic features and nonlinear
terms), however, such a theory is generally not available. Nevertheless, as we will see in this
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book, multigrid can be applied to such problems although they may not be “nicely” elliptic
or even not elliptic at all. In answering the question “when does multigrid work?”, we will
give insight, based on 20 years of multigrid practice and multigrid software development.
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the manuscript. His criticism and comments were extremely helpful.

Rudolph Lorentz also commented extensively on the manuscript and checked our
English.

Achi Brandt, who, to our regret, never wrote a multigrid book himself, closely followed
our progress and made many helpful comments.

Others who commented on our manuscript included: Tanja Füllenbach, Jürgen Jakumeit,
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1
INTRODUCTION

We start this chapter with a short introduction of some of the equations that we will treat in
this book in Section 1.1 and with some information on grids and discretization approaches
in Section 1.2. In Section 1.3 we will introduce some of our terminology. The 2D Poisson
equation with Dirichlet boundary conditions is the prototype of an elliptic boundary value
problem. It is introduced and discussed in Section 1.4. In Section 1.5 we will take a first
glance at multigrid and obtain an impression of the multigrid idea. Some facts and methods
on basic numerics are listed in Section 1.6.

1.1 TYPES OF PDEs

As we will see in this book, elliptic boundary value problems are the type of problem to
which multigrid methods can be applied very efficiently. However, multigrid or multigrid-
like methods have also been developed for many PDEs with nonelliptic features.

We will start with the usual classification of second-order scalar 2D PDEs. General-
izations of this classification to 3D, higher order equations or systems of PDEs can be
found [150]. We consider equations Lu = f in some domain � ∈ R

2 where

Lu = a11uxx + a12uxy + a22uyy + a1ux + a2uy + a0u (�), (1.1.1)

with coefficients aij , ai, a0 and a right-hand side f which, in general, may depend on
x, y, u, ux, uy (the quasilinear case). In most parts of this book, Lu = f is assumed to be
a linear differential equation, which means that the coefficients and the right-hand side f
only depend on (x, y). L is called

• elliptic if 4a11a22 > a
2
12,

• hyperbolic if 4a11a22 < a
2
12,

• parabolic if 4a11a22 = a2
12.

1
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In general, this classification depends on (x, y) and, in the nonlinear case, also on the
solution u. Prototypes of the above equation are

• the Poisson equation −�u = −uxx − uyy = f ,
• the wave equation uxx − uyy = 0,
• the heat equation uxx − uy = 0.

Since multigrid methods work excellently for nicely elliptic problems, most of our presenta-
tion in the first chapters is oriented to Poisson’s and Poisson-like equations. Other important
model equations that we will treat in this book include

• the anisotropic model equation −εuxx − uyy = f ,
• the convection–diffusion equation −ε�u+ a1ux + a2uy = f ,
• the equation with mixed derivatives −�u+ τuxy = f .

All these equations will serve as model equations for special features and complications
and are thus representative of a larger class of problems with similar features. These model
equations depend crucially on a parameter ε or τ . For certain parameter values we have a
singular perturbation: the type of the equation changes and the solution behaves qualitatively
different (if it exists at all). For instance, the anisotropic equation becomes parabolic for
ε → 0, the equation with mixed derivatives is elliptic for |τ | < 2, parabolic for |τ | = 2 and
hyperbolic for |τ | > 2. All the model equations represent classes of problems which are of
practical relevance.

In this book, the applicability of multigrid is connected to a quantity, the “h-ellipticity
measureEh”, that we will introduce in Section 4.7. This h-ellipticity measure is not applied
to the differential operator itself, but to the corresponding discrete operator. It can be used
to analyze whether or not the discretization is appropriate for a straightforward multigrid
treatment. Nonelliptic problems can also have some h-ellipticity if discretized accordingly.

The above model equations, except the wave and the heat conduction equations, are
typically connected with pure boundary conditions. The wave and the heat conduction
equations are typically characterized by initial conditions with respect to one of the variables
(y) and by boundary conditions with respect to the other (x).

We will call problems which are characterized by pure boundary conditions space-type
problems. For problems with initial conditions, we interpret the variable for which the initial
condition is stated as the time variable t (= y), and call these problems time-type. Usually
these problems exhibit a marching or evolution behavior with respect to t . Space-type equa-
tions, on the other hand, usually describe stationary situations. Note that this distinction is
different from the standard classification of elliptic, hyperbolic and parabolic. Elliptic prob-
lems are usually space-type while hyperbolic and parabolic problems are often time-type.
However, the stationary supersonic full potential equation, the convection equation (see
Chapter 7) and the stationary Euler equations (see Section 8.9) are examples of hyperbolic
equations with space-type behavior. (In certain situations, the same equation can be inter-
preted as space- or as time-type, and each interpretation may have its specific meaning. An
example is the convection equation.)
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In this book, we will present and discuss multigrid methods for space-type problems.

For time-type problems, there is usually the option to discretize the time variable explic-
itly, implicitly or in a hybrid manner (i.e. semi-implicitly). The implicit or semi-implicit
discretization yields discrete space-type problems which have to be solved in each time step.
We will briefly consider multigrid approaches for the solution of such space-type problems
which arise in each time step in Section 2.8. Typically, these problems have similar but more
convenient numerical properties than the corresponding stationary problems with respect
to multigrid.

Remark 1.1.1 Some authors have proposed multigrid approaches which include the time
direction directly. These approaches consider time to be just another “space-type” direction.
Such approaches are discussed in [78, 175, 198, 199, 396] for so-called parabolic multigrid
and multigrid-like methods based on “waveform relaxation”. �

1.2 GRIDS AND DISCRETIZATION APPROACHES

In this book, we assume that the differential equations to be solved are discretized on a
suitable grid (or, synonymously, mesh). Here, we give a rough survey (with some examples)
of those types of grids which are treated systematically in this book and those which are
only touched on. We also make some remarks about discretization approaches.

1.2.1 Grids

The general remarks in this section may not be so interesting to multigrid beginners. They
may start with Section 1.4 on Poisson’s equation and return to this section later.

Most parts of this book refer to: Cartesian grids, boundary-fitted logically rectangular
grids and block-structured boundary-fitted grids. Figure 1.1 is an example of a Cartesian
grid. For simple domains with simple boundaries, Cartesian grids are numerically con-
venient. We will use them for Model Problem 1 (see Section 1.3.2) and several other
cases.

Figure 1.1 also gives an example of a boundary-fitted grid. Boundary-fitted grids will
be used in more advanced examples in this book. A systematic introduction into boundary-
fitted grids is given in [391]. We will discuss the generation of boundary-fitted grids in
Section 10.3.

In the context of boundary-fitted grids, there are two different approaches. In the first,
coordinate transformations are used to obtain simple (for example rectangular) domains,
and correspondingly simple (rectangular) grids. Here the differential (and/or the discrete)
equations are transformed to the new curvilinear coordinates. In the second approach, the
computations are performed in the physical domain with the original (nontransformed)
equations. In this book we concentrate on the second approach.
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Figure 1.1. A square Cartesian grid (left) in a domain � and a boundary-fitted curvilinear (logically
rectangular) grid (right).

Figure 1.2. Boundary-fitted block-structured grid around a car.

Block-structured boundary-fitted grids are used if the given domain cannot (or cannot
reasonably) be mapped to a rectangular domain, but can be decomposed into a finite number
of subdomains each of which can be covered with a boundary-fitted grid. Quite complicated
domains may be treated with this approach, as can be seen in Fig. 1.2. Block-structured
boundary-fitted grids are discussed in Chapters 6 and 8–10.
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Figure 1.3. Unstructured grid around a car in a crash simulation application.

In many software packages, unstructured, irregular grids are used today. These
grids have become quite popular because unstructured automatic mesh generation is
much easier than the generation of block-structured grids for very complicated 2D and
3D domains.

An example of an unstructured grid is the grid around a car during a crash simulation.
A part of this grid is presented in Fig. 1.3.

From the multigrid point of view, unstructured grids are a complication. For a given
unstructured grid, it is usually not difficult to define a sequence of finer grids, but it may be
difficult to define a sequence of reasonable coarser grids. (A hierarchy of coarse grids is
needed for multigrid.)

The algebraic multigrid (AMG) method presented in Appendix A constructs a hier-
archy of coarse grids automatically and is thus particularly well-suited for problems on
unstructured grids.

Although unstructured grids are widely used, even complicated domains allow other
than purely unstructured grid approaches. Often a hybrid approach, an unstructured grid
close to the boundary and a structured grid in the interior part of the domain (or vice versa)
is suitable for the treatment of such complicated domains.

More generally, all types of grids mentioned above can be used in the context of overlap-
ping grids. A typical situation for the use of overlapping grids is when an overall Cartesian
grid is combined with a local boundary-fitted grid (Chimera technique). An example of this
approach is shown in Fig. 1.4. Such overlapping grids are also called composite grids.

Finally, we mention self-adaptive grids. They are constructed automatically during the
solution process according to an error estimator that takes the behavior of the solution into
account. Self-adaptive grids are very natural in the multigrid context. We will treat the self-
adaptive multigrid approach systematically in Chapter 9. An example is given in Fig. 1.5.
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Figure 1.4. An overlapping grid around an object.

Figure 1.5. Adaptively refined grid around an airfoil.

1.2.2 Discretization Approaches

In principle, any type of grid can be used with any type of discretization approach. In
practice, however, finite difference and finite volume methods are traditionally used in
the context of Cartesian, logically rectangular and block-structured boundary-fitted grids,
whereas finite elements and finite volumes are widely used in the context of unstructured
grids.
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(c)(a) (b)

Figure 1.6. Three arrangements of unknowns in a Cartesian grid: (a) a vertex-centered grid;
(b) a cell-centered grid; (c) a staggered grid.

In this book, we will focus on finite difference and finite volume discretizations on
structured and block-structured grids.

Finally, another important choice to be made in discretization is the arrangement of
the unknowns within a grid. The unknowns can be defined at the vertices of a grid (vertex-
centered location of unknowns). Another option is the choice of the unknowns at cell centers
(cell-centered location of unknowns).

For systems of PDEs it is possible to choose different locations for different types of
unknowns. A well-known example is the staggered grid for the system of the incompressible
Navier–Stokes equations discussed in Chapter 8, in which pressure unknowns are placed at
the cell centers and velocity components at cell boundaries. Examples of a vertex-centered,
a cell-centered and a staggered Cartesian grid are sketched in Fig. 1.6. Often, the discrete
equations are defined at the same locations as the unknowns. It is hard to say which location
of unknowns and which location of the discrete equations is best in general. Often these
choices depend on the type of boundary conditions and on the application. In the following
chapters we mainly present results for vertex-centered locations of unknowns. Multigrid
components for cell-centered arrangements of unknowns are presented in Section 2.8.4.

1.3 SOME NOTATION

We start with some general notation. In this book, we use the classical formulation of differ-
ential equations with differential (and boundary) operators rather than a weak formulation.
For discretization, we use the terminology of discrete differential operators. This also means
that we use grid functions rather than vectors and grid operators rather than matrices. In our
opinion, the grid-oriented notation emphasizes more clearly the correspondence between
the discrete and continuous problems, and between the discrete formulations on different
grids of the multigrid structure. In that respect, we regard it as a natural formulation for the
multigrid approach. If, for example, the discrete differential operator can be described by
a difference stencil (see Section 1.3.4) this is clearly a more condensed formulation than
a matrix notation. On the other hand, there are situations in which the matrix notation has
some advantages and is more general. Then we will not hesitate to use it.
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1.3.1 Continuous Boundary Value Problems

We denote scalar linear boundary value problems by

L�u(x) = f�(x) (x ∈ �)
L�u(x) = f �(x) (x ∈ � := ∂�).

(1.3.1)

Here x = (x1, . . . , xd)
T and � ⊂ R

d is a given open bounded domain with boundary �.
L� is a linear (elliptic) differential operator on � and L� represents one or several linear
boundary operators. f� denotes a given function on � and f � one or several functions on
�. We always denote solutions of (1.3.1) by u = u(x). For brevity, we also simply write
Lu = f instead of (1.3.1). Most concrete considerations refer to the cases d = 2 and d = 3.
(Multigrid is usually not needed for d = 1, in which case it degenerates to direct or other
simple well-known solvers, see Section 6.4.1.)

In the case d = 2 or d = 3, we will usually write (x, y) instead of (x1, x2) and (x, y, z)
instead of (x1, x2, x3).

This and the following chapters essentially refer to scalar equations. Chapter 8 and
other parts of the book, however, will refer to systems of PDEs. The above notation is also
used in that case. L� then stands for a vector of differential operators and u,f etc. are
vector-valued functions.

1.3.2 Discrete Boundary Value Problems

The following considerations are formulated for the 2D case. They can, of course, be directly
generalized to higher dimensions. The discrete analog of (1.3.1) is denoted by

L�h uh(x, y) = f�h (x, y) ((x, y) ∈ �h)
L�h uh(x, y) = f �h (x, y) ((x, y) ∈ �h).

(1.3.2)

Here h is a (formal) discretization parameter. Using the infinite grid

Gh := {(x, y): x = xi = ihx, y = yj = jhy; i, j ∈ Z} (1.3.3)

where h = (hx, hy) is a vector of fixed mesh sizes, we define �h = �∩Gh and �h as the
set of discrete intersection points of the “grid lines” with �. In the special case of square
grids, we simply identify h = hx = hy .

The discrete solution uh is a function defined on the grid�h ∪�h, i.e., a grid function,
andf�h andf �h are discrete analogs off� andf � , respectively, wheref�,f � are restricted
to the grid. Instead of uh(x, y) = uh(xi, yj ) = uh(ihx, jhy), we sometimes simply write
ui,j .
L�h and L�h are grid operators, i.e., mappings between spaces of grid functions. (L�h is

also called a discrete (differential) or difference operator,L�h a discrete boundary operator.)
Clearly the concrete definitions of�h,�h etc. also depend on the given PDE, the domain

�, the boundary conditions, the grid approach and the discretization.
For ease of presentation, we will first assume that discrete boundary equations are

eliminated from (1.3.2). (In general, a proper multigrid treatment of boundary conditions
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needs an explicit consideration of noneliminated boundary conditions. This is discussed in
more detail in Section 5.6.)

In the case of second-order equations with Dirichlet boundary conditions, which means
uh = f �h , (x, y) ∈ �h, eliminated boundary conditions can be considered as a natural
approach. We then simply write

Lhuh = fh (�h). (1.3.4)

Here uh and fh are grid functions on �h and Lh is a linear operator

Lh : G(�h) → G(�h), (1.3.5)

where G(�h) denotes the linear space of grid functions on �h. Clearly, (1.3.4) can be
represented as a system of linear algebraic equations. However, we usually consider it as
one grid equation.

Even if the boundary conditions are not eliminated, we may use the notation (1.3.4)
for the discrete problem. The notation then represents an abstract equation (in a finite
dimensional space).

1.3.3 Inner Products and Norms

For convergence considerations and many other purposes, we need to use norms in the finite
dimensional space G(�h). Most of our considerations (and many of our measurements) will
be based on the Euclidean inner product

〈uh, vh〉2 := 1

#�h

∑
x∈�h

uh(x)vh(x), (1.3.6)

where #�h is the number of grid points of �h. The scaling factor (#�h)−1 allows us to
compare grid functions on different grids and also the corresponding continuous functions
on �. The induced norm is ||uh||2 = √〈uh, uh〉2. The corresponding operator norm for
discrete operators Lh on G(�h) is the spectral norm

‖Bh‖S =
√
ρ(BhB

∗
h),

where Bh denotes any linear operator Bh : G(�h) → G(�h), and where ρ is the spectral
radius.

For Lh, symmetric and positive definite, we also consider the energy inner product

〈uh, vh〉E := 〈Lhuh, vh〉2 (1.3.7)

and the corresponding operator norm || · ||E , which is given by

||Bh||E = ||Lh1/2BhLh
−1/2||S =

√
ρ(LhBhLh

−1B∗
h). (1.3.8)

For practical purposes the infinity norm

||uh||∞ := max{|uh(x)|: x ∈ �h} (1.3.9)

and the corresponding operator norm || · ||∞ are commonly used.
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1.3.4 Stencil Notation

For the concrete definition of discrete operatorsL�h (on a Cartesian or a logically rectangular
grid) the stencil terminology is convenient. We restrict ourselves to the case d = 2. The
extension to d = 3 (and to general d) is straightforward (see Section 2.9). We first introduce
the stencil notation for the infinite grid Gh (defined in Section 1.3.2). On Gh, we consider
grid functions

wh : Gh −→ R (or C)

(x, y) �−→ wh(x, y).

A general stencil [sκ1κ2 ]h

[sκ1κ2 ]h =

⎡⎢⎢⎢⎢⎢⎢⎣

...
...

...

· · · s−1,1 s0,1 s1,1 · · ·
· · · s−1,0 s0,0 s1,0 · · ·
· · · s−1,−1 s0,−1 s1,−1 · · ·

...
...

...

⎤⎥⎥⎥⎥⎥⎥⎦
h

(sκ1κ2 ∈ R)

defines an operator on the set of grid functions by

[sκ1κ2 ]hwh(x, y) =
∑
(κ1,κ2)

sκ1κ2wh(x + κ1hx, y + κ2hy) . (1.3.10)

Here we assume that only a finite number of coefficients sκ1κ2 are nonzero.
Many of the stencils we will consider will be five-point or compact nine-point stencils⎡⎣ s0,1

s−1,0 s0,0 s1,0
s0,−1

⎤⎦
h

,

⎡⎣ s−1,1 s0,1 s1,1
s−1,0 s0,0 s1,0
s−1,−1 s0,−1 s1,−1

⎤⎦
h

. (1.3.11)

The discrete operatorsL�h are usually given only on afinite grid�h. For the identification
of a discrete operatorL�h with “its” stencil [sκ1κ2 ]h, we usually have to restrict the stencil to
�h (instead ofGh). Near boundary points the stencils may have to be modified. In square or
rectangular domains�, which are the basis for the examples in Chapter 2, this modification
of [sκ1κ2 ]h to�h is straightforward (see, e.g., Example 1.4.1 below). Let us finally mention
that the coefficients sκ1κ2 will depend on (x, y):

sκ1κ2 = sκ1κ2(x, y)

if the coefficients of L� and/or L�h depend on (x, y).

1.4 POISSON’S EQUATION AND MODEL PROBLEM 1

In this section, we introduce Model Problem 1, the classical model for a discrete elliptic
boundary value problem. Every numerical solver has been applied to this problem for
comparison.
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Model Problem 1 At many places in this book, we will study in detail the discrete Poisson
equation with Dirichlet boundary conditions

−�huh(x, y) = f�h (x, y) ((x, y) ∈ �h)
uh(x, y) = f �h (x, y) ((x, y) ∈ �h = ∂�h)

(1.4.1)

in the unit square� = (0, 1)2 ⊂ R
2 withh = 1/n, n ∈ N. Here,Lh = −�h is the standard

five-point O(h2) approximation (explained below) of the partial differential operator L,

Lu = −�u = −uxx − uyy (1.4.2)

on the square grid Gh.

O(h2) here means that one can derive consistency relations of the form

Lu− Lhu = O(h2) for h → 0

for sufficiently smooth functions u(u ∈ C4(�̄), for example).
To illustrate exactly what the elimination of boundary conditions means, we consider

the following example.

Example 1.4.1 The discrete Poisson equation with eliminated Dirichlet boundary condi-
tions can formally be written in the form (1.3.4). For (x, y) ∈ �h not adjacent to a boundary
this means:

fh(x, y) = f�(x, y)

Lhuh(x, y) = −�huh(x, y)
= 1

h2
[4uh(x, y)− uh(x − h, y)− uh(x + h, y)

− uh(x, y − h)− uh(x, y + h)]

= 1

h2

⎡⎣ −1
−1 4 −1

−1

⎤⎦
h

uh(x, y)

The notation

−�h = 1

h2

⎡⎣ −1
−1 4 −1

−1

⎤⎦
h

is a first example of the stencil notation (1.3.11).
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For (x, y) ∈ �h adjacent to a (here: west) boundary, Lh (1.3.4) reads

fh(x, y) = f�(x, y)+ 1

h2
f �(x − h, y)

Lhuh(x, y) = 1

h2
[4uh(x, y)− uh(x + h, y)

− uh(x, y − h)− uh(x, y + h)]

= 1

h2

⎡⎣ −1
0 4 −1

−1

⎤⎦
h

uh(x, y).

For (x, y) ∈ �h in a (here: the north-west) corner we have

fh(x, y) = f�(x, y)+ 1

h2
[f �(x − h, y)+ f �(x, y + h)]

Lhuh(x, y) = 1

h2
[4uh(x, y)− uh(x + h, y)− uh(x, y − h)]

= 1

h2

⎡⎣ 0
0 4 −1

−1

⎤⎦
h

uh(x, y). �

In this example, elimination of the boundary conditions is simple. Often, elimination
of boundary conditions may be complicated and is not preferred. In such cases, a partic-
ular treatment of the boundary conditions in the multigrid process may be needed (see
Section 5.6).

1.4.1 Matrix Terminology

Discrete operatorsLh are often represented by matricesAh. Each matrix row then represents
connections of one unknown in the discretization of a PDE to its neighbor unknowns. Which
of the matrix entries is different from 0, depends on the ordering of grid points, i.e., the
ordering of the components of the vector of unknowns.

As an example we consider Model Problem 1. For a column- or row-wise ordering of
grid points (also called lexicographical ordering, see Fig. 1.7(a), starting with points at the
left lower corner) and eliminated Dirichlet boundary conditions, the resulting matrix is a
block tridiagonal matrix with a regular sparsity pattern:

Ah = 1

h2

⎛⎜⎜⎝
T −I

−I T −I
−I T −I

−I T

⎞⎟⎟⎠, (1.4.3)
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Figure 1.7. (a) Lexicographic; (b) red–black ordering of grid points.

where

I =

⎛⎜⎜⎜⎜⎜⎝
1

1

1

1

⎞⎟⎟⎟⎟⎟⎠ and T =

⎛⎜⎜⎜⎜⎜⎝
4 −1

−1 4 −1

−1 4 −1

−1 4

⎞⎟⎟⎟⎟⎟⎠.

Due to the elimination of Dirichlet boundary points, every matrix row corresponding
to a grid point near a boundary has only three or two entries connecting them to neighbor
grid points. This can be seen, for example, in the first rows of the matrix, where only two
or three −1 entries can be found instead of four for interior points.

The dependence of the matrix structure on the ordering of the grid points can be seen
when we write the matrix down for a red–black ordering of the grid points (see Fig. 1.7(b)).
First all unknowns at odd (red) grid points are considered, then the unknowns at the even
(black) points. The corresponding matrix Ah is now a block matrix with blocks Arr , repre-
senting the connections of the red grid points to red grid points, Arb the connections of the
red points to the black points, Abr the connections of black points to red points, and Abb
the connections of black points to black points. So:

Ah =
⎡⎣Arr Arb

Abr Abb

⎤⎦ . (1.4.4)

For Model Problem 1, the blocks Arr and Abb are diagonal matrices with 4/h2 as
the diagonal elements. The resulting block matrix Arb (= ATbr) of the above example
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in Fig. 1.7(b) is

Arb = 1

h2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 −1
−1 −1 0 −1
−1 0 −1 −1 −1

−1 0 −1 0 −1
−1 0 −1 0 −1

−1 −1 −1 0 −1
−1 0 −1 −1

−1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (1.4.5)

Remark 1.4.1 As we will see below (Section 1.5), in a multigrid algorithm it is usually
not necessary to build up the matrix Ah coming from the discretization. The multigrid
components are based on “local” operations; multiplications and additions are carried out
grid point by grid point. The storage that is needed in a multigrid code mainly consists of
solution vectors, defects and right-hand sides on all grid levels. �

1.4.2 Poisson Solvers

Table 1.1 gives an overview on the complexity of different solution methods (including
fast Poisson solvers) applied to Model Problem 1. Here direct and iterative solvers are
listed. For the iterative solvers, we assume an accuracy (stopping criterion) in the range of
the discretization accuracy. This is reflected by the log ε term. The full multigrid (FMG)
variant of multigrid which we will introduce in Section 2.6 is a solver up to discretization
accuracy.

It is generally expected that the more general a solution method is, the less efficient it is
and vice versa. Multigrid is, however, a counter example for this pattern—indeed multigrid

Table 1.1. Complexity of different solvers for the 2D Poisson problem
(N denotes the total number of unknowns).

Method # operations in 2D

Gaussian elimination (band version) O(N 2)

Jacobi iteration O(N 2 log ε)
Gauss–Seidel iteration O(N2 log ε)
Successive overrelaxation (SOR) [431] O(N3/2 log ε)
Conjugate gradient (CG) [194] O(N3/2 log ε)
Nested dissection (see, for example, [9]) O(N 3/2)

ICCG [264] O(N5/4 log ε)
ADI (see, for example, [403]) O(N logN log ε)
Fast Fourier transform (FFT) [112] O(N logN)
Buneman [93] O(N logN)
Total reduction [342] O(N)

Multigrid (iterative) O(N log ε)
Multigrid (FMG) O(N)
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will turn out to be a general principle. On the other hand, Table 1.1 shows that the most
efficient version of multigrid yields an algorithm that is at least as efficient as the highly
efficient and highly specialized fast Poisson solvers. Here, the total reduction method and the
Buneman algorithm are typical fast Poisson solvers, very efficient but essentially designed
and tailored exclusively for elliptic model problems.

1.5 A FIRST GLANCE AT MULTIGRID

1.5.1 The Two Ingredients of Multigrid

In this section, we introduce the multigrid idea heuristically for Model Problem 1. We use
the grid function oriented notation introduced in Section 1.3.2.

The iteration formula of the classical lexicographical Gauss–Seidel method (GS-LEX)
for Poisson’s equation reads

um+1
h (xi, yj ) = 1

4 [h2fh(xi, yj )+ um+1
h (xi − h, yj )+ umh (xi + h, yj )

+ um+1
h (xi, yj − h)+ umh (xi, yj + h)], (1.5.1)

where (xi, yj ) ∈ �h. Here umh and um+1
h are the approximations of uh(xi, yj ) before and

after an iteration, respectively.
If we apply (1.5.1) to Poisson’s equation, we recognize the following phenomenon.

After a few iteration steps, the error of the approximation becomes smooth. It doesn’t
necessarily become small, but it does become smooth. See Fig. 1.8 for an illustration of this
error smoothing effect. Looking at the error

vmh (xi, yj ) = uh(xi, yj )− umh (xi, yj ),

Formula (1.5.1) means

vm+1
h (xi, yj ) = 1

4 [vm+1
h (xi − h, yj )+ vmh (xi + h, yj )

+ vm+1
h (xi, yj − h)+ vmh (xi, yj + h)]. (1.5.2)

Error after 10
iterations

Error of
initial guess

Error after 5
iterations

Figure 1.8. Influence of lexicographic Gauss–Seidel iteration (1.5.1) on the error (Model
Problem 1).
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Obviously, the iteration formula can be interpreted as an error averaging process. Error
smoothing is one of the two basic principles of the multigrid approach.

Smoothing principle Many classical iterative methods (Gauss–Seidel etc.) if
appropriately applied to discrete elliptic problems have a strong smoothing effect
on the error of any approximation.

The other basic principle is the following: a quantity that is smooth on a certain grid can,
without any essential loss of information, also be approximated on a coarser grid, say a grid
with double the mesh size. In other words: if we are sure that the error of our approximation
has become smooth after some iteration steps, we may approximate this error by a suitable
procedure on a (much) coarser grid.

Qualitatively, this is the coarse grid approximation principle.

Coarse grid principle A smooth error term is well approximated on a coarse
grid. A coarse grid procedure is substantially less expensive (substantially fewer
grid points) than a fine grid procedure.

As this principle holds for error or “correction” quantities, we also speak of the coarse grid
correction (CGC) principle.

Let us illustrate these considerations and explain them heuristically by looking at the
Fourier expansion of the error. In our model problem the error vh = vmh (x, y) considered
as a function of the discrete variables x and y can be written as

vh(x, y) =
n−1∑
k,�=1

αk,� sin kπx sin �πy. (1.5.3)

For (x, y) ∈ �h, the functions

ϕ
k,�
h (x, y) = sin kπx sin �πy (k, � = 1, . . . , n− 1) (1.5.4)

are the discrete eigenfunctions of the discrete operator�h. The fact that this error becomes
smooth after some iteration steps means that the high frequency components in (1.5.3), i.e.

αk,� sin kπx sin �πy with k or l large (1.5.5)

become small after a few iterations whereas the low frequency components, i.e.

αk,� sin kπx sin �πy with k and l small (1.5.6)

hardly change. The distinction between high and low frequencies is important in the multi-
grid context. In the following subsection, we will give a first definition of high and low
frequencies and show how this concept is related to the coarse grid under consideration.
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1.5.2 High and Low Frequencies, and Coarse Meshes

We again consider Model Problem 1 on a grid �h with mesh size h = 1/n. Additionally,
we consider Model Problem 1 on a coarser grid �H with mesh size H > h. Assuming
that n is an even number, we may, for instance, choose H = 2h, which is a very natural
choice in the multigrid context. This choice of the coarse grid is, therefore, called standard
coarsening.

For the definition of the high and low frequencies, we return to the eigenfunctions
ϕk,� = ϕ

k,�
h in (1.5.4). For given (k, �), we consider the (four) eigenfunctions

ϕk,�, ϕn−k,n−�, ϕn−k,�, ϕk,n−�

and observe that they coincide on �2h in the following sense:

ϕk,�(x, y) = −ϕn−k,�(x, y) = −ϕk,n−�(x, y) = ϕn−k,n−�(x, y) for (x, y) ∈ �2h.

This means that these four eigenfunctions cannot be distinguished on �2h. (For k or
l = n/2, the ϕk,� vanish on�2h.) This gives rise to the following definition of low and high
frequencies:

Definition (in the context of Model Problem 1) For k, � ∈ {1, . . . , n− 1}, we
denote ϕk,� to be an eigenfunction (or a component) of

low frequency if max(k, �) < n/2,

high frequency if n/2 ≤ max(k, �) < n.

Obviously, only the low frequencies are visible on�2h since all high frequencies coin-
cide with a low frequency on�2h (or vanish on�2h). The fact that high frequencies coincide
with low ones is also called aliasing of frequencies. For the 1D case with n = 8, we illustrate
the above definition in Fig. 1.9. We summarize this consideration:

The low frequency components also represent meaningful grid functions on a grid
�2h with double the mesh size, whereas the high frequency components do not.
Their high frequencies are not “visible” on the �2h grid.

If we apply this distinction of low and high frequencies to the representation of vh(x, y)
in (1.5.3), we can decompose the sum in (1.5.3) into corresponding partial sums:

n−1∑
k,�=1

αk,�ϕ
k,� =

∑high
αk,�ϕ

k,� +
∑low

αk,�ϕ
k,�
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high frequency components,
not visible on  

2h
visiblealso on

2h

low frequency components,

Figure 1.9. Low and high frequency components for a 1D example (n = 8).

where ∑low
αk,�ϕ

k,� =
n/2−1∑
k,�=1

αk,�ϕ
k,�

and ∑high
αk,�ϕ

k,� =
n−1∑
k,�

n/2≤max(k,�)

αk,�ϕ
k,�.

Remark 1.5.1 (H = 4h and other choices of H) From our definition, it immediately
becomes clear that the terms “high frequency” and “low frequency” are related to both the
fine grid�h and the coarse grid�H that we consider. (If we want to emphasize this depen-
dence on the grids�h and�H , we will speak of (h,H)-low and (h,H)-high frequencies.)
If, for example, we would choose

H = 4h

(assuming that n is a multiple of 4), our definition of high and low frequencies would have
to be modified in the following way:

ϕk,l is a (h, 4h)-low frequency component if max(k, l) < n/4.

ϕk,l is a (h, 4h)-high frequency component otherwise.

The choice H = 4h is not very practical in the multigrid context since it usually does not
lead to the most efficient algorithms, but it is not out of the question, either.

Other, more practical choices of coarse grids, different from standard coarsening, are
introduced in Section 2.3.1. �
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1.5.3 From Two Grids to Multigrid

In the following, we will continue our heuristic considerations a little further extending
them from two-grid levels �h, �2h to a sequence of levels. In this setting, we will also be
able to explain the multigrid (not only the two-grid) idea. Fig. 1.10 shows such a sequence
of grids.

We assume additionally that n is a power of 2 meaning that h = 2−p. Then we can form
the grid sequence

�h,�2h,�4h, . . . , �h0 (1.5.7)

just by doubling the mesh size successively. We assume that this sequence ends with a
coarsest grid �h0 (which may well be the grid consisting of only one interior grid point
(x, y) = (1/2, 1/2), i.e. h0 = 1/2, see Fig. 1.10).

We now consider a decomposition of the error representation (1.5.3) into partial sums
which correspond to the grid sequence (1.5.7), having the following idea in mind. In the
same way as we have distinguished low and high frequencies with respect to the pair of
grids �h and �2h in the previous section, we now make an additional distinction between
high and low frequencies with respect to the pair �2h and �4h. We continue with the pair
�4h and �8h and so on.

As discussed above, by using Gauss–Seidel type iterations on the original �h grid, we
cause the (h, 2h)-high frequency error components to become small rapidly. The remaining
low frequency error components are visible and can thus be approximated on �2h. (Of
course, an equation which determines the low frequency error has to be defined in a suitable
way on �2h.) Performing Gauss–Seidel-type iteration not only on the original �h grid,
but also on �2h and correspondingly on �4h etc., causes the (2h, 4h)-high frequency, the
(4h, 8h)-high frequency components etc. to decrease rapidly. Only on the coarsest grid
might it be necessary to do something special, which is trivial if �h0 consists of only one
(or few) point(s). Altogether, this leads to a very fast overall reduction of the error.

Summary What we have described and explained so far is the basic idea of multigrid.
Our description is not at all an algorithm. It is not even a clear verbal description of an
algorithmic principle. For example, we have neither said precisely what a Gauss–Seidel
iteration on �2h,�4h etc. means algorithmically and to which grid functions it is to be
applied, nor how to go from one level to the other etc. However, theflavor of multigrid is in it.

Figure 1.10. A sequence of coarse grids starting with h = 1/16.



20 MULTIGRID

Flavor of multigrid Gauss–Seidel iteration (or more generally, an appropriate
iterative scheme) on different grid levels gives rapid reduction of the correspond-
ing high frequency components and as this process covers all frequencies, a rapid
reduction of the overall error can be achieved.

1.5.4 Multigrid Features

The multigrid idea is very fundamental and can also be applied in other contexts. Accord-
ingly, there are also several different ways to view multigrid. In order to clarify our under-
standing of multigrid, we want to briefly discuss different multigrid aspects and to point
out those multigrid features which we regard as the most significant ones.

Multigrid as an iterative linear solver The most basic way to view multigrid is to con-
sider it as an iterative linear solver for a discrete elliptic boundary value problem. Here we
assume the problem, the grid and the discretization to be given and fixed. A characteristic
feature of the iterative multigrid approach is that the multigrid convergence speed is inde-
pendent of the discretization mesh size h and that the number of arithmetic operations per
iteration step is proportional to the number of grid points. The multigrid principle allows
us to construct very efficient linear solvers, and, in that respect, the iterative approach is
important and fundamental. This approach is described in detail in Chapter 2 of this book.
On the other hand, this view is somewhat restricted and does not exploit the full potential
of the multigrid idea. For example, even the direct application of multigrid to nonlinear
problems (discussed in detail in Section 5.3) is not covered by this approach.

Multigrid as a solver for the differential problem From a more sophisticated point
of view, multigrid can be regarded as a solution method for the (continuous) differential
problem. In this view it is not appropriate to separate the discretization and the solution of the
discrete problem, but rather to regard both processes as interdependent: the solution process
can, according to this view, be performed the more efficiently the more the continuous
differential background is exploited.

One simple, but very natural way of looking at multigrid as a “differential solver”
is represented by the full multigrid method (FMG, see Section 2.6). Here, the method is
oriented to minimizing the differential error rather than to minimizing the algebraic error
(corresponding to the linear system). Self-adaptive grid refinements and related approaches,
which are very natural in the multigrid context, also belong to the “differential view” of
multigrid (and will be presented in Chapter 9).

Efficiency Multigrid methods are highly efficient. Efficiency here relates to both a the-
oretical feature and a practical one. The theoretical efficiency is more precisely expressed
by the term “optimality” in a complexity theory sense. If interpreted appropriately, (full)
multigrid methods are typically optimal in the sense that the number of arithmetic opera-
tions needed to solve a (discrete) problem is proportional to the number N of unknowns in
the problem considered.



INTRODUCTION 21

Efficiency in the practical sense means that the proportionality constants in this O(N)
statement are small or moderate. This is indeed the case for multigrid: if designed well, theh-
independent convergence factors can be made very small (in the range 0.1–0.2 or even less)
and the operation count per unknown per iteration step is also small. If a concrete multigrid
algorithm has this property, we speak of the typical multigrid efficiency (sometimes also
called top multigrid efficiency).

Generality The second striking property of multigrid is its generality. Multigrid methods
are as efficient as the so-called fast elliptic solvers [95, 342] but are less limited in their
range of application. Multigrid methods can be applied with full efficiency

– to general elliptic equations with variable coefficients,
– in general domains,
– for general boundary conditions,
– in 2D, 3D and higher dimensions (trivially also for 1D problems),
– to scalar equations and to systems of equations.

Very importantly, multigrid can also be applied directly, i.e. without global linearization, to
nonlinear elliptic problems.

Furthermore, multigrid is not restricted to a certain discretization approach. In princi-
ple, multigrid can be used in connection with any type of grid-based discretization: finite
differences,finite volumes andfinite elements. (Collocation, variational, spectral or particle-
based discretization methods can also be combined with the multigrid principle. In this book,
however, we will concentrate on grid-type approaches.)

Optimality versus robustness Multigrid methods are characterized by their so-called
components. We will introduce them systematically in Sections 2.1–2.4. The components
are the smoothing procedure, the coarsening strategy, the coarse grid operators, the transfer
operators from fine grids to coarse and from coarse to fine and the cycle type. These
components have to be specified for each concrete problem. Although it is well known how
to choose suitable multigrid components for large classes of problems, it may be (very)
difficult to define the right or reasonable ones in complicated new applications. This is still
an “art” requiring theoretical insight, experience and numerical experiments. There are two
trends with respect to the choice of multigrid components.

In optimized multigrid algorithms, one tries to tailor the components to the problem
at hand in order to obtain the highest possible efficiency for the solution process. This
optimized approach clearly makes sense if a very large scale problem has to be (repeatedly)
solved or if a smaller core problem needs to be solved many times every day, like, for
example, the 3D Helmholtz equation in daily weather prediction [251].

On the other hand, the idea of robust multigrid algorithms is to choose the components
independently of the given problem, uniformly for as large a class of problems as possible.
The robust approach is often used in software packages where the highest efficiency for a
single problem is not so important. The AMG method in Appendix A is an example of a
robust multigrid method.
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Optimization of multigrid is in many cases limited by practical circumstances. For
instance, important large software packages are based on certain grid structures, discretiza-
tion techniques and solution methods, which are not oriented to multigrid requirements. In
such situations, the users and developers of the software packages may be very interested
in accelerating the program by introducing some multigrid features. It may, however, be
impossible or too costly to change the data structures in such a way that optimal multigrid
features can be integrated. From a puristic multigrid point of view, such an accelerating
approach may be very unsatisfactory because much higher efficiency is achievable in prin-
ciple. From a practical point of view, this approach can, however, be a good compromise.
A simple modification of the program may give a significant reduction in computing time.

Adaptivity Defining a global grid for the discretization of a given problem independently
of the solution process is often insufficient. Only during the solution process may certain
features of the solution, like shocks, singularities, oscillations, turbulent behavior and the
like be recognized. In such cases, the local discretization error is of different size in different
parts of the domain and therefore it would be natural to adapt the grids (and perhaps also
the discretization) to the behavior of the solution. This is one of the main reasons for
using adaptive grids that are dynamically constructed within the solution process. For 3D
problems, this is particularly necessary since a grid that is globally as fine as is needed at
some crucial parts of the domain is not affordable.

For these reasons, adaptivity of grids is one of the major trends in today’s numerical
simulation and scientific computing.

Adaptivity can be combined with the multigrid principle in a very natural way. In
the adaptive multigrid process finer and finer grids are not constructed globally. They are
only constructed in those parts of the domain where the current discretization error is
significantly large. Essentially, all other multigrid components are maintained as usual.
What is specifically needed for this approach, are criteria to measure or estimate the current
local discretization error. Adaptive multigrid will be discussed in Chapter 9.

Parallel features A promising and challenging trend in numerical simulation and scien-
tific computing is the use of parallelism in numerical algorithms. The background to this
trend is the fact that most high performance computers are now parallel systems.

In order to solve any problem on a parallel computer, an algorithm with an appropriate
degree of parallelism has to be made available. In addition, the data being processed in
the algorithm should be suitably organized. This is particularly important if the parallel
computer has distributed memory. In this case, the “communication overhead” has to be
limited, i.e. the internal transfer of data should cost only a (small) fraction of the overall
effort for solving the given problem.

In Chapter 6, we deal mainly with the practical aspects of parallel multigrid, focusing
on the grid partitioning approach, in which the given grid is partitioned into a number of
subgrids. Each processor works on “its” subgrid but has to communicate with the other
processors. In this approach all multigrid components that have to be specified should be
parallel, or as parallel as possible, but at the same time as efficient as possible.
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1D problems The multigrid idea leads to optimal algorithms for many PDEs. Since ordi-
nary differential equations (ODEs) are a special case of PDEs, the question arises whether
multigrid methods are also useful for ODEs. Indeed, the multigrid principle can also be
applied to ODEs and, of course, leads to optimal (i.e. O(N)) algorithms in 1D. However,
in 1D other optimal methods are available and multigrid methods typically coincide with
(and degenerate to) well-known optimal solvers. In that respect, the multigrid principle is
also applicable to the 1D case, but not really needed there, at least not for standard problems.

For example, if linear ordinary boundary value problems are discretized with standard
discretization methods (for example, finite differences) band matrices are obtained, where
the bandwidth is independent of the mesh size h. In particular, if a three-point discretization
is used for the differential operator, typically the discrete problem is characterized by a
linear system with a tridiagonal (N × N) matrix. Such tridiagonal systems, and more
general band matrices with a fixed small bandwidth, can be solved in O(N) operations by
Gaussian elimination-type methods.

1.5.5 Multigrid History

The forerunners of multigrid are the ideas of nested iteration, error smoothing by relaxation
and total reduction. Nested iteration (see also Section 2.6) has been used for a long time
to obtain first approximations (initial guesses) on fine grids from coarse grids, for instance
in the context of Newton’s method. Also, the fact that in many cases relaxation processes
have an error smoothing property has been known for a long time [367, 368, 374]. The
total reduction method by Schröder and Trottenberg [342–344] has the complete multigrid
structure. The main difference from standard multigrid is, however, that on the coarse grids
equations are constructed, which are equivalent to the fine grid equations for the respective
unknowns; smoothing plays no role then.

The first studies investigating multigrid methods in a strict sense were those by
Fedorenko [139, 140] (1962, 1964) and that of Bakhvalov [16] (1966). While Fedorenko
[140] restricted the convergence investigation to a discrete boundary value problem of
second order with variable coefficients (in the unit square), Bakhvalov also indicated the
possibility of combining multigrid methods with nested iteration.

Though the studies published by Fedorenko and Bakhavalov had shown the asymptotic
optimality of the multigrid approach (and to a certain extent its generality), their actual
efficiency was first recognized by Brandt in the early 1970s. Studying adaptive grid refine-
ments and their relation to fast solvers, Brandt had been led to the papers of Fedorenko and
Bakhvalov by Widlund. In his first two papers [56, 57] (1973, 1976) and then summarized
in the systematic 1977 work [58], Brandt showed the actual efficiency of multigrid meth-
ods. His essential contributions (in the early studies) include the introduction of a nonlinear
multigrid method (FAS) and of adaptive techniques (MLAT), the discussion of general
domains, the systematic application of the nested iteration idea (FMG) and, last but not
least, the provision of the local Fourier analysis tool for theoretical investigation and method
design.

The following papers, which we would like to mention as being “historically” relevant
contributions, are representative of the early development of multigrid.
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In 1971 Astrakhantsev [6] generalized Bakhvalov’s convergence result to general bound-
ary conditions. Like Bakhvalov he used a variational formulation in his theoretical approach.
After a first study of multigrid methods for Poisson’s equation in a square, Nicolaides [278]
(1975) discussed multigrid ideas in connection with finite element discretizations systemati-
cally in [279] (1977). In 1975, Frederickson [142] introduced an approximate multigrid-like
solver which can be regarded as a forerunner of the MGR methods [141, 319].

In 1975–1976, Hackbusch developed the fundamental elements of multigrid methods
anew. It was again Widlund who informed Hackbusch about the studies which were already
available. Hackbusch’s first systematic report [169] (1976) contained many theoretical and
practical investigations which have been taken up and developed further by several authors.
So one finds Fourier analysis considerations, the use of “red–black” and “four-colour”
relaxation methods for smoothing, the treatment of nonrectangular domains and of non-
linear problems etc. Hackbusch then presented a general convergence theory of multigrid
methods [170–172].

Since the early 1980s, the field has been exploding and many researchers have con-
tributed to the field. Two series of conferences dedicated to multigrid were set up. The
European Multigrid Conferences (EMG) have been held at Cologne (1981, 1985), Bonn
(1991), Amsterdam (1993), Stuttgart (1996) and Ghent (1999). And in the US the Copper
Mountain Conferences on multigrid have been held bi-annually since 1983. Proceedings
of the European meetings have appeared in [129, 174, 177, 178, 181, 189] and of the
Copper Mountain Conferences in special issues of journals: Applied Numerical Mathemat-
ics (Vol. 13, 1983; Vol. 19, 1986), Communications in Applied Numerical Methods (Vol. 8,
1992), SIAM Journal of Numerical Analysis (Vol. 30, 1993), Electronic Transactions on
Numerical Analysis (Vol. 6, 1996). Another rich source of information on multigrid is the
MGNet website maintained by C.C. Douglas: http://www.mgnet.org. This web-
site includes a large multigrid bibliography with more than 3000 entries. Some multigrid
textbooks and monographies are [54, 66, 91, 176, 206, 262, 332, 351, 378, 415].

1.6 INTERMEZZO: SOME BASIC FACTS AND METHODS

This section contains some general numerical material which is needed at several places
of the book. One reason for presenting this material here is to clarify terminology. The
reader who has a general idea of the material presented here may have a quick look at it and
return to it for details later. Those readers for whom the material is new may read it now or
postpone its study. (We will refer these readers back to these sections later.)

1.6.1 Iterative Solvers, Splittings and Preconditioners

Since the facts listed in this section are valid for general matrices and are not restricted to
discrete differential operators, we use linear algebra notation in this section, i.e. matrices
Ah or A instead of discrete operators Lh.

Let

Au = f (1.6.1)
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be a linear system with an invertible matrixA. The simplest iterative scheme for this equation
is the Richardson iteration

um+1 = um + τ(f − Aum) = (I − τA)um + τf (m = 0, 1, . . . ) (1.6.2)

with some acceleration parameter τ �= 0.
A more general iteration is

um+1 = Mum + s (m = 0, 1, . . . ). (1.6.3)

Here, M is the iteration matrix. We assume that the original equation Au = f is equiv-
alent to the fixed point equation u = Mu + s. For Richardson’s iteration, we have
M = I − τA, s = τf .

The convergence (and the asymptotic convergence speed) of Richardson’s iteration
and of the general iteration are characterized by the spectral radii ρ(I − τA) and ρ(M),
respectively. The spectral radius of a matrixM is defined as

ρ(M) = max{|λ|: λ eigenvalue ofM}. (1.6.4)

The spectral radius is the asymptotic convergence factor of the iteration. Asymptotically
(i.e., for m → ∞) we have ||u− um+1|| ≤ ρ(M)||u− um||.

There are many ways to specifyM leading to different iterative solvers. (In Chapter 2 we
will specifyM in such a way that standard multigrid methods are obtained.) Here we present
three different but equivalent ways to formulate or to introduce the iteration (1.6.3). These
three approaches differ only in their motivation (their point of view), not mathematically.
All three points of view will be used at different places in this book.

Approximate solution of the defect equation
If um is any approximation of u and

dm = f − Aum (1.6.5)

is its defect, then the defect equation Avm = dm is equivalent to the original equation. By
solving for the correction vm, we obtain the solution u = um + vm. However, if we use an
approximation Â of A, such that

Âv̂m = dm (1.6.6)

can be solved more easily, we obtain an iterative process of the form

dm = f − Aum, Âv̂m = dm, um+1 = um + v̂m (m = 0, 1, 2 . . . ). (1.6.7)

This process is obviously equivalent to (1.6.3) where

M = I − (Â)−1A.

Vice versa, ifM is given, this yields an approximation Â of A according to

Â = A(I −M)−1.
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Splitting
An equivalent way of constructingM is to start with a splitting

A = Â− R
and to use the iteration

Âum+1 = Rum + f. (1.6.8)

Here
M = (Â)−1R = I − (Â)−1A.

Preconditioning
A third, also equivalent, approach is based on the idea of preconditioning. Here the original
equation Au = f is replaced by an equivalent equation

CAu = Cf (1.6.9)

where C is an invertible matrix. C is called a (left) preconditioner of A. The identification
with the above terminology is by

(Â)−1 = C.

In other words, the inverse (Â)−1 of any (invertible) approximation Â is a left preconditioner
and vice versa.

Furthermore, we see that Richardson’s iteration for the preconditioned system (1.6.9)
(with τ = 1)

um+1 = um + C(f − Aum) = (I − CA)um + Cf (1.6.10)

is equivalent to the general iteration (1.6.3) with M = I − CA. This also means that any
iteration of the general form (1.6.3) is a Richardson iteration (with τ = 1) for the system
that is obtained by preconditioning the original system (1.6.1).

Remark 1.6.1 One speaks of a right preconditioner C, if the original equation is
replaced by

ACz = f , u = Cz. (1.6.11)

Richardson’s method based on right preconditioning (with τ = 1) would result in

zm+1 = (I − AC)zm + f . (1.6.12)

Since
(I − AC) = A(I − CA)A−1,

we have

ρ(I − AC) = ρ(I − CA). �
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So far, we have stated relations between the defect interpretation, the splitting and the
preconditioning approaches. We would like to add some remarks, which further motivate
the term preconditioning. The idea behind preconditioning is that the condition of the
system (1.6.1), measured by the condition number

κ(A) = ||A|| ||A−1|| (1.6.13)

(in some appropriate norm), is to be improved by multiplying A by C, in the form (1.6.9)
or (1.6.11). The condition number, on the other hand, is relevant for the convergence speed
of certain iterative approaches, for instance Richardson’s iteration and conjugate gradient-
type methods. We summarize some well-known facts here. For that purpose, we assume
that the matrix A is symmetric and positive definite (s.p.d.) with maximum and minimum
eigenvalues λmax, λmin > 0, respectively. We consider the Euclidean norm in R

N and the
corresponding spectral matrix norm ||A||S = λmax.

Remark 1.6.2 If A is s.p.d., the Richardson iteration converges for

0 < τ < 2||A||S−1.

Then the optimal τ (for which the spectral radius ρ(I − τA) becomes minimal) is τopt =
2/(λmax + λmin), and one can prove

ρ(I − τoptA) = ||I − τoptA||S = λmax − λmin

λmax + λmin
= κS(A)− 1

κS(A)+ 1
, (1.6.14)

where κS(A) is the spectral condition number of A (for the proof, see for example [180]).
If we use a left preconditioner C which is also s.p.d., we obtain

κS(CA)− 1

κS(CA)+ 1
(1.6.15)

instead of (1.6.14). �

Remark 1.6.3 The term preconditioning is commonly used in the context of conjugate
gradient type or, more generally, Krylov subspace methods [159, 337]. Here the spectral
condition number κS = κS(A) ofA also plays a role in error estimates for conjugate gradient
iterants. Actually, under the same assumptions as above, instead of (1.6.14) and (1.6.15)
the improved convergence factors

√
κS(A)− 1√
κS(A)+ 1

and

√
κS(CA)− 1√
κS(CA)+ 1

, (1.6.16)

respectively, appear in the corresponding estimates (see [180] for a proof and details). �
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The multigrid idea is based on two principles: error smoothing and coarse grid correction.
In this chapter, we will explain how these principles are combined to form a multigrid
algorithm. Basic multigrid will be described systematically.

In Section 2.1, we discuss the smoothing properties of classical iterative solvers.
Sections 2.2, 2.4 and 2.6 give a systematic introduction to two-grid iteration, multigrid
iteration and the full multigrid method, respectively. Some standard multigrid components
are described in Section 2.3.

We prefer a presentation of the two-grid cycle in Section 2.2, which starts with the
idea of an approximate solution of the defect equation and then brings together smoothing
and coarse grid correction. The methods described in Sections 2.2–2.4 and 2.6 are general,
although all concrete examples refer to Poisson’s equation. Concrete fast multigrid Poisson
solvers for the 2D and 3D cases are presented in Sections 2.5 and 2.9, respectively.

Some straightforward generalizations of the 2D method are discussed in Section 2.8.
In Section 2.7, we resume the discussion on transfer operators and focus on some practical
aspects.

2.1 ERROR SMOOTHING PROCEDURES

We have observed in Section 1.5 for Model Problem 1 that the usual Gauss–Seidel iteration
has a remarkable smoothing effect on the error vmh of an approximation umh . As this property
is fundamental for the multigrid idea, we discuss smoothing procedures in more detail here.

We will, in particular, consider two classical iteration methods: Gauss–Seidel-type and
Jacobi-type iterations. We will see that these methods are suitable for error smoothing.
The smoothing properties will, however, turn out to be dependent on the right choice of
relaxation parameters and, in the case of the Gauss–Seidel iteration, also on the ordering
of grid points.

All iterative methods which we discuss in this chapter, are pointwise iterations, line- or
block-type iterations are not yet considered here. We start our discussion with Jacobi-type
iterations since the analysis is particularly easy and illustrative.

28
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In general, however, appropriate Gauss–Seidel-type iterations turn out to be better
smoothers than appropriate Jacobi-type iterations.

In the following we will speak of Jacobi- and Gauss–Seidel-type relaxation methods
rather than iteration methods.

Relaxation methods Classical iteration methods such as Gauss–Seidel-type and
Jacobi-type iterations are often called relaxation methods (or smoothing methods
or smoothers) if they are used for the purpose of error smoothing.

2.1.1 Jacobi-type Iteration (Relaxation)

For Model Problem 1, the iteration formula of the Jacobi iteration reads

zm+1
h (xi, yj ) = 1

4

[
h2fh(xi, yj )+ umh (xi − h, yj )+ umh (xi + h, yj )

+ umh (xi, yj − h)+ umh (xi, yj + h)] (2.1.1)

um+1
h = zm+1

h ,

(with (xi, yj ) ∈ �h), where umh denotes the old approximation and um+1
h the new approx-

imation of the iteration. The Jacobi iteration can be written as

um+1
h = Shu

m
h + h2

4
fh

with the iteration operator

Sh = Ih − h2

4
Lh

(where Ih is the identity operator). We can generalize this iteration by introducing a relax-
ation parameter ω

um+1
h = umh + ω(zm+1

h − umh ), (2.1.2)

which is called the ω-(damped) Jacobi relaxation (ω-JAC). Obviously, ω-JAC and Jacobi
iteration coincide for ω = 1. The iteration operator for ω-JAC reads

Sh(ω) = Ih − ωh2

4
Lh = ω

4

⎡⎣ 1
1 4(1/ω − 1) 1

1

⎤⎦
h

. (2.1.3)
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The convergence properties of ω-JAC can be easily analyzed by considering the eigenfunc-
tions of Sh, which are the same as those of Lh, namely

ϕ
k,�
h (x) = sin kπ x sin �πy ((x, y) ∈ �h; (k, � = 1, . . . , n− 1)). (2.1.4)

The corresponding eigenvalues of Sh are

χ
k,�
h = χ

k,�
h (ω) = 1 − ω

2
(2 − cos kπh− cos �πh). (2.1.5)

For the spectral radius ρ(Sh) = max{|χk,�h |: (k, � = 1, . . . , n− 1)}, we obtain

for 0 < ω ≤ 1: ρ(Sh) = |χ1,1
h | = |1 − ω(1 − cosπh)| = 1 −O(ωh2)

else : ρ(Sh) ≥ 1 (for h small enough) .
(2.1.6)

In particular, when regarding the (unsatisfactory) asymptotic convergence, there is no use
in introducing the relaxation parameter: ω = 1 is the best choice.

2.1.2 Smoothing Properties of ω-Jacobi Relaxation

The situation is different with respect to the smoothing properties of ω-Jacobi relaxation.
In order to achieve reasonable smoothing, we have to introduce a parameter ω �= 1.

For 0 < ω ≤ 1, we first observe from (2.1.6) that the smoothest eigenfunction ϕ1,1
h is

responsible for the slow convergence of Jacobi’s method. Highly oscillating eigenfunctions
are reduced much faster ifω is chosen properly. To see this, we consider the approximations
before (wh) and after (w̄h) one relaxation step and expand the errors before (vh) and after
(v̄h) the relaxation step, namely

vh := uh − wh and v̄h := uh − w̄h,
into discrete eigenfunction series

vh =
n−1∑
k,�=1

αk,�ϕ
k,�
h , v̄h =

n−1∑
k,�=1

χ
k,�
h αk,�ϕ

k,�
h . (2.1.7)

As discussed in Section 1.5, in order to analyze the smoothing properties of Sh(ω) we
distinguish between low and high frequencies (with respect to the coarser grid �2h used).

In order to measure the smoothing properties of Sh(ω) quantitatively, we introduce the
smoothing factor of Sh(ω) as follows:

Definition Smoothing factor (of ω-JAC for Model Problem 1)
The smoothing factor μ(h;ω) of Sh(ω), representing the worst factor by which
high frequency error components are reduced per relaxation step, and its supremum
μ∗ over h, are defined as

μ(h;ω) := max{|χk,�h (ω)|: n/2 ≤ max(k, �) ≤ n− 1},
μ∗(ω) := sup

h∈H
μ(h;ω). (2.1.8)
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From here on, H denotes the set of admissible (or reasonable) mesh sizes. Below we will
see, for example, that for � = (0, 1)2 the coarsest grid on which smoothing is applied is
characterized by h = 1/4. In this case we would then define H = {h = 1/n: n ∈ N, n ≥ 4}.

Inserting (2.1.5), we obtain from (2.1.8)

μ(h;ω) = max

{∣∣∣∣1 − ω

2
(2 − cos kπh− cos �πh)

∣∣∣∣: n/2 ≤ max(k, �) ≤ n− 1

}
μ∗(ω) = max{|1 − ω/2|, |1 − 2ω|}.

(2.1.9)

This shows that Jacobi’s relaxation has no smoothing properties for ω ≤ 0 or ω > 1

μ(h;ω) ≥ 1 if ω ≤ 0 or ω > 1 (and h sufficiently small).

For 0 < ω < 1, however, the smoothing factor is smaller than 1 and bounded away from 1,
independently of h. For ω = 1, we have a smoothing factor of 1−O(h2) only. In particular,
we find from (2.1.9) that

μ(h;ω) =

⎧⎪⎨⎪⎩
cosπh if ω = 1

(2 + cosπh)/4 if ω = 1/2

(1 + 2 cosπh)/5 if ω = 4/5

μ∗(ω) =

⎧⎪⎨⎪⎩
1 if ω = 1

3/4 if ω = 1/2

3/5 if ω = 4/5.

(2.1.10)

The choice ω = 4/5 is optimal in the following sense:

inf {μ∗(ω): 0 ≤ ω ≤ 1} = μ∗(4/5) = 3/5.

With respect to μ(h;ω), one obtains

inf {μ(h;ω): 0 ≤ ω ≤ 1} = μ

(
h; 4

4 + cosπh

)
= 3 cosπh

4 + cosπh
= 3

5
− |O(h2)|.

This means that one step of ω-JAC with ω = 4/5 reduces all high frequency error compo-
nents by at least a factor of 3/5 (independent of the grid size h).

The above consideration is a first example of what we call smoothing analysis.

2.1.3 Gauss–Seidel-type Iteration (Relaxation)

In Section 1.5.1 we introduced Gauss–Seidel iteration with a lexicographic ordering of the
grid points. A different ordering is the so-called red–black ordering (see Fig. 1.7). If we use
this red–black ordering for Gauss–Seidel iteration, we obtain the Gauss–Seidel red–black
(GS-RB) method.
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Remark 2.1.1 The red–black ordering of grid points is also called odd–even ordering.
This notation has the advantage that the two types of grid points are more clearly addressed
(a grid point (xi, yj ) is odd/even if i + j is odd/even) than with the term red–black. Since
red–black is more often used in the literature, we will stay with red–black. �

The significance of using a relaxation parameter ω in Gauss–Seidel iteration is well
known in the classical Gauss–Seidel convergence theory. For Model Problem 1, lexico-
graphic Gauss–Seidel with a relaxation parameter is described by

zm+1
h (xi, yj ) = 1

4

[
h2fh(xi, yj )+ um+1

h (xi − h, yj )+ umh (xi + h, yj )
+ um+1

h (xi, yj − h)+ umh (xi, yj + h)] (2.1.11)

um+1
h = umh + ω(zm+1

h − umh ).
The parameter ω not only enters explicitly in (2.1.11), but also implicitly in the “new
values” um+1

h (xi − h, yj ) and um+1
h (xi, yj − h). We will call this algorithm ω-GS-LEX in

the following. The corresponding algorithm with red–black ordering of the grid points and
relaxation parameter ω is called ω-GS-RB in this book.

We recall that, for Model Problem 1, the convergence of Gauss–Seidel iteration can be
substantially improved by an overrelaxation parameter ω∗. With

ω∗ = 2

1 +
√

1 − ρ(JAC)2
= 2

1 + sin πh

we obtain

ρ(ω∗-GS) = ω∗ − 1 = 1 − sin πh

1 + sin πh
= 1 −O(h)

instead of

ρ(GS) = 1 −O(h2) (for ω = 1).

This is the classical result on successive overrelaxation (SOR) [431]. Note that this result
for Gauss–Seidel iteration is independent of the ordering of grid points.

Gauss–Seidel-type methods represent a particularly important class of smoothers. In
the multigrid context the smoothing properties of Gauss–Seidel are much more important
than the convergence properties. We will, however, not analyze the smoothing proper-
ties of Gauss–Seidel-type relaxations, here. Since, different from the Jacobi situation, the
eigenfunctions of Lh (2.1.4) are not eigenfunctions of the Gauss–Seidel operator, we need
different tools for this analysis, which will be discussed in detail in Chapter 4. Here, we
summarize the results of the smoothing analysis for Gauss–Seidel-type relaxations. For
Model Problem 1, we obtain the smoothing factors

μ(GS-LEX) = 0.50 (for ω = 1),

μ(GS-RB) = 0.25 (for ω = 1).

(The factor of 0.25 for GS-RB is valid if only one or two smoothing steps are performed.)
This result shows that the ordering of the grid points has an essential influence on the
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smoothing properties in the case of Gauss–Seidel relaxations. On the other hand, for Model
Problem 1, the introduction of a relaxation parameter does not improve the smoothing
properties of GS-LEX relaxation essentially (see Section 4.3).

The situation is somewhat different for GS-RB, for which an overrelaxation parameter
can improve the smoothing properties (see Section 2.9 and [427, 428]).

2.1.4 Parallel Properties of Smoothers

Here, we compare the smoothing properties and the parallel features of ω-JAC, GS-LEX
and GS-RB. First, ω-JAC is “fully �h parallel”. By this we mean that the ω-Jacobi opera-
tor (2.1.3) can be applied to all grid points�h simultaneously; the new values do not depend
on each other. We also say that the degree of parallelism (par-deg) is

par-deg(ω-JAC) = #�h.

If we use GS-LEX instead, we have dependences since we want to use the most recent
values of uh wherever possible. Grid points lying on a diagonal in �h (see Fig. 2.1) are
independent of each other for five-point discretizations and can be treated in parallel. The
degree of parallelism here clearly varies from one diagonal to the next and is restricted by

par-deg(GS-LEX) ≤ (#�h)
1/2.

In case of GS-RB each step of the Gauss–Seidel relaxation consists of two half-steps. In
the first half-step, all red grid points (◦) are treated simultaneously and independently (see
Fig. 2.2). In the second half-step, all black grid points (•) are treated, using the updated
values in the red points. The degree of parallelism is

par-deg(GS-RB) = 1
2 #�h.

Table 2.1 summarizes the properties of these relaxation schemes for Model Problem 1:
ω-JAC is fully parallel, but unfortunately not a really good smoother (not even with an

Figure 2.1. Diagonal grid points such as the • (or the ◦) can be treated in parallel in GS-LEX. Going
from one diagonal to the next ( ⇒) is sequential.
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Figure 2.2. Red–black distribution of grid points in �h.

Table 2.1. Smoothing factors for various relaxation schemes. The smoothing factors
marked ∗ will be obtained from the analysis in Sections 4.3 and 4.5; the factor marked
† is only valid if at most one or two smoothing steps are performed. (Here,N denotes
the number of grid points #�h corresponding to the unknown grid values of uh.)

Relaxation Smoothing factor Smoothing Parallel degree

ω-JAC, ω = 1 1 No N Full
ω-JAC, ω = 0.5 0.75 Unsatisfactory N Full
ω-JAC, ω = 0.8 0.6 Acceptable N Full
GS-LEX, ω = 1 0.5∗ Good ≤ √

N Square root
GS-RB, ω = 1 0.25∗† Very good 1

2N Half

optimized parameter ω) whereas GS-LEX has reasonable smoothing properties but is not
satisfactorily parallel. However, GS-RB is both a very good smoother (much better than
ω-JAC) and highly parallel.

2.2 INTRODUCING THE TWO-GRID CYCLE

As stated in Section 1.5, the basic multigrid consists of two ingredients: smoothing and
coarse grid correction. We start with the two-grid cycle, the natural basis for any multigrid
algorithm. For this purpose, we consider a discrete linear elliptic boundary value problem
of the form

Lhuh = fh (�h) (2.2.1)

and assume that Lh−1 exists.
As we are not going to give concrete quantitative results in this section, we do not make

precise assumptions about the discrete operator Lh, the right-hand side fh or the grid �h.
For a simple but characteristic example, one may always think of Model Problem 1 or some
more general Poisson-like equation.
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2.2.1 Iteration by Approximate Solution of the Defect Equation

One way of introducing the two-grid idea is to start from a general iteration based on an
approximate solution of the defect equation.

For any approximation umh of the solution uh of (2.2.1), we denote the error by

vmh := uh − umh (2.2.2)

and the defect (or residual) by

dmh := fh − Lhumh . (2.2.3)

Trivially, the defect equation

Lhv
m
h = dmh (2.2.4)

is equivalent to the original equation (2.2.1) since

uh = umh + vmh . (2.2.5)

We describe these steps by the following procedural formulation:

umh −→ dmh = fh − Lhumh −→ Lhv
m
h = dmh −→ uh = umh + vmh . (2.2.6)

This procedure, however, is not a meaningful numerical process. However, if Lh is approx-
imated here by any “simpler” operator L̂h such that L̂−1

h exists, the solution v̂mh of

L̂hv̂
m
h = dmh (2.2.7)

gives a new approximation

um+1
h := umh + v̂mh . (2.2.8)

The procedural formulation then looks like

umh −→ dmh = fh − Lhumh −→ L̂hv̂
m
h = dmh −→ um+1

h = umh + v̂mh . (2.2.9)

Starting with some u0
h, the successive application of this process defines an iterative

procedure. The iteration operator of this method is given by

Mh = Ih − ChLh : G(�h) → G(�h), (2.2.10)

where Ch := (L̂h)
−1 and Ih denotes the identity on G(�h). We have

um+1
h = Mhu

m
h + sh with sh = (L̂h)

−1fh (m = 0, 1, 2, . . . ). (2.2.11)
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For the errors, it follows that

vm+1
h = Mhv

m
h = (Ih − ChLh)vmh (m = 0, 1, 2, . . . ) (2.2.12)

and for the defects that

dm+1
h = LhMhL

−1
h d

m
h = (Ih − LhCh)dmh (m = 0, 1, 2, . . . ). (2.2.13)

If we start the iteration with u0 = 0, then we can represent umh (m = 1, 2, . . . ) as

umh = (Ih +Mh +Mh2 + · · · +Mm−1
h )(L̂h)

−1fh

= (Ih −Mm
h )(Ih −Mh)−1(L̂h)

−1fh (2.2.14)

= (Ih −Mm
h )L

−1
h fh.

For general remarks on iterations such as (2.2.11), we refer to the discussion in Section 1.6.1.
The asymptotic convergence properties of the above iterative process are characterized by
the spectral radius (asymptotic convergence factor) of the iteration operator, i.e.

ρ(Mh) = ρ(Ih − ChLh) = ρ(Ih − LhCh). (2.2.15)

If some norm ‖ · ‖ on G(�h) is introduced,

‖Ih − ChLh‖, ‖Ih − LhCh‖ (2.2.16)

give upper bounds for the error reduction factor and the defect reduction factor, respectively,
for one iteration.

Remark 2.2.1 Classical iterative linear solvers such as Jacobi or Gauss–Seidel iterations if
applied to (2.2.1) can be interpreted as (iterated) approximate solvers for the defect equation.
For ω-JAC we have, for example,

L̂h = 1

ω
Dh

where Dh is the “diagonal” part of the matrix corresponding to Lh. Similarly, GS-LEX is
obtained by setting L̂h to be the “lower triangular” part of the matrix corresponding to Lh
including its diagonal part. �

Remark 2.2.2 More generally, any of the classical iterative linear solvers of the form
(2.2.11) can be interpreted as iterated approximate solvers for the defect equation if

Ch := (Ih −Mh)Lh−1

is invertible. For then we can set L̂h := Ch
−1. �
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2.2.2 Coarse Grid Correction

One idea to approximately solve the defect equation is to use an appropriate approximation
LH of Lh on a coarser grid �H , for instance the grid with mesh size H = 2h. This means
that the defect equation (2.2.4) is replaced by

LH v̂
m
H = dmH . (2.2.17)

Here we assume

LH : G(�H ) → G(�H ), dim G(�H ) < dim G(�h) (2.2.18)

and LH−1 to exist. As dmH and v̂mH are grid functions on the coarser grid �H , we assume
two (linear) transfer operators

IHh : G(�h) → G(�H ), IhH : G(�H ) → G(�h) (2.2.19)

to be given. IHh is used to restrict dmh to �H :

dmH := IHh d
m
h (2.2.20)

and IhH is used to interpolate (or prolongate) the correction v̂mH to �h:

v̂mh := IhH v̂
m
H . (2.2.21)

The simplest example for a restriction operator is the “injection” operator

dH (P ) = IHh dh(P ) := dh(P ) for P ∈ �H ⊂ �h, (2.2.22)

which identifies grid functions at coarse grid points with the corresponding grid functions
at fine grid points. A fine and a coarse grid with the injection operator are presented in
Fig. 2.3.

Altogether, one coarse grid correction step (calculating um+1
h from umh ) proceeds as

follows.

Coarse grid correction umh → um+1
h

– Compute the defect dmh = fh − Lhumh
– Restrict the defect (fine-to-coarse transfer) dmH = IHh d

m
h

– Solve on �H LH v̂
m
H = dmH

– Interpolate the correction (coarse-to-fine transfer) v̂mh = IhH v̂
m
H

– Compute a new approximation um+1
h = umh + v̂mh
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h

h

Figure 2.3. A fine and a coarse grid with the injection operator.

The associated iteration operator is given by

Ih − ChLh with Ch = IhHL
−1
H I

H
h . (2.2.23)

However:

Remark 2.2.3 Taken on its own, the coarse grid correction process is of no use.
It is not convergent! We have

ρ
(
Ih − IhH L−1

H I
H
h Lh

) ≥ 1. (2.2.24)

�

This remark follows directly from the fact that IHh maps G(�h) into the lower dimensional
space G(�H ) and therefore Ch=IhHL−1

H I
H
h is not invertible. This implies that

ChLhvh = 0 for certain vh �= 0.

Example 2.2.1 It may be illustrative to see what ChLhvh = 0 means in practice. For the
simple injection operator (2.2.22), for example, any error function vh ∈ G(�h) with

Lhvh(P ) =
{

0 for P ∈ �H
arbitrary for P �∈ �H

is annihilated by IHh and therefore byCh. Such an error function vh will thus not be changed
by a pure coarse grid correction.
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As a more concrete example, consider Model Problem 1 (Lh = −�h), h = 1/n, and

vh(x, y) = sin
n

2
πx sin

n

2
πy. (2.2.25)

For standard coarsening, we find

vh(P ) = Lhvh(P ) = I2h
h Lhvh(P ) = 0 for all P ∈ �2h.

(This relation holds for any restriction operator I 2h
h as long as the stencil of I2h

h is symmetric
in x and y.) Clearly, vh belongs to the high frequency part of the eigenfunctions of Lh.

�
2.2.3 Structure of the Two-grid Operator

The above considerations imply that it is necessary to combine the two processes of smooth-
ing and of coarse grid correction.

Each iteration step (cycle) of a two-grid method consists of a presmoothing, a coarse
grid correction and a postsmoothing part. One step of such an iterative two-grid method
(calculating um+1

h from umh ) proceeds as follows:

Two-grid cycle um+1
h = TGCYC(umh , Lh, fh, ν1, ν2)

(1) Presmoothing
– Compute ūmh by applying ν1 (≥ 0) steps of a given smoothing procedure

to umh :

ūmh = SMOOTHν1(umh , Lh, fh). (2.2.26)

(2) Coarse grid correction (CGC)
– Compute the defect d̄mh = fh − Lhūmh .
– Restrict the defect d̄mH = IHh d̄

m
h .

(fine-to-coarse transfer)
– Solve on �H LH v̂

m
H = d̄mH . (2.2.27)

– Interpolate the correction v̂mh = IhH v̂
m
H .

(coarse-to-fine transfer)
– Compute the corrected u

m,after CGC
h = ūmh + v̂mh .

approximation
(3) Postsmoothing

– Compute um+1
h by applying ν2 (≥ 0) steps of the given smoothing

procedure to um,after CGC
h :

um+1
h = SMOOTHν2(u

m,after CGC
h , Lh, fh). (2.2.28)
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umh ūmh d̄mh = fh − Lhūmh v̂mh ūmh + v̂mh um+1
h

�

SMOOTHν1

� � �

SMOOTHν2

�

IHh

�
IhH

d̄mH � LH v̂
m
H = d̄mH

Figure 2.4. Structure of a two-grid cycle.

For the formal description of smoothing procedures we have used the notation

ūmh = SMOOTHν
(
umh ,Lh, fh

)
.

With this notation we combine the advantages of a more mathematically oriented operator-
like notation and a more computer science oriented formal procedural notation. In particular,
the number ν of smoothing steps appears as an upper (power) index. Similar notation is
also used for the two-grid and for the multigrid procedure.

The two-grid cycle is illustrated in Fig. 2.4.
From the above description, one immediately obtains the iteration operatorMH

h of the
(h,H) two-grid cycle:

MH
h = S

ν2
h K

H
h S

ν1
h with KHh := Ih − IhHL−1

H I
H
h Lh . (2.2.29)

From Fig. 2.4, we see that the following individual components of the two-grid cycle have
to be specified:

• the smoothing procedure SMOOTH (umh , Lh, fh),• the numbers ν1, ν2 of smoothing steps,
• the coarse grid �H ,
• the fine-to-coarse restriction operator IHh ,
• the coarse grid operator LH ,
• the coarse-to-fine interpolation operator IhH .

Experience with multigrid methods (and multigrid theory) shows that the choice of these
components may have a strong influence on the efficiency of the resulting algorithm. On the
other hand, there are no general simple rules on how to choose the individual components
in order to construct optimal algorithms for complicated applications. One can, however,
recommend certain choices for certain situations. The main objective of the elementary
multigrid theory (see Chapter 3) and the local Fourier analysis (see Chapter 4) is to analyze
the convergence properties of multigrid theoretically and to provide tools for the proper
choice of multigrid components.



BASIC MULTIGRID I 41

2.3 MULTIGRID COMPONENTS

In this section, we will introduce and list some important examples of how some of the
multigrid components can be specified.

The idea of giving these specifications is to make our presentation more concrete and
to introduce corresponding notations. The multigrid components specified here are needed
in Section 2.5.1, where a specific multigrid Poisson solver is introduced. Therefore, readers
who are more interested in the general structure of multigrid than in specific details may
skip this section for the time being.

2.3.1 Choices of Coarse Grids

In this subsection, we will mention some possible and common choices for the grid�H . The
simplest and most frequently used choice is standard coarsening, doubling the mesh size h
in every direction. Most of the results and considerations in this book refer to this choice. In d
dimensions, the relation between the number of grid points (neglecting boundary effects) is

#�H ≈ 1

2d
#�h.

We speak of semicoarsening in 2D if the mesh size h is doubled in one direction only,
i.e.H = (2hx, hy) (x-semicoarsening, see Fig. 2.5) orH = (hx, 2hy) (y-semicoarsening).
This is especially of interest for anisotropic operators (see Section 5.1). Note that in this case

#�H ≈ 1
2 #�h. (2.3.1)

In 3D, we have additional types of semicoarsening: we can double the mesh size in one
or in two directions (see Section 5.2).

We speak of red–black coarsening if the coarse grid points are distributed in the fine
grid in a red–black (checkerboard) manner (see Fig. 2.5).

Also other coarsenings, like 4h-coarsening, are sometimes of interest.
We mention that in the context of the AMG approach (see Appendix A), the coarse grid

�H is not formed according to such a fixed simple strategy. Using the algebraic relations
in the corresponding matrix, �H is determined by the AMG process itself in the course of
calculation. We will see that the red–black coarsened grid is a standard choice for Model
Problem 1 in AMG.

(a) (b) (c) (d)

Figure 2.5. Examples of standard; x-semi-; red–black; (h, 4h)-coarsening in a square computational
domain �. The grid points of �H are marked by dots.
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2.3.2 Choice of the Coarse Grid Operator

So far, we have not described precisely how the coarse grid operator LH can be chosen.
A natural choice is to use the direct analog of Lh on the grid �H . For Model Problem 1,
this means

LH = 1

H 2

⎡⎣ 0 −1 0
−1 4 −1

0 −1 0

⎤⎦
H

.

The direct coarse grid analog of the fine grid operator Lh will be used in most parts of this
book, in particular in all chapters on basic multigrid.

There are, however, applications and multigrid algorithms, which make use of a different
approach. The so-called Galerkin coarse grid operator is defined by

LH := IHh LhI
h
H , (2.3.2)

where IHh and IhH are appropriate transfer operators. We will return to the Galerkin
approach in the context of problems with discontinuous coefficients in Chapter 7 and in
Appendix A, where algebraic systems of equations without a grid-oriented background will
be treated.

2.3.3 Transfer Operators: Restriction

The choice of restriction and interpolation operators IHh and IhH , for the intergrid transfer of
grid functions, is closely related to the choice of the coarse grid. Here, we introduce transfer
operators for standard coarsening (see Fig. 2.5), i.e. the grid transfers between the grid �h
and the 2h-grid �2h.

A restriction operator I 2h
h maps h-grid functions to 2h-grid functions. One restric-

tion operator already discussed is the injection operator (2.2.22). Another frequently
used restriction operator is the full weighting (FW) operator, which in stencil notation
reads

1

16

⎡⎣ 1 2 1
2 4 2
1 2 1

⎤⎦2h

h

. (2.3.3)

Applying this operator to a grid function dh(x, y) at a coarse grid point (x, y) ∈ �2h
means

d2h(x, y) = I 2h
h dh(x, y)

= 1
16 [4dh(x, y)+ 2dh(x + h, y)+ 2dh(x − h, y)+ 2dh(x, y + h)
+ 2dh(x, y − h)+ dh(x + h, y + h)+ dh(x + h, y − h)
+ dh(x − h, y + h)+ dh(x − h, y − h)]. (2.3.4)

Obviously, a nine-point weighted average of dh is obtained.
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Remark 2.3.1 The FW operator can be derived from a discrete version of the condition∫
�x,y

w(x̃, ỹ) d� =
∫
�x,y

(I2h
h w)(x̃, ỹ) d� (2.3.5)

for�x,y = [x−h, x+h]×[y−h, y+h] where the midpoint rule is used to approximate the
integral on the right-hand side of the equation and the trapezoidal rule is used to approximate
the integral on the left-hand side. �

Remark 2.3.2 The FW operator in d dimensions can also be constructed as a tensor
product of the one-dimensional FW operators

I 2h
h = 1

4
[1 2 1] I2h

h = 1

4

⎡⎣ 1
2
1

⎤⎦ .
These 1D restriction operators are of particular interest in combination with the semicoars-
ening approach discussed in the previous section. They are also commonly used in case of
noneliminated boundary conditions (see Section 5.6.2). �

A third restriction operator is half weighting (HW):

1

8

⎡⎣0 1 0
1 4 1
0 1 0

⎤⎦2h

h

. (2.3.6)

2.3.4 Transfer Operators: Interpolation

The interpolation ( prolongation) operators map 2h-grid functions into h-grid functions. A
very frequently used interpolation method is bilinear interpolation fromG2h toGh, which
is given by:

Ih2hv̂2h(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̂2h(x, y) for �

1
2 [v̂2h(x, y + h)+ v̂2h(x, y − h)] for �
1
2 [v̂2h(x + h, y)+ v̂2h(x − h, y)] for �

1
4 [v̂2h(x + h, y + h)+ v̂2h(x + h, y − h)

+v̂2h(x − h, y + h)+ v̂2h(x − h, y − h)] for ◦ .

(2.3.7)

Figure 2.6 presents (part of) a fine grid with the symbols for the fine and coarse grid points
referred to by (2.3.7).

Remark 2.3.3 Linear interpolation ind dimensions can easily be constructed by a recursive
procedure (over the d dimensions) of 1D linear interpolations. Also d-dimensional higher
order interpolations can be constructed and programmed very efficiently in this way.

�
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y

2h

2h

x

Figure 2.6. A fine grid with symbols indicating the bilinear interpolation (2.3.7) used for the transfer
from the coarse grid (•).
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Figure 2.7. The distribution process for the bilinear interpolation operator. �, G2h grid; �, � and
© as in (2.3.7) and in Fig. 2.6.

In stencil notation we write the bilinear interpolation operator Ih2h (2.3.7) as

Ih2h = 1

4

⎤⎦ 1 2 1
2 4 2
1 2 1

⎡⎣h
2h

. (2.3.8)

In this notation, the stencil entries correspond to weights in a distribution process as illus-
trated in Fig. 2.7. Therefore, the brackets are reversed.
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For more general interpolation operators the stencils read

Ih2h
∧=]tκ1,κ2 [h2h:=

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

· · ·
· · ·

· · t−1,1 t0,1 t1,1 · ·
· · t−1,0 t0,0 t1,0 · ·
· · t−1,−1 t0,−1 t1,−1 · ·

· · ·
· · ·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h

2h

. (2.3.9)

Again, only a finite number of coefficients tκ1,κ2 is assumed to be nonzero. The meaning
of this stencil terminology is that coarse grid values are distributed to the fine grid and the
weights in this distribution process are the factors tκ1,κ2 .

Remark 2.3.4 The formulas for linear interpolation of corrections can be applied near
Dirichlet boundaries even if the boundary conditions have been eliminated. The corrections
from a boundary point are assumed to be 0 in this case. �

2.4 THE MULTIGRID CYCLE

In Section 2.2 we have described the multigrid principle only in its two-grid version. In the
multigrid context, two-grid methods are of little practical significance (due to the still large
complexity of the coarse grid problem). However, they serve as the basis for the multigrid
method.

Remark 2.4.1 Methods involving only two grids (or a fixed, small, number of grids) are
of some interest in other frameworks, e.g. in the context of certain domain decomposition
and related methods [362]. �

From two-grid to multigrid The multigrid idea starts from the observation that
in a well converged two-grid method it is neither useful nor necessary to solve
the coarse grid defect equation (2.2.27) exactly. Instead, without essential loss of
convergence speed, one may replace v̂mH by a suitable approximation. A natural
way to obtain such an approximation is to apply the two-grid idea to (2.2.27) again,
now employing an even coarser grid than �H .

This is possible, as obviously the coarse grid equation (2.2.27) is of the same form
as the original equation (2.2.1). If the convergence factor of the two-grid method is small
enough, it is sufficient to perform only a few, say γ , two-grid iteration steps (see Fig. 2.8) to
obtain a good enough approximation to the solution of (2.2.27). This idea can, in a straight-
forward manner, be applied recursively, using coarser and coarser grids, down to some
coarsest grid.
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= 1 = 2

= 2

= 1 = 2 = 3

Two-grid method:           Three-grid methods:

Four-grid methods:

A five-grid method:

Figure 2.8. Structure of one multigrid cycle for different numbers of grids and different values of
the cycle index γ (•, smoothing; ◦, exact solution; \, fine-to-coarse; /, coarse-to-fine transfer).

On this coarsest grid any solution method may be used (e.g. a direct method or some
relaxation-type method if it has sufficiently good convergence properties on that coarsest
grid). In ideal cases, the coarsest grid consists of just one grid point.

2.4.1 Sequences of Grids and Operators

Figure 2.8 illustrates the structure of one iteration step (cycle) of a multigrid method with
a few pictures. Usually, the cases γ = 1 and γ = 2 are particularly interesting.

For obvious reasons, we refer to the case γ = 1 as V-cycles and to γ = 2 as
W-cycles. The number γ is also called cycle index.

2.4.2 Recursive Definition

For a formal description of multigrid methods we now use a sequence of coarser and coarser
grids �hk , characterized by a sequence of mesh sizes hk:

�h�, �h�−1 , . . . , �h0 .
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The coarsest grid is characterized by the mesh size h0 (index 0), whereas the index �
corresponds to the finest grid �h: h = h�. For simplicity, we replace the index hk by k
(for grids, grid functions and grid operators) in the following. For each�k , we assume that
linear operators

Lk: G(�k) → G(�k), Sk: G(�k) → G(�k),

I k−1
k : G(�k) → G(�k−1), I kk−1: G(�k−1) → G(�k)

(2.4.1)

are given, where the Lk are discretizations of L on �k for k = �, . . . , 0, and where the
original equation (2.2.1) reads

L�u� = f� (��) (2.4.2)

and is the discrete problem to solve. The operators Sk denote the linear iteration opera-
tors corresponding to given smoothing methods on �k . As in the description of the two-
grid cycle, performing ν smoothing steps (applied to any discrete problem of the form
Lkuk = fk with initial approximation wk) resulting in the approximation wk will also be
denoted by

wk = SMOOTHν(wk, Lk, fk).

We now describe a multigrid cycle (multigrid iteration (MGI)), more precisely an (�+ 1)-
grid cycle, to solve (2.4.2) for a fixed � ≥ 1. Using the operatorsLk (k = �, �−1, . . . , 0) as
well as Sk, I

k−1
k , I k

k−1 (k = �, �− 1, . . . , 1), assuming the parameters ν1, ν2 (the number
of pre- and postsmoothing iterations) and γ to be fixed and starting on the finest grid k = �,
the calculation of a new iterate um+1

k from a given approximation umk to the solution uk
proceeds as follows:

Multigrid cycle um+1
k = MGCYC(k, γ, umk , Lk, fk, ν1, ν2)

(1) Presmoothing
– Compute ūmk by applying ν1 (≥ 0) smoothing steps to umk

ūmk = SMOOTHν1(umk , Lk, fk).

(2) Coarse grid correction
– Compute the defect d̄mk = fk − Lkūmk .

– Restrict the defect d̄m
k−1 = I k−1

k d̄mk .
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– Compute an approximate solution v̂m
k−1 of the defect equation on �k−1

Lk−1v̂
m
k−1 = d̄mk−1 (2.4.3)

by

If k = 1, use a direct or fast iterative solver for (2.4.3).
If k > 1, solve (2.4.3) approximately by performing γ (≥ 1) k-grid
cycles using the zero grid function as a first approximation

v̂mk−1 = MGCYCγ (k − 1, γ, 0, Lk−1, d̄
m
k−1, ν1, ν2). (2.4.4)

– Interpolate the correction v̂mk = I k
k−1v̂

m
k−1 .

– Compute the corrected
approximation on �k u

m, after CGC
k = ūmk + v̂mk .

(3) Postsmoothing

– Compute um+1
k by applying ν2 (≥0) smoothing steps to um, after CGC

k :

um+1
k = SMOOTHν2(u

m, after CGC
k , Lk, fk).

In (2.4.4) the parameter γ appears twice: once (as an argument of multigrid cycle
(MGCYC)) for the indication of the cycle type to be employed on coarser levels and once
(as a power) to specify the number of cycles to be carried out on the current coarse grid
level.

Remark 2.4.2 Since on coarse grids we deal with corrections to the fine grid approxima-
tion, this multigrid scheme is also called the correction scheme (CS). �

LetMk denote the iteration operator of the multigrid method described in the previous
algorithm.

Theorem 2.4.1 The multigrid iteration operatorM� is given by the following recursion:

M0 = 0

Mk = S
ν2
k (Ik − I kk−1(Ik−1 − (Mk−1)

γ )(Lk−1)
−1I k−1

k Lk)S
ν1
k (k = 1, . . . , �).

(2.4.5)

An explicit proof of (2.4.5) can easily be given by means of induction on k. Implicitly,
a proof is also contained in the following remark.
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Remark 2.4.3 The difference between the (hk, hk−1) two-grid iteration operator

Mk−1
k = S

ν2
k

(
Ik − I kk−1(Lk−1)

−1I k−1
k Lk

)
S
ν1
k , (2.4.6)

and the above multigrid iteration operatorMk is obviously that

(Lk−1)
−1 is replaced by (Ik−1 − (Mk−1)

γ )(Lk−1)
−1. (2.4.7)

This reflects the fact that the coarse grid equation (2.4.3) is solved approximately by γ multi-
grid steps on the grid�k−1 starting with zero initial approximation (compare with (2.2.14)).
Thus, (2.4.5) follows immediately from (2.2.14). �

Remark 2.4.4 (F-cycle) It is convenient, but not necessary, that the parameters ν1, ν2
and the cycle index γ are fixed numbers. In particular, γ = γk may depend on k. Certain
combinations of γ = 1 and γ = 2 are indeed used in practice. We mention here only the
so-called F-cycle [66] which is illustrated in Fig. 2.9. The corresponding iteration operator
MF
� is recursively defined byMF

1 = M1 (as in (2.4.5)) and

MF
k = S

ν2
k (Ik − I kk−1(Ik−1 −MV

k−1M
F
k−1)(Lk−1)

−1I k−1
k Lk)S

ν1
k

(k = 2, . . . , �).

HereMV
k−1 is the corresponding V-cycle iteration operator (i.e. (2.4.5) with γ = 1 and k−1

instead of k). �

Remark 2.4.5 In self-controlling algorithms as proposed in [59, 64], variable cycles are
used. Switching from one grid to another (to a finer or a coarser one) is controlled by suitable
accommodative criteria. �

l = 4

l = 1 l = 2 l = 3

Figure 2.9. Structure of an F-cycle.
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2.4.3 Computational Work

In Section 2.5.2 and Chapter 3, we will see that we can achieve a multigrid convergence
factor that is independent of the mesh size: The convergence speed does not depend on the
size of the finest grid. But the fact that a certain method has an h-independent convergence
factor says nothing about its efficiency as long as the computational work is not taken
into account. In the following, we will estimate the computational work of a multigrid
method.

From the recursive definition of a multigrid cycle as given in Theorem 2.4.1 it imme-
diately follows that the computational work W� per multigrid cycle on �� is recursively
given by

W1 = W 0
1 +W0, Wk+1 = Wk

k+1 + γkWk (k = 1, . . . , �− 1). (2.4.8)

Here Wk
k+1 denotes the computational work of one (hk+1, hk) two-grid cycle excluding

the work needed to solve the defect equations on �k , and W0 denotes the work needed to
compute the exact solution on the coarsest grid �0. By “computational work”, we always
denote some reasonable measure, typically the number of arithmetic operations needed. If
γ is independent of k, we obtain from (2.4.8)

W� =
�∑
k=1

γ �−kWk−1
k + γ �−1W0 (� ≥ 1). (2.4.9)

Let usfirst discuss the case of standard coarsening in 2D withγ independent of k. Obviously,

Nk =̇ 4Nk−1 (k = 1, 2, . . . , �) (2.4.10)

where Nk = #�k (number of grid points on �k) and “=̇” means equality up to lower
order terms (boundary effects). Furthermore, we assume that the multigrid components
(relaxation, computation of defects, fine-to-coarse and coarse-to-fine transfer) require a
number of arithmetic operations per point of the respective grids which is bounded by a
small constant C, independent of k:

Wk−1
k ≤̇CNk (k = 1, 2, . . . , �). (2.4.11)

(As above, “≤̇” means “≤” up to lower order terms.)
Under these assumptions, one obtains the following estimate for the total computational

work W� of one complete multigrid cycle in 2D from (2.4.9), together with (2.4.10) and
(2.4.11):

W�≤̇

⎧⎪⎪⎨⎪⎪⎩
4
3CN� for γ = 1
2CN� for γ = 2
4CN� for γ = 3
O(N� logN�) for γ = 4

. (2.4.12)

For γ = 4 the total computational work on each level is essentially constant (up to lower
order terms) and the number of grid levels is O(logN�).



BASIC MULTIGRID I 51

Summary This estimate of W� shows that the number of arithmetic operations
needed for one 2D multigrid cycle is proportional to the number of grid points of
the finest grid for γ ≤ 3 and standard coarsening (under quite natural assump-
tions which are satisfied for reasonable multigrid methods). Together with the
h-independent convergence, this means that multigrid methods achieve a fixed
reduction (independent of h) of the error in O(N) operations. The constant of
proportionality depends on the type of the cycle, i.e. on γ , the type of coarsening
and the other multigrid components. For reasonable choices of these components,
the constants of proportionality are small.

Remark 2.4.6 In practice, it is not necessary to choose a grid consisting of only one
interior point as the coarsest grid. Instead, it is sufficient to choose the coarsest grid W0
such that the amount of work (of the corresponding solution method) onW0 is negligible.

�

Remark 2.4.7 Wk−1
k in (2.4.8) or, in other words, the constantC in (2.4.11) is determined

by the computational work needed for the individual multigrid components of the (hk, hk−1)

two-grid method, namely

Wk−1
k =̇ (νw0 + w1 + w2)Nk. (2.4.13)

Here ν = ν1 + ν2 is the number of smoothing steps used, w0, w1 and w2 are measures for
the computational work per grid point of �k needed for the single components, namely

– w0: one smoothing step on �k ,
– w1: computation of the defect and its transfer to �k−1,
– w2: interpolation of the correction to�k and its addition to the previous approximation.

�

More generally, in particular for other than standard coarsening, we can assume

Nk =̇ τNk−1(k = 1, 2, . . . , �) with τ > 1.

In that case we obtain for γ independent of k

W� =̇
{
τ/(τ − γ )CN� for γ < τ

O(N� logN�) for γ = τ,
(2.4.14)

generalizing (2.4.12), where τ = 4. If we consider, for example, red–black coarsening or
semicoarsening (see Fig. 2.5), we have τ = 2. In this case, we already see that W-cycles do
not yield an asymptotically optimal multigrid method: for τ = 2 and fixed γ , only γ = 1
yields a cycle for whichW� is proportional to N�.
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Remark 2.4.8 The computational workWF of an F-cycle as introduced in Remark 2.4.4
in combination with standard coarsening is also O(N�) since this cycle is more expensive
than the V-cycle and less expensive than the W-cycle. In particular, we obtain

WF ≤̇W�−1
�

∞∑
k=1

k

(
1

4

)k−1

= W�−1
�

∞∑
k=1

∞∑
m=k

(
1

4

)m−1

= 16

9
W�−1
� (2.4.15)

and thus

WF ≤̇ 16
9 CN�. �

Remark 2.4.9 For 2D semicoarsening (τ = 2) we find that the computational work of
an F-cycle still is of the form O(N�). This can be seen if we take into account that a grid
�k is processed once more often than grid �k+1 (see Fig. 2.9). Correspondingly, if W�−1

�
is the amount of work spent on the finest grid, then the asymptotical amount of work (for
� → ∞) of the F-cycle in case of semicoarsening is

WF ≤̇W�−1
�

∞∑
k=1

k

(
1

2

)k−1

= 4W�−1
� . �

So far, we have estimated and discussed the computational work of multigrid cycles.
In order to assess the numerical efficiency of such an iterative multigrid solver precisely,
it is necessary to take into account both its convergence behavior and the computational
effort per iteration step (cycle). For example, in order to decide how many relaxation steps
ν = ν1 + ν2 are appropriate per cycle and whether a V-, F- or W-cycle should be used, the
effect of this decision on both the convergence speed and the computational work have to be
analyzed. We will discuss these efficiency questions in the following section for a specific
multigrid Poisson solver.

2.5 MULTIGRID CONVERGENCE AND EFFICIENCY

In this section we introduce the first specific multigrid algorithm. For that purpose we return
to Model Problem 1, the discrete Poisson equation with Dirichlet boundary conditions in
the 2D unit square. The algorithm presented here is a highly efficient Poisson solver. Its
most characteristic multigrid component is the GS-RB relaxation for smoothing. We call
it the red–black multigrid Poisson solver (RBMPS). In addition to its numerical efficiency,
the algorithm is also highly parallel.

2.5.1 An Efficient 2D Multigrid Poisson Solver

The algorithm is characterized by the following multigrid components. In this characteri-
zation certain parameters and components still have to be specified:

– Lk = Lhk = −�hk = 1
hk

2

⎡⎣ −1
−1 4 −1

−1

⎤⎦
hk

,
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– smoother: GS-RB relaxation as presented in Section 2.1,
– restriction I k−1

k : full weighting (2.3.4) (or half weighting (2.3.6), see Remark 2.5.1),
– prolongation I k

k−1: bilinear interpolation (2.3.7),
– standard coarsening: hk+1 = hk/2,
– size of coarsest grid: h0 = 1/2.

Remark 2.5.1 This version of the red–black multigrid Poisson solver is a particularly
simple one. There are further variants of this algorithm, some of which are even more
efficient [319, 378], but less generally applicable. For example, the restriction operator FW
can be replaced by HW (2.3.6) which is more efficient for certain choices of ν (ν ≥ 3, see
Table 2.4 and Section 3.3.1). �

In the following we want to discuss the influence of the number of relaxations ν = ν1+ν2
and the cycle type (V, F, W) on the convergence speed of the algorithm and consequently
the numerical efficiency of the algorithm.

We use the notation V(ν1, ν2), F(ν1, ν2) or W(ν1, ν2) to indicate the cycle type and
the number of pre- and postsmoothing steps employed. The finest grid is h = 1/256.
Furthermore, we can compare theoretical convergence results (which we will obtain in
Chapter 3) with the measured convergence results. In Fig. 2.10 the multigrid convergence
of the V(0,1)-cycle (meaning 0 pre- and 1 postsmoothing), of the V(1,1)-, the W(0,1)- and

100000
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Figure 2.10. The convergence history of different RBMPS cycles for Model Problem 1.
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the W(1,1)-cycle is presented, using FW as the restriction operator. The l2 norm of the
defect is plotted in a log scale along the y-axis. The x-axis shows the number of multigrid
iterations. (The results obtained by the F-cycle and by the W-cycle are nearly identical.)

From Fig. 2.10, we observe rapid convergence of multigrid, especially for the V(1,1)-
and W(1,1)-cycles: they reduce the defect by a factor of 10−12 within 12 multigrid iterations.
Also the benefits of processing the coarse grid levels more frequently can be seen: the
W-cycle (and the F-cycle) shows a better convergence than the V-cycle.

Remark 2.5.2 In practice, it is usually not necessary to reduce the defect by a factor of
10−12. Convergence to discretization accuracyO(h2) (see the discussion in Section 2.6) is
sufficient in most cases, and is obtained much faster. Here, we reduce the defect further in
order to illustrate the asymptotic convergence of the multigrid cycle. �

2.5.2 How to Measure the Multigrid Convergence Factor in Practice

In order to construct, evaluate and analyze a multigrid iteration one often wants to determine
its convergence factor ρ empirically (by measurement). In general, the only quantities that
are available for the determination of ρ are the defects dmh (m = 1, 2, . . . ). We can measure,
for example,

q(m) := || dmh ||
|| dm−1

h ||
(2.5.1)

or

q̂(m) := m

√
q(m)q(m−1) . . . q(1) = m

√
|| dmh ||
|| d0

h|| (2.5.2)

in some appropriate norm, say the discrete || ·|| 2 norm (see Section 1.3.3). The quantity q̂(m)

represents an average defect reduction factor over m iterations. For “sufficiently general”
d0
h �= 0 we have q̂(m) −→ ρ. q̂(m) is a good estimate for ρ ifm is sufficiently large. In many

cases the convergence history is also of interest. This can probably be best represented by
graphics as in Fig. 2.10 or by a table of the values of q(m).

Often the first few iteration steps do not reflect the asymptotic convergence behavior of

the multigrid iteration. Then one may redefine q̂(m) as q̂(m) = m−m0

√
dmh /d

m0
h with a small

number m0, typically between 2 and 5.
In Table 2.2 we present the values of q(m) and q̂(m) from the convergence for Model

Problem 1 in Fig. 2.10 for the cycles considered.

Remark 2.5.3 When performing too many cycles, machine accuracy might limit the
measurements substantially. In order to be able to perform sufficiently many iteration steps
to see the asymptotic convergence behavior, it is advisable to consider the homogeneous
problem (f = 0) with discrete solution uh ≡ 0 and to start with an initial guess u0

that is sufficiently large and general. In the case of our example, we then find asymptotic
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Table 2.2. The quantities q(m) and q̂(m) as a mea-
sure for the convergence of the RBMPS (with FW)
for Model Problem 1 (m0 = 0).

V(0,1): q(26) = 0.343 q̂(26) = 0.333
V(1,1): q(12) = 0.101 q̂(12) = 0.089
W(0,1): q(21) = 0.243 q̂(21) = 0.238
W(1,1): q(11) = 0.063 q̂(11) = 0.060

Table 2.3. Measured convergence factors of the RBMPS (with FW) for Model Problem 1 on grids
of different mesh size. In each case the coarsest grid has a mesh size of h0 = 1/2.

Cycle h = 1/512 h = 1/256 h = 1/128 h = 1/64 h = 1/32 h = 1/16

V(1,1): 0.10 0.10 0.10 0.10 0.11 0.12
F(1,1): 0.063 0.063 0.063 0.063 0.063 0.067
W(1,1): 0.063 0.063 0.063 0.063 0.063 0.067

convergence factors of 0.25 for the F(0,1)- or W(0,1)-cycle and of 0.074 for the F(1,1)- or
W(1,1)-cycle after a large number of multigrid iterations. �

h-independent convergence of multigrid The numerically measured conver-
gence of the RBMPS is essentially independent of the size of the finest grid in
the multigrid cycle. This behavior is demonstrated by the results in Table 2.3. In
Chapter 3, we will see that this behavior is also confirmed by multigrid theory.

2.5.3 Numerical Efficiency

In order to choose the most efficient multigrid solver, it is necessary to look at both, its
convergence speed and its costs. In practice, the time needed to solve the problem is the
most interesting quantity. Table 2.4 shows the wall clock times for different multigrid (cycle)
iterations. The iterations stopped after the initial defects had been reduced by a factor of
10−12. The times were measured on a single workstation.

Table 2.4 throws a somewhat different light on the convergence results obtained before.
The V(2,1)-cycle with HW is most efficient with respect to the wall clock time on the 2562

grid. Since W- and F-cycles have the same convergence speed for this model problem, the
W-cycle clearly is less efficient than the F-cycle here.

Remark 2.5.4 Table 2.4 shows that it does not pay to use large values for ν1
and ν2. This is a general observation. Though the convergence factors become
(somewhat) better if the number of smoothing steps is increased, it is more efficient
not to smooth the error too much but rather carry out a few more multigrid cycles.
In practice, common choices are ν = ν1 + ν2 ≤ 3. This observation can also be
verified theoretically (see Section 3.3.1). �
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Table 2.4. Wall clock times and number of iterations for a defect
reduction of a factor of 10−12 for different cycles and different
restriction operators for Model Problem 1 on a 2562 grid.

FW HW

Cycle Iterations Time (msec) Iterations Time (msec)

V(0,1): 26 1290 167 7310
V(1,1): 12 759 13 740
V(2,1): 10 759 9 629
V(2,2): 9 799 8 669

F(0,1): 20 1270 34 1910
F(1,1): 10 819 10 740
F(2,1): 9 890 9 829
F(2,2): 8 930 8 880

W(0,1): 20 2269 34 3780
W(1,1): 10 1379 10 1379
W(2,1): 9 1450 9 1479
W(2,2): 8 1469 8 1460

Remark 2.5.5 Although the V-cycle is obviously the most efficient one for Model
Problem 1, we will see later that F- or W-cycles may be superior for more complicated
applications. �

2.6 FULL MULTIGRID

An initial approximation for iterative solvers, like multigrid, can be obtained by nested
iteration. The general idea of nested iteration is to provide an initial approximation on a
grid�� by the computation and interpolation of approximations on coarser grids. Within an
arbitrary iterative process for the solution of a given discrete problem, this principle simply
means that a lower (coarser) discretization level is used in order to provide a good initial
approximation for the iteration on the next higher (finer) discretization level [226, 227].

The efficiency of iterative multigrid (MGI) can be improved if it is properly combined
with the nested iteration idea. This combination is called the full multigrid (FMG) technique
[58]. Typically, the FMG scheme is the most efficient multigrid version.

FMG has two fundamental properties:

(1) An approximation uFMG
h of the discrete solution uh can be computed up to an

error || uh − uFMG
h || which is approximately equal to the discretization error

|| u− uh|| .
(2) FMG is an asymptotically optimal method, i.e the number of arithmetic oper-

ations required to compute uFMG
h , is proportional to the number of grid points

of �h (with only a small constant of proportionality).
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The first property is explained in the following remark.

Remark 2.6.1 Since the discrete solution uh approximates the continuous solution u of
the PDE only up to discretization accuracy, in many cases it does not make much sense
to solve the discrete problem (1.3.2) exactly. We have to live with the discretization error
||u− uh|| anyway. That is why it is usually sufficient to compute an approximation uFMG

h
only up to discretization accuracy. By this we mean that

||uh − uFMG
h || ≈ ||u− uh||. (2.6.1)

More concretely we will derive estimates of the form

||uh − uFMG
h || ≤ β||u− uh|| (2.6.2)

in Section 3.2.2, which immediately implies

||u− uFMG
h || ≤ (1 + β)||u− uh||. (2.6.3)

We regard β ≈ 1 as a sufficiently good value. In that case, “up to discretization accuracy”
would mean that we allow a factor of 2 in comparing ||u− uFMG

h || with the discretization
error. If necessary, much smaller values of β can also be achieved.

Generally, it is not worth investing more work in a more accurate approximation of
uFMG
h than suggested here because it is more cost-effective to refine the grid once more

than to solve the present problem more accurately. It should be kept in mind that the final
goal is usually a good approximation to the differential problem, not an extremely good
solution to the discrete problem. �

At this point, we add a remark, which refers to a question multigrid beginners sometimes
have.

Remark 2.6.2 In general, it is not sufficient to start the solution process on a very coarse
grid, interpolate the approximation of the coarse grid solution to the next finer grid, smooth
the visible error components and so on until the finest grid is reached. Actually, the interpo-
lation of the approximation leads to nonnegligible high and low frequency error components
on the fine grid (see Section 7.3 in [66] for a heuristic explanation) that can efficiently be
reduced only by a subsequent smoothing of the error on all grid levels, i.e. by revisiting the
coarse levels in multigrid cycles. �

2.6.1 Structure of Full Multigrid

As in Section 2.4, we consider (2.4.2), i.e. a sequence of discrete approximations to (2.2.1).
As in Section 2.4.2, we use the notation

MGCYCr (k + 1, γ, wk, Lk, fk, ν1, ν2) : G(�k) → G(�k) (2.6.4)

for a procedure consisting of r steps of a suitable iterative (k + 1)-grid cycle with cycle
index γ for solving (2.4.2) with initial approximation wk (using grids �k, . . . , �0). The
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= FMG interpolation

Figure 2.11. Structure of FMG with r = 1 and γ = 1 when using l = 4 (i.e. five grid levels).

right-hand sides fk on �k can be defined recursively by fk = I k
k+1fk+1 with f� = f |��

or simply by fk = f |�k . The objective is to achieve discretization accuracy on each level
within a few (typically r = 1 or r = 2) multigrid cycles. (In general r may depend on k.)
The structure of FMG (with r = 1 and γ = 1) is illustrated in Fig. 2.11.

In contrast to the interpolation in the multigrid cycle Ik
k−1, which is applied to cor-

rections, the FMG interpolation �k
k−1 from �k−1 to �k transfers approximations of the

solution to the fine grid. Moreover, the operator �k
k−1 represents an interpolation proce-

dure which usually is of higher accuracy than the interpolation used within the multigrid
iteration.

The FMG algorithm proceeds as follows:

Full multigrid
For k = 0:

Solve L0u0 = f0, providing uFMG
0 = u0.

For k = 1, 2, . . . , �:
u0
k := �k

k−1u
FMG
k−1

uFMG
k = MGCYCr (k + 1, γ, u0

k, Lk, fk, ν1, ν2).

Here, uFMG
� denotes the resulting FMG approximation on grid ��.

In Section 3.2.2 we will see that FMG will deliver an approximation up to discretiza-
tion accuracy if the multigrid cycle converges satisfactorily and if the order of the FMG
interpolation is larger than the discretization order of L�. A common FMG interpolation
for second-order accurate discretizations is cubic (multipolynomial) interpolation. Cheaper
interpolations especially suited for Model Problem 1 can also be constructed [378].

Example 2.6.1 Often, bicubic interpolation is an appropriate FMG interpolation. If, for
instance, (x − 3h, y), (x − h, y), (x + h, y) and (x + 3h, y) are points on the coarse grid,
where an approximation w2h is known, cubic interpolation can be used to compute an
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approximation wh(x, y) at the fine grid point (x, y):

wh(x, y) = − 1
16 (w2h(x − 3h, y)+ w2h(x + 3h, y))

+ 9
16 (w2h(x − h, y)+ w2h(x + h, y))

= 1
16 [−1 9 · 9 − 1]w2h(x, y).

Cubic interpolation in the y-direction is analogous. Near the boundary, appropriate modi-
fications can be used. �

2.6.2 Computational Work

The computational work WFMG
� needed for the FMG method can easily be estimated. By

arguments similar to those in Section 2.4.3, one immediately obtains, for example:

WFMG
� ≤̇

⎧⎨⎩
4
3 rW� + 4

3W
INT
�−1 for standard coarsening in 2D,

2rW� + 2W INT
�−1 for semicoarsening in 2D,

(2.6.5)

(again neglecting lower order terms). Here W INT
�−1 denotes the work needed for the FMG

interpolation process from grid ��−1 to the finest grid �� andW� is the work required for
one multigrid cycle on the finest level ��.

Remark 2.6.3 The number of operations required for FMG is governed byW� (and
W INT
�−1 ). Under natural conditions, both of them areO(N) (see (2.4.12) or (2.4.14))

with small constants. Thus, FMG only requires O(N) operations. �

2.6.3 FMG for Poisson’s Equation

We now give results for FMG with the RBMPS starting on the coarsest grid. As the FMG
interpolation, we choose cubic interpolation. All other multigrid components are as intro-
duced in Section 2.5.1. In particular we consider whether or not the discretization accuracy
O(h2) is really achieved after FMG with r = 1.

In our model problem we choose the right-hand sides f�(x, y) and f �(x, y) so that a
known solution results from (1.3.1), for example,

u(x, y) = exy.

Thus, we can observe the second-order accuracy by comparing the discrete numerical
solution with the analytical solution onfiner andfiner grids. Table 2.5 compares the accuracy
obtained by FMG (for r = 1) with that of the exact discrete solution for a series of grids.

We see that the only cycle which does not achieve second-order accuracy for this example
is the V(0,1)-cycle. For all the others, the discrete error is reduced by a factor of about four
when the mesh size is reduced by a factor of two. Correspondingly, the errors are in the
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Table 2.5. ||u − uFMG
h ||∞ for different grid sizes, cycle types and

number of relaxations (r = 1) (the exponent E in 10E is in brack-
ets).

Grid ||u− uh||∞ V(0,1) V(1,1) F(0,1) F(1,1)

322 0.31 (−5) 0.26 (−4) 0.47 (−5) 0.86 (−5) 0.32 (−5)
642 0.77 (−6) 0.83 (−5) 0.12 (−5) 0.13 (−5) 0.77 (−6)

1282 0.19 (−6) 0.27 (−5) 0.31 (−6) 0.20 (−6) 0.19 (−6)
2562 0.48 (−7) 0.87 (−6) 0.78 (−7) 0.48 (−7) 0.48 (−7)

Table 2.6. Computing times in milliseconds for
FMG on a 2562 grid.

V(0,1) V(1,1) F(0,1) F(1,1)

100 120 120 150

range of the discretization error. FMG thus proves to be a very efficient solution method,
which costs less than two multigrid cycles. Table 2.6 shows the computing times obtained
on a common workstation for the four FMG algorithms in Table 2.5 on the 2562 grid.
The V(1,1)- and F(0,1)-cycles are thus the most efficient ones that achieve second-order
accuracy for this test problem.

2.7 FURTHER REMARKS ON TRANSFER OPERATORS

In this section, we present some more background information on the choice of the transfer
operators.

Remark 2.7.1 (orders of restriction and interpolation of corrections) For Poisson’s
equation and for many other problems described by a second-order differential operator,
the combination of full weighting and bilinear interpolation is a standard choice. For other
problems, in particular those with higher order derivatives, different transfer operators may
be required. The orders of these operators depend on the orders of the derivatives appearing
in the PDE to be solved.

The order of interpolation is equal to k+1 if an interpolation is exact for all polynomials
of degree k. Bilinear interpolation, for example, has order 2. The order of a restriction
operator is equal to the order of its transpose. Bilinear interpolation is the transpose of FW
(see Remark 2.7.2), the order of FW is therefore also 2.

Letm denote the order of the operatorL in the differential equationLu = f . Let further
mi denote the order of the restriction operator andmj denote the order of the interpolation
operator. Then the orders of the transfer operators should fulfill

mi +mj > m (2.7.1)
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[64, 187]. This basic rule can be derived using the local Fourier analysis discussed in
Chapter 4.

Note that the transpose of injection (2.2.22) does not even interpolate constant polyno-
mials exactly since it does not give any information back to fine grid points which are not
part of the coarse grid. Its order is therefore 0.

Thus, the combination of injection and bilinear interpolation does not satisfy (2.7.1) for
Model Problem 1, whereas the combination of FW and bilinear interpolation does. �

Remark 2.7.2 It can be shown that the bilinear interpolation operator corresponds to the
FW restriction operator (2.3.4) in a natural way: these two operators are transpose to each
other (see [173, 414]):

IhH = 2d
(
IHh
)T
. (2.7.2)

�

Remark 2.7.3 For five-point difference operators such as �h, HW coincides with half
injection if it is preceded by one (or several) GS-RB relaxations. Half injection is injection
with the weight 1/2

I 2h
h = 1

2 [1].

This can be seen very easily: the HW operator is a weighted average of defects at a coarse
(red) grid point and its four direct neighbors. These four neighbors are all black points in
the sense of GS-RB. After one GS-RB relaxation, however, the defects in all black points
are zero. �

Remark 2.7.4 (parallelism of transfer operators) The multigrid components (calcula-
tion of defects, fine-to-coarse transfer and coarse-to-fine transfer) can typically be applied
in parallel at all relevant grid points (�h and �2h, respectively, see Section 6.1). �

Remark 2.7.5 (warning for beginners: correct scaling of the restriction of defects)
We would like to point out that the discrete operators Lh and L2h have the different factors
h−2 and (2h)−2, respectively. In the practical implementation one often multiplies the orig-
inal discrete equation by h2. Multigrid beginners often make the mistake of also using this
factor h2 on the coarse grid instead of the correct factor 4h2. They forget the factor 4 in the
transfer of defects from the fine to the coarse grid (by FW or other restriction operators).

If the fine grid equations are multiplied by h2, the properly scaled injection and FW
operators for the defects are

[4]2h
h and

4

16

⎡⎣ 1 2 1
2 4 2
1 2 1

⎤⎦2h

h

,

respectively.
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The danger of making this mistake is even greater if the h2 multiplied equation is the
natural form of the discretization, as in the context of finite volumes and finite elements.

�

2.8 FIRST GENERALIZATIONS

Here, we consider first generalizations of Model Problem 1. We will discuss multigrid for
Poisson-like equations in 2D, multigrid for time-dependent problems and give some results
for multigrid on Cartesian grids in nonrectangular domains. Finally we give some details
about multigrid methods for cell-centered discretizations.

2.8.1 2D Poisson-like Differential Equations

In this section, we will show that the multigrid method we have presented, the RBMPS, can
be directly applied to more general elliptic boundary value problems of the form

−a(x, y)uxx − b(x, y)uyy = f�(x, y) (�)

u(x, y) = f �(x, y) (� = ∂�)
(2.8.1)

for � = (0, 1)2 as long as the coefficients a(x, y) and b(x, y) are of about the same size
and are smoothly varying. In stencil notation, the discrete equation then reads

1

h2

⎡⎢⎣ −b(xi, yj )
−a(xi, yj ) 2a(xi, yj )+ 2b(xi, yj ) −a(xi, yj )

−b(xi, yj )

⎤⎥⎦
h

uh(xi, yj )

= fh(xi, yj ). (2.8.2)

We obtain the typical multigrid convergence in this case (presented in Example 2.8.1
below). Nonconstant (smooth) coefficients do not present problems to multigrid methods.
This is different to other fast Poisson solvers such as FFTs for which constant coefficients
in front of the derivatives are essential.

Another important problem to which the RBMPS can be applied directly is the
Helmholtz-like equation

−�u+ c(x, y)u = f�(x, y) (� = (0, 1)2)

u(x, y) = f �(x, y) (� = ∂�).
(2.8.3)

Here, the function c(x, y) is assumed to be nonnegative and smoothly varying. (This equa-
tion is a generalization of the Helmholtz equation where c is constant.) Using the standard
five-point discretization �h, we will obtain even better multigrid convergence than for
Model Problem 1. The stencil of the corresponding discrete problem reads

1

h2

⎡⎣ −1
−1 4 + h2c(xi, yj ) −1

−1

⎤⎦
h

,
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which means that we have additional nonnegative entries on the main diagonal of the cor-
responding matrix Ah (as compared to the discrete Poisson equation). Therefore, diagonal
dominance is amplified, which can be shown to result, here, in improved smoothing and
convergence factors [378].

If we allow c(x, y) to become negative, the multigrid convergence will essentially not
deteriorate as long as c(x, y) is smoothly varying and not too close to the first eigenvalue
λ1,1 of −�h,

c(x, y) ≥ const > λ1,1 = − 1

h2
(4 − 4 cos(πh)).

If c(x, y) ≤ λ1,1, the problem may become indefinite and needs a more advanced multigrid
treatment (see Section 10.2.4 and Appendix A).

Example 2.8.1 We will present the multigrid convergence obtained by the RBMPS applied
to the following equation, with nonconstant coefficients:

−a(x, y)uxx − b(x, y)uyy + c(x, y)u = f� (� = (0, 1)2)

u(x, y) = f �(x, y) (� = ∂�),
(2.8.4)

where a(x, y) = 2+sin(πx/2), b(x, y) = 2+cos(πy/2). Three different choices of c(x, y)
in Table 2.7 show the (positive) effect of a large nonnegative c on the multigrid convergence.
Table 2.7 presents the measured multigrid convergence factors, q̂(m) (see (2.5.2)), iteration
index m sufficiently large (see Remark 2.5.3), for V- and W-cycles with different numbers
of pre- and postsmoothing steps on a 1282 grid. The restriction operators employed are
FW, in the case of ν = 2, and, for ν = 3, HW. From Table 2.7 we observe that the typical
multigrid convergence is obtained by the RBMPS. Furthermore, the convergence improves
with increasing c(x, y). �

2.8.2 Time-dependent Problems

One way to apply multigrid to time-dependent problems is to use an implicit (or semi-
implicit) time discretization and to apply multigrid to each of the (discrete) problems that

Table 2.7. Measured convergence factors for a Poisson-like equation
(see Example 2.8.1).

FW HW

c(x, y) V(1,1) W(1,1) V(2,1) W(2,1)

0 0.15 0.12 0.081 0.067
x + y 0.15 0.12 0.081 0.067
105(x + y) 0.10 0.10 0.040 0.037
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have to be solved in each time step. We explain this approach for two simple, but repre-
sentative examples, a parabolic and a hyperbolic one. For both cases, we will discuss the
discrete problems that arise and the consequences for their multigrid treatment.

Example 2.8.2 (heat equation) We consider the parabolic initial boundary value problem

ut = �u (�, t > 0)
u(x, y, 0) = u0(x, y) (�, t = 0)
u(x, y, t) = f ∂�(x, y, t) (∂�, t > 0)

(2.8.5)

for the function u = u(x, y, t), (x, y) ∈ � = (0, 1)2, t ≥ 0. The simplest explicit
discretization is the forward Euler scheme

uh,τ (x, y, t + τ)− uh,τ (x, y, t)
τ

= �huh,τ (x, y, t),

where τ is the step size in the t-direction and h the grid size of the space discretization.�h
is again the usual five-point discretization of the Laplace operator.

Obviously, the values of uh,τ at a new time step t + τ can be calculated immediately
(explicitly) from the values of the previous time step. Such explicit time discretization
schemes typically lead to a restrictive “Courant–Friedrichs–Lewy (CFL) stability condi-
tion” [113] of the form

τ ≤ consth2,

where the constant is 1/2 in our example. Implicit time discretization schemes, on the other
hand, are unconditionally stable if arranged appropriately. In particular, there is no time
step restriction.

We consider three implicit schemes, the backward Euler scheme

uh,τ (x, y, t + τ)− uh,τ (x, y, t)
τ

= �huh,τ (x, y, t + τ), (2.8.6)

the Crank–Nicolson scheme

uh,τ (x, y, t + τ)− uh,τ (x, y, t)
τ

= 1
2 (�huh,τ (x, y, t + τ)+�huh,τ (x, y, t)) (2.8.7)

and the so-called backward difference formula BDF(2) [154]

3uh,τ (x, y, t + τ)− 4uh,τ (x, y, t)+ uh,τ (x, y, t − τ)
2τ

= �huh,τ (x, y, t + τ).
(2.8.8)

The time discretization accuracy isO(τ) for the explicit and implicit Euler scheme,O(τ 2)

for the Crank–Nicolson and the BDF(2) scheme. In order to calculate the grid function
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uh,τ (x, y, t + τ) from uh,τ (x, y, t) (and from uh,τ (x, y, t − τ) in the case of the BDF(2)
scheme), one has to solve problems of the form

1

h2

⎡⎣ −1
−1 4 + α(h2/τ) −1

−1

⎤⎦ uh,τ (x, y, t + τ)

= Fh,τ (uh,τ (x, y, t), uh,τ (x, y, t − τ)) (2.8.9)

in each time step, where Fh,τ
(
uh,τ (x, y, t), uh,τ (x, y, t − τ)) contains only known values

from previous time steps t, t−τ . Here, we haveα = 1 for backward Euler,α = 2 for Crank–
Nicolson and α = 3/2 for the BDF(2) scheme. In each case, this is obviously a discrete
Helmholtz equation corresponding to a Helmholtz constant c = α/τ > 0. As was pointed
out in Section 2.8.1, the positive contributions on the main diagonal of the corresponding
matrix Ah amplify the diagonal dominance so that the smoothing and convergence factors
are improved (compared to the Poisson case). Obviously, the smaller the time steps, the
stronger the diagonal dominance and the better are the smoothing and convergence factors.

�

In many practical parabolic applications, however, one is interested in using time steps
that are as large as possible. For τ → ∞, the discrete operator in (2.8.9) becomes −�h, so
that all multigrid considerations for Poisson’s equation apply.

Hyperbolic time-like problems have somewhat different features with respect to the
multigrid treatment. Again, we consider a simple example.

Example 2.8.3 (wave equation) We consider the hyperbolic initial boundary value
problem

utt = �u (�, t ∈ R)

u(x, y, 0) = u0(x, y) (�, t = 0)

ut (x, y, 0) = u1(x, y) (�, t = 0)

u(x, y, t) = f ∂�(x, y, t) (∂�, t ∈ R)

(2.8.10)

for the function u = u(x, y, t), t ∈ R, (x, y) ∈ � = (0, 1)2. In such hyperbolic situa-
tions, the CFL stability condition for explicit schemes is much more moderate. It typically
reads

τ ≤ consth.

Again, appropriate implicit time discretization schemes are unconditionally stable.
For the wave equation we discuss one common implicit discretization. Similar consid-

erations apply to other implicit schemes. With respect to t , we use the approximation

utt = 1

τ 2
[1 − 2 1]τ u(·, t)+O(τ 2),
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whereas the following combination of three time levels is used for the space discretization

�u = �h

(
1
4u(x, y, t + τ)+ 1

2u(x, y, t)+ 1
4u(x, y, t − τ)

)
+O(h2)+O(τ 2).

(2.8.11)

In this case, the resulting discrete problem that has to be solved in each time step is charac-
terized by a discrete Helmholtz equation of the form

1

h2

⎡⎣ −1
−1 4 + h2/τ2 −1

−1

⎤⎦ uh,τ (x, y, t + τ) = Fh,τ (x, y, t), (2.8.12)

which corresponds to the Helmholtz constant c = h2/τ2 > 0. Note, that the diagonal
dominance reflected by this Helmholtz constant is qualitatively stronger than in the parabolic
case. If τ = O(h) (which is natural in the hyperbolic case) the constant is c = const/h2

(const > 0) leading to a strong diagonal dominance constant, independent of h. �

The considerations in the above examples are typical for more general time-dependent
parabolic and hyperbolic problems. If a discretization Lh of an operator L can be treated
efficiently by multigrid, this also holds for implicit discretizations of the problemsut = −Lu
and utt = −Lu. The multigrid method forLh can also be used for the discrete problems that
arise per time step. However, if the time steps become very small, even simple relaxation
methods may have good convergence properties and may be competitive with (or even more
efficient than) multigrid. The larger the time steps, the more will be gained by an appropriate
multigrid treatment.

2.8.3 Cartesian Grids in Nonrectangular Domains

Here, we give some results for Poisson’s equation on nonrectangular domains with Dirichlet
boundary conditions. We assume that � is a bounded domain in R

2. In particular, we
consider the four examples of domains in Figure 2.12.

Although the domains are nonrectangular, we use again a square Cartesian grid�h∪�h
consisting of the set�h of interior grid points and the set �h of boundary grid points. Here,
�h and Gh are defined as in Section 1.3.2. Again, the boundary grid points �h are just the
discrete intersection points of ∂� with grid lines of Gh.

We distinguish: regular interior grid points (all points of�h, whose neighbor grid points
in northern, southern, western and eastern direction are also points of �h) and irregular
interior grid points (all interior grid points which are not regular).

Figure 2.12. Four nonrectangular domains.
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Figure 2.13. Irregular interior point with distances hi to neighbor grid points.

At regular interior grid points, the differential operator L is approximated by the usual
second-order five-point discretization (2.8.2). Near the boundary, i.e. at the irregular grid
points, thefive-point Shortley–Weller approximation [355] is used. This means, for example,
that the differential operator in (2.8.1) is discretized by

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(xi, yj )

hN(hN + hS)
a(xi, yj )

hW (hW + hE)
− a(xi, yj )

hWhE
− b(xi, yj )

hNhS

a(xi, yj )

hE(hW + hE)
b(xi, yj )

hS(hN + hS)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
h

uh(xi, yj ).

(2.8.13)

Here, hN, hS, hW and hE denote the distances to the neighbor grid points in northern,
southern, western and eastern directions, respectively (see Fig. 2.13).

We investigate the influence of the shape of the domains � shown in Fig. 2.12 on
the multigrid convergence behavior. The multigrid algorithm consists of the following
components:

• Coarsening: Coarse grids are obtained by doubling the (interior) mesh size in both
directions, i.e. �2h = � ∩ G2h. On all grids the discrete operators are constructed in
the same way as on the finest grid. The coarsest grid may be “very coarse” (but should
still be geometrically reasonable, see Fig. 2.14).

• Smoothing: GS-RB with ν1 = 2, ν2 = 1,
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Figure 2.14. “Reasonable” coarsest grids.

Table 2.8. Numerically observed convergence fac-
tors per multigrid iteration step for different domains
(ν1 = 2, ν2 = 1, h = 1/128) and both V- and W-cycles.

Domain V-cycle W-cycle

1

10
0.059 0.033

0.059 0.033

0.063 0.032

0.058 0.033

0.088 0.033

• Restriction I2h
h : HW,

• Prolongation Ih2h: linear interpolation.

Here we employ HW instead of FW (according to Remark 2.5.1) which provides the
better convergence for ν = ν1 + ν2 = 3.

Table 2.8 shows numerically observed multigrid convergence factors q̂(m) (as defined
in Section 2.5.2,m “large”) for both V- and W-cycles for the above four domains. All these
domains are comparable in size with the unit square.

In all cases, the corresponding convergence factors given by ρh(ν = 3) are very similar
to those on the unit square.

As is usual, the multigrid convergence factors for V-cycles are somewhat worse
than those for W-cycles. The convergence factors are nevertheless so good that the
V-cycle efficiency (convergence factor per computational work) is better than that of the
W-cycle.
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2.8.4 Multigrid Components for Cell-centered Discretizations

Up to now the discussion in this book was oriented to the vertex-centered discretization
of scalar PDEs. As already mentioned in Section 1.2, other discretization approaches exist.
One of them, the cell-centered discretization, uses unknowns located at the centers of the
grid cells. In the case of Poisson’s equation, there is no difference in the order of accuracy of
the solution of a vertex- or a cell-centered discretization. Often the choice of discretization
depends on the applications, the boundary conditions, but also on personal taste or history.
In particular, the treatment of boundary conditions is different in vertex- and cell-centered
discretizations.

Efficient multigrid methods can also be developed for cell-centered discretizations.
As smoothers, we can use the same schemes as for the vertex-centered discretizations
considered so far, for example, ω-JAC, GS-RB or GS-LEX.

The main difference in the multigrid algorithm is that the coarse grid points do not form
a subset of the fine grid points (see Fig. 2.15 showing a fine and a coarse grid in the case
of a cell-centered location of unknowns). Therefore, we will briefly discuss the transfer
operators, which, of course, depend on the arrangement of the unknowns.

A frequently used restriction operator I2h
h for cell-centered discretizations is the four-

point average

I 2h
h dh(x, y) = 1

4

⎡⎣1 1
·

1 1

⎤⎦2h

h

dh

= 1

4

[
dh

(
x − h

2
, y − h

2

)
+ dh

(
x − h

2
, y + h

2

)
+ dh

(
x + h

2
, y − h

2

)
+ dh

(
x + h

2
, y + h

2

)]
. (2.8.14)

Figure 2.16 presents a fine grid with the symbols for the fine and coarse grid points
corresponding to the interpolation formula (2.8.15).

Figure 2.15. Arrangement of unknowns on the h- and 2h-grids for a cell-centered discretization
with fine grid points (•) and coarse grid points (◦).
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Figure 2.16. A fine grid with symbols explaining the bilinear interpolation (2.8.15) used for the
transfer from the coarse grid (◦) to the fine grid.

The bilinear interpolation operator for cell-centered discretizations is given by

Ih2hv̂2h(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

16
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9v̂2h

(
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2
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2

)
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(
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2
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2

)
+3v̂2h

(
x + 3h

2
, y − h

2

)
+ v̂2h

(
x + 3h

2
, y + 3h

2

)]
for �

1

16

[
3v̂2h

(
x − 3h

2
, y − h

2

)
+ v̂2h

(
x − 3h

2
, y + 3h

2

)
+9v̂2h

(
x + h
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2

)
+ 3v̂2h

(
x + h

2
, y + 3h

2
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for
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for �

1

16

[
v̂2h

(
x − 3h

2
, y − 3h

2

)
+ 3v̂2h

(
x − 3h

2
, y + h

2

)
+3v̂2h

(
x + h

2
, y − 3h

2

)
+ 9v̂2h

(
x + h

2
, y + h

2

)]
for �,

(2.8.15)

which in stencil notation simply corresponds to

Ih2hv̂2h(x, y) = 1

16

⎤⎥⎥⎦
1 3 3 1
3 9 9 3
3 9 9 3
1 3 3 1

⎡⎢⎢⎣
h

2h

v̂2h(x, y). (2.8.16)

Remark 2.8.1 The above transfer operators for cell-centered locations of unknowns
and discretizations are O(h2) accurate and thus well-suited for Poisson’s equation (see
Remark 2.7.1). �
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2.9 MULTIGRID IN 3D

2.9.1 The 3D Poisson Problem

Multigrid has essentially the same properties (complexity) for 3D as for 2D problems. We
start with the discussion of a standard 3D multigrid method for the 3D Poisson equation,
the 3D analog of Model Problem 1 (1.4.1):

Model Problem 2

−�huh(x, y, z) = f�h (x, y, z) ((x, y, z) ∈ �h)
uh(x, y, z) = f �h (x, y, z) ((x, y, z) ∈ �h)

(2.9.1)

in the unit cube � = (0, 1)3 ⊂ R
3 with h = 1/n, n ∈ N.

In 3D the infinite grid Gh is defined by

Gh := {(x, y, z): x = ihx, y = jhy, z = khz; i, j, k ∈ ZZ} , (2.9.2)

where h = (hx, hy, hz) is a vector of fixed mesh sizes. In the special case of cubic Cartesian
grids, we simply identify h = hx = hy = hz. �h denotes the standard seven-point
O(h2)-approximation of the 3D Laplace operator � and can be written as

Lhuh(x, y, z) = −�huh(x, y, z)

= 1

h2

⎡⎣0 0 0
0 −1 0
0 0 0

⎤⎦
h

uh(x, y, z− h)

+ 1

h2

⎡⎣ 0 −1 0
−1 6 −1

0 −1 0

⎤⎦
h

uh(x, y, z)

+ 1

h2

⎡⎣0 0 0
0 −1 0
0 0 0

⎤⎦
h

uh(x, y, z+ h), (2.9.3)

where the 2D stencils are applied to the x- and y-coordinates as in 2D. Introducing the
3D stencil notation, we write in short

−�huh = 1

h2

⎡⎣⎡⎣ 0 0 0
0 −1 0
0 0 0

⎤⎦
h

⎡⎣ 0 −1 0
−1 6 −1

0 −1 0

⎤⎦
h

⎡⎣0 0 0
0 −1 0
0 0 0

⎤⎦
h

⎤⎦ uh.
2.9.2 3D Multigrid Components

Standard coarsening is as in 2D (H = 2h, h = 1/n, n even). Figure 2.17 shows part of a
fine grid with the coarse grid points.



72 MULTIGRID

coarse grid point:

Figure 2.17. A (vertex-centered) 3D fine grid with a coarse grid (standard coarsening).

For the transfer operators, we obtain the following generalizations of the 2D operators.
The 3D FW operator is given by

1

64

⎡⎢⎣
⎡⎣ 1 2 1

2 4 2
1 2 1

⎤⎦2h

h

⎡⎣2 4 2
4 8 4
2 4 2

⎤⎦2h

h

⎡⎣ 1 2 1
2 4 2
1 2 1

⎤⎦2h

h

⎤⎥⎦ . (2.9.4)

HW is represented by the stencil

1

12

⎡⎢⎣
⎡⎣ 0 0 0

0 1 0
0 0 0

⎤⎦2h

h

⎡⎣0 1 0
1 6 1
0 1 0

⎤⎦2h

h

⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦2h

h

⎤⎥⎦ . (2.9.5)

The generalization of the 2D bilinear interpolation operator introduced in (2.3.7) to 3D
is trilinear interpolation. Along planes that contain coarse grid points the formulas from
(2.3.7) are still valid (with an additional index for the respective third dimension). One extra
formula is necessary for the trilinear interpolation to the fine grid points not belonging to
any plane of the coarse grid (those with eight coarse grid neighbors).

v̂h(x, y, z) = Ih2hv̂2h(x, y, z)

= 1
8 [v̂2h(x + h, y + h, z+ h)+ v̂2h(x + h, y + h, z− h)
+ v̂2h(x + h, y − h, z+ h)+ v̂2h(x + h, y − h, z− h)
+ v̂2h(x − h, y + h, z+ h)+ v̂2h(x − h, y + h, z− h)
+ v̂2h(x − h, y − h, z+ h)+ v̂2h(x − h, y − h, z− h)]. (2.9.6)

Formula (2.9.6) is illustrated in Fig. 2.18, in which such a fine grid point and the eight
coarse grid neighbor points are shown.
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(x,y,z)

= fine grid point
= coarse grid point

Figure 2.18. The 3D interpolation (2.9.6).

The smoothers ω-JAC, GS-LEX and GS-RB as described for Model Problem 1 can also
be generalized immediately to 3D. It is also straightforward to determine the smoothing
factor (2.1.8) of ω-JAC for Model Problem 2. First, the discrete eigenfunctions of the
discrete 3D operator �h are

ϕ
k,�,m
h (x, y) = sin kπx sin lπy sinmπz

((x, y, z) ∈ �h (k, �,m = 1, . . . , n− 1)).
(2.9.7)

The corresponding eigenvalues of the ω-JAC relaxation operator are

χ
k,�
h = χ

k,�
h (ω) = 1 − ω

3
(3 − cos kπh− cos �πh− cosmπh). (2.9.8)

For standard coarsening, the low frequency components are the ϕ
k,�,m
h with

max(k, �,m) < n/2, the high frequency components are those withn/2≤max(k, �,m)<n.
Thus, the smoothing factor μ(h;ω) of Sh (representing the worst factor by which high fre-
quency error components are reduced per relaxation step) and its supremum μ∗ over h
are

μ(h;ω) := max{|χk,�,mh (ω)|: n/2 ≤ max(k, �,m) ≤ n− 1}
μ∗(ω) := sup

h∈H
μ(h;ω). (2.9.9)

It is straightforward to find the smoothing factor of ω-JAC for Model Problem 2 as

μ∗(ω) = max{|1 − ω/3|, |1 − 2ω|}.
Optimal smoothing is obtained for ω = 6/7 (≈ 0.857) for which we find the smoothing
factor μ∗ = 5/7 (≈ 0.714).
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It should be noted, that the smoothing factors, like those for GS-LEX and GS-RB, in
3D are not identical to the 2D case, but somewhat worse. For example, the smoothing
factors of GS-RB and GS-LEX increase from 0.25 and 0.5 in 2D to 0.445 and 0.567 in 3D,
respectively.

Remark 2.9.1 (3D ω-GS-RB) For the 3D Poisson equation, the smoothing factor of
GS-RB can be substantially improved by overrelaxation [427, 428]. For example, choosing
ω = 1.15 gives a smoothing factor μ ≈ 0.23. �

For the FMG version of a 3D multigrid method, it is necessary to apply a 3D analog of
the 2D FMG interpolation (see Section 2.6). Tricubic interpolation is a direct generalization
of the bicubic interpolation. It can be used as a 3D FMG interpolation procedure.

2.9.3 Computational Work in 3D

The computational workW� per 3D multigrid cycle�� for Model Problem 2 is recursively
given by (2.4.8) as in 2D. In case of 3D standard coarsening with fixed cycle index γ we
have

Nk =̇ 8Nk−1 (k = 1, 2, . . . , �) (2.9.10)

where Nk = #�k (number of grid points on �k) and “=̇” again means equality up to
lower order terms (boundary effects). Similarly as in the 2D case (see Section 2.4.3), one
immediately obtains the following estimate for the total computational work W� of one
complete multigrid cycle in 3D from (2.4.14). The computational work for the F-cycle is
found similarly as in Remark 2.4.8:

W�≤̇

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

8
7CN� for γ = 1
4
3CN� for γ = 2
8
5CN� for γ = 3
64
49CN� for F-cycle.

(2.9.11)

This estimate of W� together with the h-independent convergence shows the asymptotic
optimality of iterative 3D multigrid methods. For standard coarsening, multigrid cycles
remain asymptotically optimal up to γ ≤ 7 (in 2D they were asymptotically optimal only
up to γ ≤ 3).

The computational workWFMG
� needed for the FMG method is again easily estimated.

By arguments similar to those in Section 2.6.2, one obtains, for example

WFMG
� ≤̇ 8

7 rW� + 8
7W

INT
�−1 for standard coarsening in 3D (2.9.12)

(neglecting lower order terms). HereW INT
�−1 denotes the work needed for the FMG interpo-

lation process from grid ��−1 to the finest grid �� and W� is the work required for one
multigrid cycle on the finest level ��.



3
ELEMENTARY MULTIGRID THEORY

In this chapter, we will introduce some elementary multigrid theory. The main purpose of
this theory is to show the h-independent fast convergence of multigrid iterations. This means
that we will derive estimates for the multigrid convergence factor ρ(Mh) of the form

ρ(Mh) ≤ const � 1. (3.0.1)

Together with the fact that we can estimate the computational work per multigrid cycle by
W� ≤ const N , (we can actually count the number of operations, see Section 2.4.3), this esti-
mate gives what is often called the “optimality” of multigrid methods. We have already seen
from practical measurements (see Section 2.5.1) that (3.0.1) indeed holds for the RBMPS.

Our approach is quantitative. This means that we are interested in h-independent real-
istic bounds of ρ(Mh) which are close to those that can be measured numerically. The
theoretical results can then be used to compare different multigrid algorithms and to find
suitable, or even optimal, components.

In addition to the multigrid convergence factor ρ(Mh) and the error reduction factor
||Mh|| (in some appropriate norm || · ||), we are also interested in realistic quantitative
bounds of

– smoothing factors μ(Sh),
– two-grid convergence factors ρ(M2h

h ) and corresponding norms ||M2h
h ||,

– FMG error estimates.

All these quantities will be derived in this chapter and Chapter 4. The tools that we will use
are all elementary: some linear algebra, Fourier analysis and simple estimates.

The elementary multigrid theory in this chapter is only one approach for analyzing
multigrid methods theoretically. We will distinguish three other theoretical approaches:

– the local Fourier analysis (LFA),
– the classical (qualitative) multigrid theory,
– the (qualitative) multigrid theory based on subspace splitting.

75
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LFA is closely related to the elementary multigrid theory and is also quantitative. It is the
kernel of Brandt’s theoretical understanding of multigrid [58]. In Chapter 4, we will present
LFA not as a theory [69, 373], but as a tool. With respect to multigrid practice, we regard
LFA as the most important tool for the design of multigrid algorithms.

The “classical” qualitative multigrid theory goes back to Hackbusch [173]. We will
outline its idea in Section 3.4.5. The other qualitative multigrid theories rely on the idea
of space splitting and subspace correction methods, see, for example [54, 55, 298, 425].
Appendix B of this book gives an introduction into this theory. The qualitative multigrid
theories are more general than the elementary theory presented in this chapter. However,
they do not reflect quantitatively the convergence factors of particular multigrid methods
that are practically observed and measured.

Before we present the results, we will survey the elementary multigrid theory. We will
guide the reader through the theoretical fields and recommend where multigrid beginners
and practitioners may start reading in this book.

3.1 SURVEY

The multigrid theory which we will present here consists of two parts.

(1) The two-grid operatorM2h
h is analyzed. Concretely, estimates for ρ(M2h

h ) and ||M2h
h ||

in an appropriate norm are derived (see Section 3.3).
(2) Based on these results, the multigrid operator Mh is analyzed. Estimates for ||Mh||

and FMG error estimates are derived (see Section 3.2).

Here, the first part turns out to be the hard one. For the second part, elementary estima-
tions give the desired results, under rather general assumptions for W-cycles.

Therefore, we will start with the second part, which answers the question: Why is it suf-
ficient to derive realistic two-grid convergence factors? Here we derive bounds for ||Mh||
(see Section 3.2.1) and FMG error estimates (see Section 3.2.2).

Norms for ||Mh|| If h-independent small bounds for ||M2h
h || are known,

a simple and general recursive estimate yields small bounds for ||Mh|| for
W-cycles. This estimate is directly based on the recursive definition of Mh in
Theorem 2.4.1.

FMG error estimate On the basis of bounds for ||Mh||, a similarly simple and
general estimate yields bounds for

|| uh − uFMG
h || (or || u− uFMG

h || , respectively)

where uFMG
h is the FMG solution of the given problem. In particular, we will show

that an approximate solution up to discretization accuracy can be obtained by the
FMG process in O(N) operations, with a small constant of proportionality.
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Remark 3.1.1 (convergence for V-cycles) The estimates fail for V-cycles, i.e. for γ = 1
and h → 0 (with a fixed coarsest grid). For V-cycles, a more sophisticated theoretical
analysis is needed [48, 49, 52, 176]. A V-cycle multigrid convergence proof is also given
in Appendix B. �

The remaining part of this chapter (and also parts of Chapter 4) deals with the harder
question: How to derive realistic two-grid convergence factors ρ(M2h

h ) and ||M2h
h ||?

In Section 3.3, we will present corresponding results for the RBMPS introduced in
Section 2.5.1. The results are based on what we call rigorous Fourier analysis. The essential
(six) steps of the two-grid rigorous Fourier analysis presented in Section 3.3.4 are character-
istic. We do not urge those readers who are more interested in practical questions to follow
all the details of that elementary, but somewhat lengthy, section. Those readers are referred
to the LFA in Chapter 4, which is more important for the practical design of multigrid algo-
rithms. The connections between rigorous Fourier analysis and LFA are briefly addressed
in Section 3.4.4.

The range of rigorous Fourier analysis is, however, rather limited. Section 3.4 discusses
its range of applicability and sets pointers to the field of qualitative analysis, where many
results have been obtained, starting with Hackbusch’s distinction between smoothing prop-
erty and approximation property (see Section 3.4.5, [173, 176] and the references therein).
We will not discuss these qualitative approaches in detail.

3.2 WHY IT IS SUFFICIENT TO DERIVE
TWO-GRID CONVERGENCE FACTORS

3.2.1 h-Independent Convergence of Multigrid

In this section we will prove the following fundamental result on the multigrid convergence:

If a given two-grid method converges sufficiently well, i.e.

||M2h
h || ≤ σ ∗,

with σ ∗ small enough and independent of h, then the corresponding multigrid
method with γ ≥ 2 will have similar convergence properties, under natural
assumptions.

For the simple proof of this statement, it is natural to make use of Theorem 2.4.1 and
Remark 2.4.3. Remark 2.4.3 shows that a multigrid method can be regarded as a perturbed
two-grid method. The perturbation is formally represented by (2.4.7). We summarize this
observation as follows:

Corollary 3.2.1 For k = 1, . . . , �− 1, the equations

Mk+1 = Mk
k+1 + Ak+1

k (Mk)
γ Akk+1 (3.2.1)
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hold, where

Ak+1
k := (Sk+1)

ν2I k+1
k : G(�k) → G(�k+1),

Akk+1 := (Lk)
−1I kk+1Lk+1(Sk+1)

ν1 : G(�k+1) → G(�k)
(3.2.2)

andMk
k+1 (G(�k+1) → G(�k+1)) is as in (2.4.6) with k + 1 instead of k.

For the following central theorem, we have to assume that estimates for ||Mk
k+1|| and for

||Ak+1
k || and ||Ak

k+1|| are known. Here, the assumption on ||Mk
k+1|| is the crucial one.

Bounds for ||Ak+1
k || and ||Ak

k+1|| are usually easy to calculate. We do not make specific
assumptions with respect to the norms of the operators under consideration. The spectral
norm || · ||S is a natural choice here.

Theorem 3.2.1 Let the following estimates hold uniformly with respect to k (≤ �− 1):

||Mk
k+1|| ≤ σ ∗, ||Ak+1

k || · ||Akk+1|| ≤ C. (3.2.3)

Then we have ||M�|| ≤ η� where η� is recursively defined by

η1 := σ ∗, ηk+1 := σ ∗ + Cηkγ (k = 1, . . . , �− 1). (3.2.4)

If we additionally assume that

4Cσ ∗ ≤ 1 and γ = 2, (3.2.5)

we obtain the following uniform estimate forMh = M�: (h = h�):

||Mh|| ≤ η := (1 − √
1 − 4Cσ ∗)/2C ≤ 2σ ∗ (� ≥ 1) . (3.2.6)

Proof. (3.2.4) immediately follows from (3.2.1) and (3.2.3). If γ = 2 and 4Cσ ∗ ≤ 1, we
obtain (3.2.6) from (3.2.4) using the limit equation η = σ ∗ + Cη2.

Remark 3.2.1 (optimality of the multigrid cycle) The existence of this h-inde-
pendent upper bound for the convergence of the multigrid cycle (3.2.6) and the fact
that the number of operations per cycle isO(N) (see (2.4.12) or (2.4.14)), together
imply the optimality of the multigrid cycle. In order to achieve a (fixed) error (or
defect) reduction by a factor of ε, O(N log ε) operations are sufficient. �

This optimality result is particularly impressive if we calculate the constants which are
characteristic in theO-statement in Remark 3.2.1. We will see in Section 3.3.2 that we can
indeed derive small realistic bounds of σ ∗ for typical two-grid methods. In such cases, we
will see that η ≈ σ ∗ in (3.2.6). For example, if C = 1, we obtain from (3.2.6)

η ≤ 0.113 if σ ∗ ≤ 0.1 ,
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i.e., if the two-grid reduction factor ||M2h
h || ≤ 0.1, then the multigrid reduction factor

||Mh|| ≤ 0.113. Typically, the constant C is ≥ 1, but not very large. For Model Problem 1
and || · || = || · || S , for example, we have C ≤ √

2 for all choices of ν1 and ν2 and C ↘ 1
if ν1 → ∞.

In this respect, for the construction of multigrid methods, it is usually sufficient
to analyze only the corresponding two-grid method. Furthermore, it is usually not
necessary to work with γ > 2 if σ ∗ is sufficiently small.

Remark 3.2.2 (fixed coarsest grid size) For the theoretical investigations of multigrid
methods (h-independence of convergence factors ρ), one needs to consider the case that
h = h� tends to 0. For such asymptotic investigations, we always consider the coarsest
grid to be fixed (mesh size h0) and let the number � of grids tend to infinity. If the coarsest
mesh size h0 is not fixed, but the number of levels is fixed, with h tending to 0, the coarsest
mesh size also tends to 0. Theory becomes easier then, but the algorithm can no longer be
guaranteed to be an O(N) algorithm (because the coarsest grid problem becomes larger
and larger). We do not discuss such methods systematically in this book. �

Remark 3.2.3 (modified V-cycles) If γ = 1, i.e. if V-cycles are used, Theorem 3.2.1 does
not give an h-independent (i.e. �-independent) upper bound for ||M�|| . However, instead
of γ = 1 one can use, for example, a combination of a V-cycle (on the other levels) and of a
W-cycle (on the other levels), i.e., γ = γk with γk = 1 if � ≥ k ≥ �− �0 (for some �0) and
γk = 2 otherwise. For larger values of �0 (many levels of V-cycle type), this would result
in only a slight increase of the computational work compared to the V-cycle. For a cycle
of this type, Theorem 3.2.1 could, in principle, be used to derive �-independent bounds for
||M�|| . For large �0, we would then, however, have to assume σ ∗ to be extremely small
and the estimate would become unrealistic from a practical point of view. �

3.2.2 A Theoretical Estimate for Full Multigrid

In this section, we will derive an elementary, but general estimate for FMG. The proof is
similarly simple as the proof of Theorem 3.2.1. The main result of this section will be the
following statement.

Under natural assumptions, FMG provides approximations with discretization accu-
racy (e.g. O(h2) for Model Problem 1). Together with the fact that the number of
operations in FMG is O(N) (see Section 2.6), this is the reason for the optimality
of FMG. Discretization accuracy is achieved in O(N) operations.

We recall the procedures and the notation introduced in Section 2.6.
For simplicity, we again consider only the case of standard coarsening. We do not make

specific assumptions about the norms || · || on G(�k) and the corresponding operator norms.
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(A standard choice is || · ||2 and, correspondingly, || · ||S , see, however, Remark 3.2.5.) We
make the following natural assumptions:

(1) Let the norm of the multigrid iteration operatorMk be uniformly bounded

||Mk|| ≤ η < 1 (k = 1, 2, . . . ).

(2) Let the norm of the FMG interpolation operator �k
k−1(k = 1, 2, . . . ) be uniformly

bounded

||�kk−1|| ≤ P (k = 1, 2, . . . ). (3.2.7)

(3) The discretization error and the FMG interpolation error are assumed to be of order κ
and κFMG, respectively:

|| u− uh|| ≤ Khκ (h = hk; k = 1, 2, . . . ), (3.2.8)

|| u−�kk−1u|| ≤ K̄hκFMG (h = hk; k = 1, 2, . . . ). (3.2.9)

Assumption (1) is exactly what we have established in the previous section. Assumption (2)
can usually be easily verified in typical cases. P turns out to be a (small) constant (≥ 1).
We will first additionally assume that the FMG-interpolation accuracy is higher than the
discretization accuracy:

κFMG > κ.

The case κFMG = κ will be discussed in Remark 3.2.4.
Under these assumptions, one or a few multigrid cycles (r = number of cycles) are

sufficient to achieve the discretization accuracy for uFMG
� provided η is small enough.

Theorem 3.2.2 Let the assumptions (1), (2) and (3) be fulfilled and assume addition-
ally that

ηr <
1

2κP
.

Then the following estimate holds (for any � ≥ 1):

||u� − uFMG
� || ≤ δhκ (h = h�), (3.2.10)

where

δ = ηr
B

1 − ηrA,

with A = 2κP and any bound B such that K(1 + A)+ K̄hκFMG−κ ≤ B.

Proof. By definition of the FMG method, we have for all � ≥ 1

uFMG
� − u� = (M�)

r (u0
� − u�), u0

� = ���−1u
FMG
�−1 .
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Using the identity

u0
� − u� = ���−1(u

FMG
�−1 − u�−1)+���−1(u�−1 − u)+ (���−1u− u)+ (u− u�),

we obtain the recursive estimate

δ� ≤ ηr(Aδ�−1 +KA+ K̄h�κFMG−κ +K),

where δk := || uFMG
k − uk|| /hkκ (k = �, � − 1, . . . , 1). From this, (3.2.10) follows by a

simple calculation.

Supplement
(1) If we additionally have a lower bound for the discretization error

|| u− u�|| ≥ K̂(h�)
κ (K̂ > 0, independent of �),

we obtain from (3.2.10),

|| u� − uFMG
� || ≤ β|| u− u�|| with β := δ

K̂
. (3.2.11)

and, trivially,
||u− uFMG

� || ≤ (1 + β)||u− u�||.
(2) If we also assume that an asymptotic expansion

u� = u+ (h�)κe + o(hκ� )

exists, we can replace K/K̂ by 1, so that β becomes asymptotically

β∗ = ηr
1 + A

1 − ηrA. (3.2.12)

Remark 3.2.4 (order of FMG interpolation) The above proof is also valid if κFMG = κ .
In that case, the contribution of the FMG interpolation constant K̄ to the bounds δ and β
may become arbitrarily large (depending on u). (For details see Section 6.4 in [378].)

Therefore, based on practical experience, we recommend readers to choose an FMG
interpolation of an order which is higher than that of the discretization. In this case
the contribution of the FMG interpolation constant K̄ to the bounds δ∗ and β∗ vanishes
asymptotically. �

Remark 3.2.5 We have made no explicit assumption about the norms that are used in
this section. The interpretation of the results in this section, however, may be different for
different norms. For instance, the order κFMG (and also the order κ) may depend on the
choice of norms. (For example, norms including discrete derivatives lead to lower orders.)

�
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3.3 HOW TO DERIVE TWO-GRID CONVERGENCE FACTORS BY
RIGOROUS FOURIER ANALYSIS

In this section, we show how Fourier analysis can be used to derive sharp bounds for ρ(MH
h )

and ||MH
h || . The purpose of this section is two-fold: first, we want to introduce the idea of

rigorous Fourier analysis and to explain its structure. Secondly, we want to derive concrete
results for the RBMPS and for some variants (see Section 3.3.4). In Sections 3.3.1 and 3.3.2,
we present the results of this analysis. The bounds for ρ(MH

h ) and ||MH
h || are small (≈ 0.1)

and h-independent.

3.3.1 Asymptotic Two-grid Convergence

When being applied to Model Problem 1, the rigorous Fourier analysis gives the following
convergence theorem (the essential steps of the proof will be given in Section 3.3.4):

Theorem 3.3.1 For the two-grid version of the RBMPS as described in Section 2.5, we
obtain the asymptotic convergence factors

ρ∗ = sup
h∈H

ρ(M2h
h ), (3.3.1)

listed in Table 3.1 (where H represents the set of admissible mesh sizes). Here, the number
ν of smoothing steps is varied and the FW and HW restriction operators are compared.

Remark 3.3.1 According to a detailed efficiency analysis (Section 8.2 in [378]), which
takes into account the convergence behavior and the computational effort per cycle, the two
algorithms

GS-RB, ν1 = ν2 = 1, FW

and

GS-RB, ν1 = 2, ν2 = 1, HW

turn out to be the most efficient multigrid Poisson solvers (within this class of algorithms),
which is in agreement with the results in Section 2.5.3.

In fact, the two-grid convergence factors in Table 3.1 are quite close to the multigrid
W-cycle convergence factors observed in Fig. 2.10 and Table 2.2. �

Table 3.1. Two-grid convergence factors ρ∗ = ρ∗(ν) for
Model Problem 1 using GS-RB.

ν = 1 ν = 2 ν = 3 ν = 4

FW 0.250 0.074 0.053 0.041
HW 0.500 0.125 0.033 0.025
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Table 3.2. Two-grid convergence factors ρ∗ =
ρ∗(ν) obtained with ω-JAC and FW for Model
Problem 1.

ν = 1 ν = 2 ν = 3 ν = 4

ω = 4/5 0.600 0.360 0.216 0.137
ω = 1/2 0.750 0.563 0.422 0.316

If we replace the GS-RB smoother in the above algorithm by ω-JAC relaxation, we obtain
significantly worse convergence factors. For FW and ω = 4/5 (optimal ω) or ω = 1/2, we
obtain the two-grid convergence factors ρ∗(ν) in Table 3.2 (for improvements with varying
ω, see Section 7.4.2).

From Tables 3.1 and 3.2 we see that (asymptotically) an error reduction of 10−6 is
obtained by four two-grid cycles with GS-RB smoothing (HW, ν = 3) (since 0.0334 ≈
10−6), whereas with ω-JAC (ν = 3), nine and 16 cycles are required (for ω = 4/5 and
ω = 1/2, respectively).

Remark 3.3.2 Based on the proof given in Section 3.3.4, also a general analytical formula
for ρ∗(ν) of GS-RB with FW and for Model Problem 1 has been derived [378]:

ρ∗(ν) =

⎧⎪⎪⎨⎪⎪⎩
1

4
for ν = 1

1

2ν

(
ν

ν + 1

)ν+1

for ν ≥ 2.
(3.3.2)

For the optimal ν with respect to efficiency (ν = 2), we obtain ρ∗(2) = 2/27. �

Remark 3.3.3 (number of smoothing steps per cycle) Formula (3.3.2) implies that

ρ∗(ν) ∼ 1

2eν
= O

(1

ν

)
for ν → ∞.

As pointed out in Section 2.5.3, the general conclusion is that it makes no sense to perform
many smoothing steps within one multigrid cycle as the convergence improvement is too
small compared to the amount of additional work. �

3.3.2 Norms of the Two-grid Operator

Although the spectral radius ρ(M2h
h ) gives insights into the asymptotic convergence behav-

ior of a two-grid method, norms are needed to estimate the error (or defect) reduction of
one iteration step. In particular, norms of M2h

h are needed in the theoretical investigations
of complete multigrid iterations and of FMG (as seen in Sections 3.2.1 and 3.2.2).

As we will see, the norms of the two-grid operator depend strongly on ν1 and ν2, whereas
the spectral radius depends only on the sum ν = ν1 + ν2. This corresponds to the general
observation that the spectral radius is less sensitive to algorithmic details than the norms are.
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There are several reasonable norms. Of course, different choices of norms will, in general,
lead to different results.

We consider the operator norm || · ||S , corresponding to the Euclidean inner product on
G(�h), i.e. the spectral norm

||Bh||S =
√
ρ(BhB

∗
h), (3.3.3)

where Bh denotes any linear operator Bh : G(�h) → G(�h).
Here, we are interested in the quantity

σS = σS(h) = ||M2h
h ||S. (3.3.4)

This quantity depends in particular on h, ν1, ν2. By σ ∗
S we denote the supremum of σS with

respect to h

σ ∗
S := sup

h∈H
{σS(h)}. (3.3.5)

Supplement to Theorem 3.3.1 For the two-grid method in Theorem 3.3.1 (GS-RB, FW
or HW), we obtain the values of σ ∗

S listed in Table 3.3.

For comparison, the corresponding spectral radii are also included in this table. Obvi-
ously, the norms can be larger than one (and even tend to ∞ in the HW case). This means
that if only one multigrid cycle is performed, it may lead to an enlarged error in this norm
although, asymptotically, the convergence factor (represented by ρ∗(ν)) is much smaller
than one. For the multigrid components considered here, norms greater than one appear for
the two-grid cycles without presmoothing (ν1 = 0). As we have seen in our description of
the FMG method, there are situations where one would like to perform only one multigrid
cycle (r = 1 in (2.6.4)) and still guarantee a sufficiently good reduction of the error (see
also Section 3.2.2). In those cases, it is necessary to apply presmoothing steps.

Table 3.3. σ ∗
S (ν1, ν2) and ρ∗(ν) for Model Problem 1 using

GS-RB and FW or HW.

FW HW

(ν1, ν2) ρ∗(ν) σ ∗
S ρ∗(ν) σ ∗

S

(1,0) 0.250 0.559 0.500 0.707
(0,1) 1.414 ∞
(2,0) 0.074 0.200 0.125 0.191
(1,1) 0.141 0.707
(0,2) 1.414 ∞
(3,0) 0.053 0.137 0.033 0.115
(2,1) 0.081 0.070
(1,2) 0.081 0.707
(0,3) 1.414 ∞
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Table 3.4. FMG estimates for Model Problem 1
and RBMPS: asymptotic values of β∗ according
to (3.2.12) with A = 4P = 4.

FW, W(1,1) HW, W(2,1)

r = 1 2.65 0.75
r = 2 0.12 0.04

3.3.3 Results for Multigrid

We now combine the results of Section 3.2 with the results for ||M2h
h || as given in

Table 3.3.

Result 3.3.1 For the W-cycle of the RBMPS and its HW variant in Table 3.1, we obtain
the norm estimates

||Mh||S ≤
{
η = 0.17 (FW, W(1,1))

η = 0.08 (HW, W(2,1)).

Furthermore, the FMG estimate (3.2.11) holds with the asymptotic values of β∗ in (3.2.12)
as given in Table 3.4. Here, we have assumed that cubic interpolation is used for FMG
interpolation.

For the proof, simply use the results of Theorems 3.2.1 (||Mh|| ≤ η) and (3.2.12)
with σ ∗

S in Table 3.3 (σ ∗
S ≤ 0.141 for FW, (ν1, ν2) = (1, 1) and σ ∗

S ≤ 0.070 for HW,
(ν1, ν2) = (2, 1)). Note that κFMG = 4 and P = 1 for the cubic FMG interpolation, and,
of course, κ = 2 here.

This result provides a full quantitative analysis for an efficient multigrid Poisson
solver.

3.3.4 Essential Steps and Details of the Two-grid Analysis

In the introducion of the multigrid idea in Chapter 1 and in the study of ω-Jacobi relaxation
in Section 2.1, we have already used some facts, which are characteristic for the rigorous
Fourier two-grid analysis. We again start with ϕk,�h (k, � = 1, . . . , n− 1) from (2.1.4), the
discrete eigenfunctions of Lh. If we apply ω-JAC for smoothing, according to Section 2.1,
the ϕk,�h are also eigenfunctions of the corresponding smoothing operator. This is no longer
true for GS-RB and the ϕk,�h are not eigenfunctions of the two-grid iteration operatorM2h

h ,
either. However, simple (at most) four-dimensional spaces

E
k,�
h

(
k, � = 1, . . . ,

n

2

)
,
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spanned by the ϕk,�h , will turn out to be invariant under K2h
h and the GS-RB smoothing

operator. As a consequence, the determination of ρ(M2h
h ) and ||M2h

h || can be reduced to
the determination of the largest eigenvalues of 4 × 4 matrices.

We distinguish six steps in the analysis and use the representation

M2h
h = S

ν2
h K

2h
h S

ν1
h = S

ν2
h (Ih − Ih2h(L2h)

−1I2h
h Lh) S

ν1
h .

We separately consider the coarse grid operator K2h
h and the smoothing operator Sh.

Step (1) Discrete eigenfunctions of Lh and L2h
The Fourier analysis is based on the fact that the functions

ϕ
k,�
h (x, y) = sin kπx sin �πy (x, y) ∈ �h (k, � = 1, . . . , n− 1) (3.3.6)

are the (discrete) eigenfunctions ofLh (and of (Lh)−1). These eigenfunctions are orthogonal
with respect to the discrete inner product (1.3.6).

Correspondingly, the functions

ϕ
k,�
2h (x, y) = sin kπx sin �πy (x, y) ∈ �2h

(
k, � = 1, . . . ,

n

2
− 1
)

(3.3.7)

are the discrete eigenfunctions of L2h (and of (L2h)
−1).

Step (2) Harmonics, spaces of harmonics
For any k and � (k, � = 1, . . . , n/2 − 1), the �h-functions

ϕ
k,�
h , ϕ

n−k,n−�
h , ϕ

n−k,�
h , ϕ

k,n−�
h

coincide (up to their sign) on �2h. This means that

ϕ
k,�
2h (x, y) = ϕ

k,�
h (x, y) = −ϕn−k,�

h (x, y)

= −ϕk,n−�
h (x, y) = ϕ

n−k,n−�
h (x, y) (for (x, y) ∈ �2h).

We call these four linearly independent �h-functions “harmonics” and define the four-
dimensional spaces of harmonics

E
k,�
h = span

[
ϕ
k,�
h , ϕ

n−k,n−�
h ,−ϕn−k,�

h ,−ϕk,n−�
h

]
for k, � = 1, . . . ,

n

2
. (3.3.8)

For k or � = n/2 and for k = � = n/2, the corresponding spaces Ek,�h degenerate to
two- and one-dimensional spaces, respectively.
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Step (3) Transfer operators
One can show that the transfer operators I2h

h and Ih2h employed in the RBMPS (FW and
bilinear interpolation, respectively) have the following properties.
Restriction (FW):

I2h
h : Ek,�h −→ span[ϕk,�2h ]

(
k, � = 1, . . . ,

n

2
− 1
)
. (3.3.9)

More concretely:

I 2h
h

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ϕ
k,�
h

ϕ
n−k,n−�
h

−ϕn−k,�
h

−ϕk,n−�
h

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =

⎧⎪⎪⎨⎪⎪⎩
(1 − ξ)(1 − η)
ξη

ξ(1 − η)
(1 − ξ)η

⎫⎪⎪⎬⎪⎪⎭ϕk,�2h (3.3.10)

with

ξ = sin2
(kπh

2

)
, η = sin2

(�πh
2

)
. (3.3.11)

Also I 2h
h ϕ

k,�
h = 0 for k = n/2 or � = n/2. This representation can be verified using

trigonometric identities.
Prolongation (bilinear interpolation):

Ih2h : span
[
ϕ
k,�
2h

] −→ E
k,�
h

(
k, � = 1, . . . ,

n

2
− 1
)
. (3.3.12)

In fact,

Ih2hϕ
k,�
2h = (1 − ξ)(1 − η)ϕk,�h + ξηϕn−k,n−�

h

− ξ(1 − η)ϕn−k,�
h − (1 − ξ)ηϕk,n−�

h on �h. (3.3.13)

To prove (3.3.13), we use the definition of bilinear interpolation and trigonometric identities
and obtain

Ih2hϕ
k,�
2h (x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δ1ϕ

k,�
h (x, y) if x/h and y/h even

δ2ϕ
k,�
h (x, y) if x/h and y/h odd

δ3ϕ
k,�
h (x, y) if x/h odd, y/h even

δ4ϕ
k,�
h (x, y) if x/h even, y/h odd

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ , (3.3.14)

where δ1 = 1, δ2 = cos kπh cos �πh, δ3 = cos kπh and δ4 = cos �πh. With this repre-
sentation, we obtain (3.3.13) from the following more general remark.
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Figure 3.1. Coefficients at grid points according to (3.3.15).

Remark 3.3.4 Any grid function c(x, y)ϕk,�h (x, y) with

c(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ1 if x/h and y/h even

δ2 if x/h and y/h odd

δ3 if x/h odd, y/h even

δ4 if x/h even, y/h odd

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.3.15)

(see Fig. 3.1) can be represented on �h as a linear combination

a00ϕ
k,�
h + a11ϕ

n−k,n−�
h − a10ϕ

n−k,�
h − a01ϕ

k,n−�
h ,

where ⎛⎜⎜⎝
a00

a11

a10

a01

⎞⎟⎟⎠ = 1

4

⎛⎜⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞⎟⎟⎠
⎛⎜⎜⎝
δ1
δ2
δ3
δ4

⎞⎟⎟⎠. (3.3.16)

�

To prove this remark one again has to use trigonometric identities.

Remark 3.3.5 The fact that FW and bilinear interpolation are adjoint to each other is
reflected by (3.3.10) and (3.3.13). The coefficients of the harmonics coincide. �

Representations of the above type are also valid for other restriction and interpolation
operators such as, for instance, HW (2.3.6) or injection (2.2.22) and cubic interpolation
[379].

Step (4) Invariance of Ek,�h under the coarse grid operator K2h
h

For the coarse grid operator

K2h
h = Ih − Ih2h (L2h)

−1 I2h
h Lh,



ELEMENTARY MULTIGRID THEORY 89

we have found

Lh : span[ϕk,�h ] → span[ϕk,�h ]

I 2h
h : Ek,�h → span[ϕk,�2h ]

(L2h)
−1 : span[ϕk,�2h ] → span[ϕk,�2h ]

Ih2h : span[ϕk,�2h ] → E
k,�
h

and therefore

K2h
h : Ek,�h → E

k,�
h

(
k, � = 1, . . . ,

n

2

)
.

Because of this invariance property, the representation of K2h
h with respect to the spaces

E
k,�
h leads to a block-diagonal matrix

K2h
h

∧=
[
K̂2h
h (k, �)

]
k,�=1,...,n/2

, (3.3.17)

in which the blocks K̂2h
h (k, �) are 4 × 4 (respectively, 2 × 2 or 1 × 1) matrices. From the

representations above, we find (for FW and bilinear interpolation)

K̂2h
h (k, �) =

⎧⎪⎨⎪⎩
I − [bicj ]4,4/� (if k, � < n/2)

2 × 2 − identity matrix (if k = n/2 or � = n/2)

1 × 1 − identity matrix (if k = � = n/2)

(3.3.18)

with � = ξ(1 − ξ)+ η(1 − η) and

b1 = (1 − ξ)(1 − η) c1 = (1 − ξ)(1 − η)(ξ + η)
b2 = ξη c2 = ξη(2 − ξ − η)
b3 = ξ(1 − η) c3 = ξ(1 − η)(1 − ξ + η)
b4 = (1 − ξ)η c4 = (1 − ξ)η(1 + ξ − η),

with ξ, η as in (3.3.11).

Step (5) Smoothing operators
The spaces Ek,�h are also invariant under the smoothing operators Sh considered here.
This is trivial for the ω-JAC smoothing operator, because already the ϕk,�h themselves are
eigenfunctions of Sh in that case. For the GS-RB operator, the two-dimensional subspaces
of Ek,�h

span[ϕk,�h , ϕ
n−k,n−�
h ] for k + � < n
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(and the degenerate one-dimensional space span [ϕn/2,n/2h ]) are invariant under Sh. To see
this, we split Sh into a product

Sh = SBLACK
h · SRED

h (3.3.19)

where SRED
h and SBLACK

h are “partial step operators”. They represent the two half-steps of
one full smoothing step. Each of these partial steps is of Jacobi type, applied, however, only
to the red or the black grid points.

Let wh be any approximation of uh and

vh = uh − wh.

If w̄h is the approximation after one of the partial step operators has been applied to
wh, we obtain for the corresponding error v̄h

v̄h(x, y) =
{
(Ih − (L0

h)
−1Lh)vh(x, y) (x, y) ∈ �̃h

vh(x, y) (x, y) ∈ �h\�̃h,
(3.3.20)

where the stencil L0
h = (1/h2)[4]h is the “diagonal” part of Lh. �̃h is the subset of �h

consisting of those grid points of�h which have been relaxed by the respective partial step
operator: the red points for SRED

h and the black points for SBLACK
h .

From the representation (3.3.20) we can conclude, that ϕk,�h is mapped into

ϕ̄
k,�
h (x, y) =

{
(1 − (h2/4)λk,�)ϕ

k,�
h (x, y) (x, y) ∈ �̃h

ϕ
k,�
h (x, y) (x, y) ∈ �h\�̃h,

where, the λk,� are the eigenvalues of Lh. This is not yet a Fourier representation of SRED
h

and SBLACK
h , respectively, but the ϕ̄k,�h can easily be written as a linear combination of ϕk,�h

and ϕn−k,n−�
h (see Remark 3.3.4).

Step (6) M2h
h representation with respect to the Ek,�h

In the final step, we combine the representations of Sh and K2h
h with respect to the Ek,�h

spaces. Altogether we obtain a representation of M2h
h that is characterized by a block-

diagonal matrix

M2h
h

∧=
[
M̂2h
h (k, �)

]
k,�=1,...,n/2

. (3.3.21)

Here the blocks M̂2h
h (k, �) are 4 × 4 matrices if k, � < n/2, 2 × 2 (1 × 1) matrices if either

k = n/2 or � = n/2 (k = � = n/2). Note that the coefficients of these matrices depend on
the smoothing operator Sh (ω-JAC or GS-RB) and on ν1, ν2.
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This representation is finally used to prove Theorem 3.3.1 and Equation (3.3.2) as well
as to calculate the values in Table 3.1: we have

ρ
(
M2h
h

) = max
1≤k,�≤n/2

ρ
(
M̂2h
h (k, �)

)
. (3.3.22)

Thus we have to determine the spectral radii (eigenvalues) of the (at most) 4 × 4 matrices
M̂2h
h (k, �), find their maximum with respect to k and � and finally consider the limit ρ∗ as

h → 0.
The norms considered in Section 3.3.2 can also be determined from the block represen-

tation ofM2h
h (3.3.21). Here, we can make use of the fact that the similarity transformation

M2h
h ↔ [M̂2h

h (k, l)]k,�=1,...,n/2 is orthogonal and obtain

σS(h) = max{||M̂2h
h (k, �)||S : max(k, l) ≤ n/2}. (3.3.23)

The computation of σ ∗
S can be performed analogously to the computation of ρ∗.

Remark 3.3.6 In practice, the coefficients of the corresponding blocks M̂2h
h (k, �) and

the eigenvalues are computed numerically. This means that the analysis is the subject of a
simple Fourier analysis computer program. �

3.4 RANGE OF APPLICABILITY OF
THE RIGOROUS FOURIER ANALYSIS, OTHER APPROACHES

So far, we have used the analysis only for Model Problem 1 and a specific algorithm. The
rigorous Fourier analysis can be applied to a number of other problems. We indicate the
range of application of the rigorous Fourier analysis (in particular in Section 3.4.3). In
Section 3.4.4, we make some remarks on the relationship between the rigorous Fourier
analysis and the local Fourier analysis, which is treated systematically in Chapter 4. Other
theoretical approaches are sketched in Section 3.4.5.

Before we start with these general remarks, we briefly discuss how the rigorous Fourier
analysis has to be modified in order to treat 3D problems (in Section 3.4.1) and other
boundary conditions (in Section 3.4.2).

3.4.1 The 3D Case

The Fourier analysis, introduced in Sections 3.3.2 and 3.3.4 for the 2D case, can also be
applied in 3D with some natural adaptations:

• As mentioned in Section 2.9, the discrete eigenfunctions ϕk,�,mh (x, y) of the dis-
crete 3D operator �h are given by (2.9.7) and the low frequencies in the case of
standard coarsening are represented by max(k, �,m) < n/2, high frequencies by
n/2 ≤ max(k, �,m) < n.

• Similarly as in 2D, we have spaces Ek,�,mh
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E
k,�,m
h = span

[
ϕ
k,�,m
h ,−ϕn−k,n−�,n−m

h ,−ϕn−k,�,m
h , ϕ

k,n−�,n−m
h ,

−ϕk,n−�,m
h , ϕ

n−k,�,n−m
h ,−ϕk,�,n−m

h , ϕ
n−k,n−�,m
h

]
for k, �,m = 1, . . . ,

n

2
.

(3.4.1)

which turn out to be invariant under the 3D GS-RB smoothing operator. Most of these
spaces of harmonics are eight-dimensional. If one (two, three) of the indices k, �,m
equal n/2, the Ek,�,mh degenerate to four- (two-, one-) dimensional spaces.

• Correspondingly, the invariance of Ek,�,mh under the coarse grid operator K2h
h is main-

tained. The representation of K2h
h with respect to the spaces Ek,�,mh leads to a block-

diagonal matrix

K2h
h

∧=
[
K̂2h
h (k, �,m)

]
k,�,m=1,...,n/2

, (3.4.2)

where the blocks K̂2h
h (k, �,m) are 8 × 8 matrices (if k, �,m < n/2), or 4 × 4, 2 × 2 or

1 × 1 matrices in the degenerate cases.
• A similar block-diagonal representation is obtained for the two-grid operatorM2h

h .
• The particular two-grid convergence results and smoothing factors in 3D are somewhat

worse than in 2D. For example, the smoothing factor of GS-RB increases from 0.25
in 2D to 0.44 in 3D.

Remark 3.4.1 (3D ω-GS-RB) In [427, 428] it has been shown that an overrelaxation
parameter, ω > 1, improves the convergence of the RBMPS analog (with FW) for d-
dimensional Poisson-type problems. The extra computational work for performing the
overrelaxation is particularly worthwhile for d ≥ 3 (see Remark 2.9.1). In 2D, the two-grid
convergence factor improves from 0.25 to 0.16 for ν = 1 and from 0.074 to 0.052 for ν = 2,
with an optimal ω. By the 3D rigorous Fourier two-grid analysis, we are able to predict the
(more impressive) convergence improvement accurately, see Table 3.5. Average numerical
convergence factors are compared to ρ(M2h

h ). The number of multigrid levels used is 5, 6
and 6, respectively, for the 323, 643 and 963 problems. �

Table 3.5. W(1,1)-cycle measured multigrid and two-grid convergence
factors (ρ(M2h

h )) for the 3D Poisson equation.

ω = 1 ω = 1.1 ω = 1.15

1/h q̂(100) ρ(M2h
h ) q̂(100) ρ(M2h

h ) q̂(100) ρ(M2h
h )

32 0.192 0.194 0.089 0.091 0.070 0.072
64 0.196 0.197 0.091 0.092 0.074 0.074
96 0.196 0.198 0.091 0.093 0.074 0.075
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3.4.2 Boundary Conditions

The discrete sine-functions ϕk,�h in (3.3.6), which we have used for the rigorous Fourier
analysis above, correspond to the Dirichlet boundary conditions considered so far. If we
consider the same problem with Neumann boundary conditions (discretized as described in
Section 5.6.2), we are able to obtain very similar results as those in Section 3.3. However,
the analysis in this case has to be based on the discrete eigenfunctions

ϕ
k,�
h (x, y) = cos kπx cos �πy (k, � = 0, 1, . . . , n) (3.4.3)

instead of the sine-functions in (3.3.6). The ϕk,�h in (3.4.3) also form four-dimensional
invariant subspaces of the form (3.3.8).

If we consider the discrete Poisson equation with periodic boundary conditions (see
Fig. 5.21 for the corresponding grid �h and Section 5.6.3 for details of the discretization),
the discrete eigenfunctions are

ϕ
k,�
h (x, y) = ei2πkxei2π�y (k, � = 0, 1, . . . , n− 1). (3.4.4)

Because of periodicity, we have

ei2πk
′x ≡ ei2πkx on �h if k′ = k(mod n). (3.4.5)

Shifting k and � and assuming n to be even, we can thus renumber the eigenfunctions (3.4.4)
as follows

0 ≤ k, � < n− 1 ←→ −n
2

≤ k, � <
n

2
. (3.4.6)

This numeration is convenient and is customary in the local Fourier analysis context
described in Chapter 4.

Remark 3.4.2 For both Neumann and periodic boundary conditions, the case k =
� = 0 characterizes the discrete eigenfunction which is identical to 1 (corresponding to
eigenvalue 0). �

If we have Dirichlet, Neumann and periodic boundary conditions at different parts of
the boundary, combinations of the above eigenfunctions can be used accordingly.

3.4.3 List of Applications and Limitations

Based on rigorous Fourier analysis many results have been obtained for different model
problems in 2D and 3D, for different discretizations, coarsening strategies, transfer operators
and smoothing procedures, e.g. [378, 379, 389].
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Rigorous Fourier analysis has been applied in the following situations (see, for
example [378], for most of these cases):

– Differential equations: Poisson, Helmholtz equation, anisotropic equations, biharmonic
equation.

– Boundary conditions: Dirichlet, Neumann, periodic, certain combinations of these.
– Discretizations: standard central differences, Mehrstellen method, symmetric higher

order methods.
– Coarsenings: standard (2D, 3D, . . .), semi (2D, 3D, . . .), alternating, red–black.
– Smoothers: Jacobi-type, GS-RB, multicolor, zebra-line, zebra-plane.
– Fine-to-coarse transfer: injection, HW, FW, larger stencil weighting.
– Coarse-to-fine transfer: bi-, trilinear interpolation, cubic interpolation, higher-order

interpolation.
– Coarse grid operators: natural LH discretization, Galerkin coarse grid discretization.

Nevertheless, the rigorous Fourier analysis is restricted to the above types of model prob-
lems and model algorithms. As soon as we deal with some nonconstant coefficients in the
differential equation, nonsymmetric operators or nonrectangular domains, just to mention
three conditions, we will, in general, not be able to apply the rigorous Fourier analysis.

Remark 3.4.3 (failure of rigorous two-grid analysis for lexicographic relax-
ation) One important smoothing procedure, namely Gauss–Seidel relaxation with
lexicographic ordering of the grid points (GS-LEX), cannot be analyzed by the
rigorous two-grid Fourier analysis. If we consider, for example, Model Problem 1,
then no simple low-dimensional spaces can be formed which are invariant under
GS-LEX with the eigenfunctions ϕk,�h (3.3.6). In particular, the Ek,�h (3.3.8) are

not invariant under GS-LEX; instead, the ϕk,�h are all intermixed by the GS-LEX
operator Sh.

The case of GS-LEX relaxation can, however, be easily analyzed by the local
Fourier analysis in Chapter 4. �

3.4.4 Towards Local Fourier Analysis

As seen in the previous section, the rigorous Fourier analysis can be used only for a limited
class of problems. So, what can the practitioner do, when he has to solve a new problem and
wants to design an efficient multigrid algorithm? Qualitative multigrid theories, which we
will survey briefly in the next section, are usually not suited for the design and comparison
of concrete algorithms for complex problems. This is different for the local Fourier analysis
(LFA). We will introduce the basic ideas and formalism of LFA in Chapter 4.

In this section, we will point out that the rigorous Fourier analysis and the LFA are
closely related. The mathematical substance of both is very similar. In fact, the rigorous
Fourier analysis results can also be derived within the framework of LFA.
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Formally, the relationship is most easily explained by reconsidering the discrete 2D
Laplacian �h with periodic boundary conditions in �h = (0, 1)2 ∩ Gh. In this case, the
discrete eigenfunctions are given by (3.4.4). With the notation

θ = (θ1, θ2) :=
(

2π
k

n
, 2π

�

n

)
(3.4.7)

and

Th =
{
θ =

(
2π
k

n
, 2π

�

n

)
: −n

2
≤ k, � <

n

2
; k, � ∈ Z

}
, (3.4.8)

we can write the discrete eigenfunctions (3.4.4) in the form

ϕh(θ, x, y) = eiθ1x/heiθ2y/h (θ ∈ Th). (3.4.9)

Obviously,

Th ⊂ [−π, π)2, #Th = n2. (3.4.10)

In case of standard coarsening we can split Th into subsets corresponding to low and high
frequencies

T low
h :=

{
θ =

(
2π
k

n
, 2π

�

n

)
: −n

4
≤ k, � <

n

4
; k, � ∈ Z

}
⊂
[

− π

2
,
π

2

)2

T
high
h := Th \ T low

h ⊂ [−π, π)2 \
[

− π

2
,
π

2

)2
.

(3.4.11)

Remark 3.4.4 Assuming periodic boundary conditions, the grid functions (3.4.9)
form a basis of eigenfunctions for any discrete operator Lh with constant coeffi-
cients. �

The LFA formalism is based on the grid functions (3.4.9). However, instead of consider-
ing only a finite number of these functions (varying θ in the finite set Th), we will allow
θ to vary continuously in [−π, π)2. This makes the formulation easier and more conve-
nient. Correspondingly, low frequencies θ vary in [−π/2, π/2)2 and high frequencies θ in
[−π, π)2 \ [−π/2, π/2)2.

Remark 3.4.5 For clarification, if all θ vary continuously in [−π, π)2, the ϕh(θ, x, y) no
longer fulfill the discrete periodic boundary conditions in [0, 1]2 (only those ϕh with θ ∈ Th
fulfil them). Consequently, we will consider the ϕ(θ, ·) on the infinite grid Gh.

If one wants to provide this approach with a rigorous formal framework, as in [378],
one has to be aware that the ϕ(θ, ·) form a nondenumerable basis of a (consequently non-
separable) Hilbert space.

An ambitious theoretical framework for LFA has been given in [373] and in [69]
(rigorous LFA). �
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3.4.5 Smoothing and Approximation Property; a Theoretical Overview

Another approach to analyzing multigrid is to develop a general multigrid convergence
theory. Although, the convergence estimates of such approaches do not, in general, give sat-
isfactorily sharp predictions of actual multigrid convergence, they guarantee h-independent
multigrid convergence in general situations. These theories discuss general requirements
on regularities of solutions, on discretizations, grids, smoothers, coarse grid corrections etc.
for multigrid convergence.

The classical multigrid theory is based on the study of the approximation and smoothing
property of a multigrid method as introduced by Hackbusch [171–173]. The basis of this
theory is a splitting of the two-grid operator M2h

h , which leads, for ν1 = ν, ν2 = 0, to the
estimate

||M2h
h || ≤ ||K2h

h (Lh)
−1|| · ||LhShν || (3.4.12)

(with suitably chosen norms). Based on this splitting, the approximation property

||K2h
h (Lh)

−1|| = ||(Lh)−1 − Ih2h(L2h)
−1I2h

h || ≤ Chδ (δ > 0), (3.4.13)

and the smoothing property

||LhShν || ≤ η(ν)h−δ with η(ν) → 0 (ν → ∞) (3.4.14)

are fundamental. The smoothing property states, in principle, that the smoother reduces
the high frequency components of the error (without amplifying the low frequency com-
ponents). The approximation property requires the coarse grid correction to be reasonable.
Both properties are connected via the choice of the norms.

In particular, for symmetric second-order problems with sufficient regularity, the approx-
imation and smoothing property can be fulfilled, by a suitable choice of multigrid compo-
nents, with, for instance, || · ||S , δ = 2 and η(ν) ∼ 1/ν. Assuming these properties, the
h-independent boundedness of ||M2h

h || (≤ const < 1) follows immediately for ν large
enough.

Hackbusch was able to verify the smoothing and approximation property for many finite
difference and finite element discretizations with sufficient regularity on uniform grids and
for Jacobi- and Gauss–Seidel-type smoothing methods, including anisotropic problems and
corresponding block smoothers. A detailed explanation of this theoretical approach with
many results is given in his classical multigrid book [176]. Based on the smoothing property,
the robustness of a smoother of ILU type (see Section 7.5) for anisotropic problems has
been shown in [420].

The convergence for the V-cycle was first proved by Braess [48, 49]. In his proofs he
also reduced the number of smoothing iterations needed to a fixed number (ν = 2, for
instance). Braess together with Hackbusch [52] proved the convergence of the V-cycle for
general symmetric problems with sufficient regularity.

Whereas the classical theory allows one to prove h-independent W-cycle convergence
without full elliptic regularity (which is missing, for example, for problems on L-shaped
domains, see Section 5.5), a corresponding proof for the V-cycle was finally given in [88].
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A different qualitative multigrid theory aiming to solve some of the open questions
started with the study of hierarchical, i.e., multilevel preconditioners for CG-type methods,
introduced by Yserentant [433]. In particular, the hierarchical bases of finite element spaces
can be used to prove O(N logN) complexity on nonuniform meshes. O(N) complexity
is obtained with the BPX preconditioners [55] for V-cycles on nonuniform grids. The
corresponding theory for multilevel, multigrid and domain-decomposition methods based
on subspace decompositions is due to Bramble, Pasciak, Oswald and Xu. This is the basis
of the multigrid subspace correction theory (see for example [55, 295, 425]). Sharper
convergence estimates based on this theoretical approach, have been presented [45, 114, 295]
and new insights have been gained in classical iteration methods [163, 164].

The theory based on subspace decompositions is valid for symmetric problems without
regularity assumptions on the PDE and on nonuniform grids. Furthermore, it is based on
Galerkin coarse grid operators. An introduction in this theoretical approach is presented in
Appendix B.

For nonsymmetric problems, which are very common in practice, this theory is not yet
well-established. LFA (see Chapter 4) and its variants can help in constructing efficient
multigrid solution methods.

Remark 3.4.6 (Cascadicmultigrid) An approach with some interesting theoretical prop-
erties is the so-called cascadic multigrid method [46, 123]. In cascadic multigrid, the algo-
rithm processes only from coarse to fine grids, with smoothing iterations and/or Krylov
subspace acceleration employed on each grid. For model problems, cascadic multigrid can
be shown to lead to O(N) algorithms if the convergence is measured in the energy norm
|| · ||E . The convergence cannot be proved and is not valid [47] in the practically relevant
|| · ||2 or || · ||∞ norms. �



4
LOCAL FOURIER ANALYSIS

The local Fourier analysis (LFA) can be introduced and used in different ways. In this book,
we present it as a formal tool. The emphasis is laid on explaining and demonstrating how
it is applied in practice.

In our view, LFA is the most powerful tool for the quantitative analysis and the design
of efficient multigrid methods for general problems. We strongly recommend this
approach to multigrid practitioners.

LFA (and also the idea of rigorous Fourier analysis) was introduced by Brandt [58] and
extended and refined in [63, 69]. Contributions have been made by many others [378, 415].
Brandt prefers the term local mode analysis instead of LFA. Both terms denote the same
approach.

In Section 4.1 we will discuss the LFA philosophy, in particular its local nature and
its objective. LFA terminology will be introduced in Section 4.2. This section may appear
somewhat formal at first sight, but the terminology is all elementary, transparent and useful.
Some basic examples will be treated in Section 4.3, where the smoothing factor μloc will
be defined. The smoothing factor is a very important quantity for the design of (efficient)
multigrid methods. Using LFA μloc can easily be calculated for many smoothers as seen
in Section 4.3. For red–black and other “pattern” smoothers, however, an extension of the
definition of the smoothing factor is necessary, which we will introduce in Section 4.5.

Section 4.4 will describe the two-grid LFA. Two-grid LFA is needed if one wants more
insight into the design and structure of a multigrid algorithm than smoothing analysis can
give. Mathematically, the content of this section is closely related to the rigorous two-grid
Fourier analysis (in Section 3.3.4).

In Section 4.6, we will list LFA results for basic multigrid algorithms. In Section 4.7,
the notation and concept of h-ellipticity will be introduced, based on [63, 66]. The
h-ellipticity establishes a qualitative criterion for the existence of local smoothers for a given
discrete operator Lh. h-ellipticity is directly connected to the definition of the smoothing
factor.

98
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Some practical guidelines on the use of LFA for the design of efficient multigrid algo-
rithms are given in Section 4.6.5. A computer program for performing LFA in general sit-
uations is available from http://www.gmd.de/SCAI/multigrid/book.html.
This program was written by R. Wienands.

4.1 BACKGROUND

We first want to explain the local nature of LFA:

Local nature of LFA Under general assumptions, any general discrete opera-
tor, nonlinear, with nonconstant coefficients, can be linearized locally and can be
replaced locally (by freezing the coefficients) by an operator with constant coeffi-
cients. Thus, general linear discrete operators with constant coefficients are con-
sidered in LFA. Formally, they are defined on an infinite grid.

All considerations in the context of LFA are based on grid functions of the form

ϕ(θ, x) = eiθx/h (4.1.1)

(actually on multidimensional analogs of them). Here, x varies in the given infinite gridGh
and θ is a continuous parameter that characterizes the frequency of the grid function under
consideration.

In the context of LFA, all operators which we will deal with (including Lh, the
smoothing and intergrid transfer operators Sh, IHh , IhH , the coarse grid operator
LH as well as the coarse grid correction and two-grid operators KHh and MH

h ,
respectively) will operate on these grid functions ϕ(θ, ·) and are considered on the
infinite grids Gh and GH , respectively.
The goal of LFA is to determine smoothing factors for Sh and two-grid convergence
factors as well as error reduction factors forMH

h . We denote these quantities by

μloc(Sh), ρloc(M
H
h ), σloc(M

H
h ).

The spectral radius ρloc gives insight into the asymptotic convergence behavior, whereas
σloc(M

H
h ) refers to the error reduction in one iteration step measured in an approp-

riate norm.
Since the ϕ(θ, ·) are defined on the infinite grid Gh, the influence of boundaries and

of boundary conditions is not taken into account. At first sight, this may be regarded as a
deficiency of the LFA approach. However, the idea of LFA is compatible with neglecting
the effects of boundaries in the following sense.
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The objective of LFA is to determine the quantitative convergence behavior and effi-
ciency an appropriate multigrid algorithm can attain if a proper boundary treatment
is included.

A proper boundary treatment typically requires only additional suitable relaxations near the
respective boundaries, an amount of work which is negligible for h → 0. In the following
chapters, we will see examples of such boundary relaxation.

4.2 TERMINOLOGY

In describing the formalism of LFA, we confine ourselves to the 2D case and to standard
coarsening in this section, for simplicity and in order to avoid formal complications (like
many indices). But we now use a vector terminology that immediately carries over to d
dimensions. We write x = (x1, x2) instead of (x, y) etc.

In the following,
h = (h1, h2),

is a fixed mesh size (i.e., a vector). With h we associate the infinite grid Gh (1.3.3), which
we now write in the form

Gh = {x = kh := (k1h1, k2h2), k ∈ Z
2}.

On Gh, we consider a discrete operator Lh corresponding to a difference stencil

Lh
∧= [sκ]h (κ = (κ1, κ2) ∈ Z

2) (4.2.1)

i.e. Lhwh(x) =
∑
κ∈V

sκwh(x + κh) (4.2.2)

with constant coefficients sκ ∈ R (or C), which, of course, will usually depend on h. Here,
V is again a finite index set.

The fundamental quantities in the LFA are the grid functions

ϕ(θ, x) = eiθ·x/h := eiθ1x1/h1eiθ2x2/h2 for x ∈ Gh . (4.2.3)

We assume that θ varies continuously in R
2. One recognizes that

ϕ(θ, x) ≡ ϕ(θ′, x) for x ∈ Gh
if and only if

θ1 = θ ′
1(mod 2π) and θ2 = θ ′

2(mod 2π)

(i.e. if the difference between θ1 and θ ′
1 and the difference between θ2 and θ ′

2 are both
multiples of 2π ). Therefore, it is sufficient to consider

ϕ(θ, x) with θ ∈ [−π, π)2.
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For θ ∈ [−π, π)2, we also use the notation −π ≤ θ < π , where the inequalities refer to
both components θ1 and θ2.

The grid functions ϕ for −π ≤ θ < π are linearly independent onGh. Since the ϕ(θ, x)
are defined on Gh and in that respect depend on h, we sometimes write ϕh(θ, x) instead of
ϕ(θ, x), for clarity.

Lemma 4.2.1 For −π ≤ θ < π , all grid functions ϕ(θ, x) are (formal) eigenfunctions
of any discrete operator which can be described by a difference stencil as in (4.2.1). The
relation

Lhϕ(θ, x) = L̃h(θ)ϕ(θ, x) (x ∈ Gh)
holds, with

L̃h(θ) =
∑
κ

sκe
iθ · κ . (4.2.4)

We call L̃h(θ) the formal eigenvalue or the symbol of Lh.

The proof of Lemma 4.2.1 is straightforward.

Example 4.2.1 The symbol of the standard discrete Laplace operator Lh = −�h is

L̃h(θ) = 1

h2
(4 − (eiθ1 + eiθ2 + e−iθ1 + e−iθ2)) = 2

h2
(2 − (cos θ1 + cos θ2)). �

In addition to Gh, we assume an (infinite) coarse grid

GH = {x = κH : κ ∈ Z
2}

is obtained by standard coarsening of Gh (H = (2h1, 2h2)). Other coarsenings can be
treated similarly by LFA (see Section 4.6.3).

For the smoothing and two-grid analysis, we again have to distinguish high and low
frequency components on Gh with respect to GH . The definition is based on the trivial but
fundamental phenomenon that only those frequency components

ϕ(θ, ·) with − π

2
≤ θ <

π

2

are distinguishable onGH . For each θ′ ∈ [−π/2, π/2)2, three other frequency components
ϕ(θ, ·) with θ ∈ [−π, π)2 coincide on GH with ϕ(θ′, ·) and are not distinguishable (not
“visible”) on GH . Actually, we have

ϕ(θ, x) = ϕ(θ′, x) for x ∈ GH if and only if θ = θ′(mod π) (4.2.5)

(see also Lemma 4.4.1 below). This leads to the following definition.
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2
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2
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Figure 4.1. Low frequencies (interior white region) and high frequencies (shaded region); for a
given low frequency θ(◦), the three frequencies θ for which the corresponding ϕ(θ, x) coincide on
GH (H = (2h1, 2h2)) are marked by •.

Definition 4.2.1 (high and low frequencies for standard coarsening)

ϕ low frequency component ⇐⇒ θ ∈ T low :=
[

− π

2
,
π

2

)2

ϕ high frequency component ⇐⇒ θ ∈ T high := [−π, π)2
∖[

− π

2
,
π

2

)2

(see also Fig. 4.1).

This definition is analogous to (2.1.8) and (3.4.11), respectively. In addition to speaking
of high and low frequency components ϕ(θ, ·), we will, for simplicity, sometimes call the
corresponding θs high frequency or low frequency.

4.3 SMOOTHING ANALYSIS I

We will start our discussion and definition of the smoothing factorμ by looking at some very
simple but fundamental examples. Considering the discrete Laplace operator Lh = −�h
(h = h1 = h2), we want to show how LFA is used to analyze the smoothing behavior of
GS-LEX and similar relaxation schemes and how the smoothing factor is actually calculated.
These examples are fundamental for two reasons. First, GS-LEX is the classical relaxation
method which has been used, generalized and analyzed since the beginning of numerical
analysis. Secondly, GS-LEX has natural smoothing properties, but the rigorous Fourier
analysis presented in Chapter 3 cannot be applied directly to it. LFA, however, is applicable
and shows the smoothing properties of GS-LEX very clearly.
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Let us consider a discretized PDE, Lhuh = fh, and assume that a relaxation method
can be written locally as

L+
h w̄h + L−

h wh = fh, (4.3.1)

wherewh corresponds to the old approximation of uh (approximation before the relaxation
step) and w̄h to the new approximation (after the step). In this sense, the relaxation is
characterized by a splitting

Lh = L+
h + L−

h . (4.3.2)

Example 4.3.1 (GS-LEX) For GS-LEX applied to the 2D Laplace operator Lh = −�h,
the splitting reads

L+
h = 1

h2

⎡⎣ 0
−1 4 0

−1

⎤⎦, L−
h = 1

h2

⎡⎣ −1
0 0 −1

0

⎤⎦. (4.3.3)

�

Example 4.3.2 (GS-LEX in 3D) In 3D, GS-LEX for Lh = −�h is characterized by

L+
h = 1

h2

⎡⎣⎡⎣0 0 0
0 −1 0
0 0 0

⎤⎦
h

⎡⎣ 0 0 0
−1 6 0

0 −1 0

⎤⎦
h

⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦
h

⎤⎦
and

L−
h = 1

h2

⎡⎣⎡⎣0 0 0
0 0 0
0 0 0

⎤⎦
h

⎡⎣0 −1 0
0 0 −1
0 0 0

⎤⎦
h

⎡⎣0 0 0
0 −1 0
0 0 0

⎤⎦
h

⎤⎦. �

Example 4.3.3 (ω-JAC) In 2D, ω-JAC for Lh = −�h is characterized by

L+
h = 1

h2

⎡⎣ 0
0 4/ω 0

0

⎤⎦, L−
h = 1

h2

⎡⎣ −1
−1 4(1 − 1/ω) −1

−1

⎤⎦. (4.3.4)

�

Subtracting (4.3.1) from the discrete equation Lhuh = fh, we obtain the local relation

L+
h v̄h + L−

h vh = 0

or
v̄h = Shvh

for the errors v̄h = uh − w̄h, vh = uh −wh, where Sh is the resulting smoothing operator.
From this we immediately get the (infinite grid) Fourier representation of L−

h , L+
h , Sh.
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Applying L−
h and L+

h to the formal eigenfunctions ϕ(θ, x), we obtain

L−
h e
iθ · x/h = L̃−

h (θ)e
iθ · x/h

L+
h e
iθ · x/h = L̃+

h (θ)e
iθ · x/h,

where the L̃−
h and L̃+

h are the symbols (formal eigenvalues) of the operators L−
h and L+

h ,
respectively.

Lemma 4.3.1 Under the assumptions (4.3.1) and (4.3.2), all ϕ(θ, ·)with L̃+
h (θ) �=

0 are eigenfunctions of Sh:

Shϕ(θ, x) = S̃h(θ)ϕ(θ, x) (−π ≤ θ < π) (4.3.5)

with the amplification factor

S̃h(θ) := − L̃−
h θ)

L̃+
h (θ)

. (4.3.6)

Example 4.3.4 For GS-LEX, we have, for example,

L+
h e
iθ · x/h = 1

h2

⎡⎣ 0
−1 4 0

−1

⎤⎦ eiθ · x/h

= 1

h2
(4 − e−iθ1 − e−iθ2)eiθ · x/h.

The symbols L̃−
h , L̃+

h , S̃h of the splitting in Example 4.3.1 are thus

L̃+
h (θ) = 1

h2
(4 − e−iθ1 − e−iθ2)

L̃−
h (θ) = − 1

h2
(eiθ1 + eiθ2)

S̃h(θ) = − L̃
−
h (θ)

L̃+
h (θ)

= eiθ1 + eiθ2

4 − e−iθ1 − e−iθ2
. �

Based on Lemma 4.3.1, we can immediately define the smoothing factor. According to
Definition 4.2.1, we distinguish high and low frequency components ϕ(θ, ·) and define the
smoothing factor μloc(Sh) by

Definition 4.3.1

μloc = μloc(Sh) := sup{| S̃h(θ)|: θ ∈ T high} . (4.3.7)
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For GS-LEX and standard coarsening, for example, this definition results in

μloc(Sh) = sup

{∣∣∣∣ eiθ1 + eiθ2

e−iθ1 + e−iθ2 − 4

∣∣∣∣: θ ∈ T high
}
.

Since S̃h(θ) attains its maximum 0.5 for (θ1, θ2) = (π/2, arccos 4/5), we obtain

μloc(Sh) = 0.5 for GS-LEX .

The above definition of a smoothing factor and its value of 0.5 for GS-LEX were first given
by Brandt [57].

Example 4.3.5 (smoothing factor for ω-JAC) For Lh = −�h, the application to ω-JAC
is straightforward. According to (4.3.4) and Definition 4.3.1, the symbol S̃h(θ) is

S̃h(ω, θ) = 1 − ω

2
(2 − cos θ1 − cos θ2).

For the smoothing factor, we obtain

μloc(Sh(ω)) = max
{∣∣∣1 − ω

2

∣∣∣, |1 − 2ω|
}
. �

This is the same result that we have obtained in Section 2.1.2 for μ∗(ω). So, ω-JAC for
symmetric operators can be treated by both rigorous Fourier analysis and LFA. The results
are the same, apart from the following slight formal difference: in comparison with (2.1.9),
we recognize that the h-dependence of μ(Sh(ω)) has disappeared here. This is due to the
fact that θ varies continuously in T high.

Remark 4.3.1 If Lh corresponds to a differential operator which contains derivatives of
different orders, μloc(Sh) will, in general, depend explicitly on h. �

Example 4.3.6 (SOR or ω-GS-LEX) We again consider the discrete Laplacian Lh =
−�h. If we apply GS-LEX with an additional relaxation parameter ω, we speak of
ω-GS-LEX relaxation corresponding to the classical SOR method [431].

We can apply LFA (smoothing analysis) to investigate the influence of the parameter ω
on the smoothing properties of SOR. The splitting of Lh for SOR is given by

L+
h = 1

h2

⎡⎣ 0
−1 4/ω 0

−1

⎤⎦, L−
h = 1

h2

⎡⎣ −1
0 4(1 − 1/ω) −1

0

⎤⎦. (4.3.8)

Figure 4.2 shows the behavior of the smoothing factorμloc(Sh(ω))with respect toω. Using
a relaxation parameter ω �= 1 in ω-GS-LEX hardly improves its smoothing property for
this problem in 2D. The optimal value of ω is not exactly 1 but very close to 1. The gain
by using the optimal ω would be very small and does not pay if the additional work (two
operations per point per smoothing step) is taken into account. �
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Figure 4.2. μloc (ω-GS-LEX) as a function of ω.

Many practically important smoothing procedures fulfil the assumptions of Lemma 4.3.1
and the corresponding Definition 4.3.1 of a smoothing factor can be applied to them. As we
have seen, pointwise GS-LEX and ω-JAC type relaxations are among them, but also block
versions of GS andω-JAC (line and plane relaxation), which we will discuss in Sections 5.1
and 5.2, can be treated this way. Furthermore, ILU-type smoothers, which will be treated
in Section 7.5, belong to this class of smoothers.

On the other hand, relaxation methods like red–black Gauss–Seidel do not fulfil the
above assumptions. In particular, they cannot be represented directly by a splitting as
in (4.3.1). However, the above assumptions can be generalized to cover red–black-type
relaxations (see Section 4.5).

4.4 TWO-GRID ANALYSIS

Let us now apply LFA to the two-grid operator

MH
h = S

ν2
h K

H
h S

ν1
h with the coarse grid correction operator KHh . (4.4.1)

In order to calculate convergence factors and other relevant quantities of MH
h , we will

analyze how the operators Lh, IHh , LH , IhH and Sh act on the Fourier components ϕ(θ, ·).
The analysis uses the fact that quadruples of the ϕ(θ, ·) coincide on GH . For any low
frequency θ = (θ1, θ2) ∈ T low = [−π/2, π/2)2, we consider the frequencies

θ(0,0) := (θ1, θ2), θ(1,1) := (θ̄1, θ̄2),

θ(1,0) := (θ̄1, θ2), θ(0,1) := (θ1, θ̄2),

where

θ̄i :=
{
θi + π if θi < 0

θi − π if θi ≥ 0
(4.4.2)

(see also Fig. 4.1).
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Lemma 4.4.1
(1) For any low frequency θ(0,0) ∈ T low, we have

ϕ(θ(0,0), x) ≡ ϕ(θ(1,1), x) ≡ ϕ(θ(1,0), x) ≡ ϕ(θ(0,1), x) (x ∈ G2h). (4.4.3)

(2) Each of these four Fourier components ϕ(θα, ·) = ϕh(θ
α, ·) with α ∈ {(0, 0), (1, 1),

(1, 0), (0, 1)} coincides on G2h with the respective grid function ϕ2h(2θ(0,0), ·):
ϕh(θ

α, x) ≡ ϕ2h(2θ(0,0), x) (x ∈ G2h). (4.4.4)

The proof of this lemma is straightforward.
For θ(1,1), for example, we find

ϕh(θ
(1,1), x) = eiθ̄1x1/h1eiθ̄2x2/h2 = ei(θ1±π)x1/h1ei(θ2±π)x2/h2

= eiθ1x1/h1e±iπ2k1eiθ2x2/h2e±iπ2k2 (xi = 2kih ∈ G2h, ki ∈ Z)

= eiθ12x1/(2h1)eiθ22x2/(2h2) = ϕ2h(2θ(0,0)).

Definition 4.4.1 (harmonics for standard coarsening) The corresponding four ϕ(θα, ·)
(and sometimes also the corresponding frequencies θα) are called harmonics (of each other).
For a given θ = θ(0,0) ∈ T low, we define its four-dimensional space of harmonics by

Eθh := span[ϕ(θα, ·): α = (α1, α2) ∈ {(0, 0), (1, 1), (0, 1), (1, 0)}]. (4.4.5)

The significance of these spaces Eθh is that they turn out to be invariant under the
two-grid operatorMH

h under general assumptions.

All ϕh(θ, ·) are formal eigenfunctions of Lh, and under the assumptions made in the
previous section also of Sh. The operator KHh intermixes Fourier components with each
other. This is a consequence of the fact that the two different grids,Gh andGH , are involved.
In the following, we will discuss this behavior in detail. For that purpose, we consider an
arbitrary ψ ∈ Eθh . We can represent ψ in the form

ψ = A(0,0)ϕ(θ(0,0), ·)+ A(1,1)ϕ(θ(1,1), ·)+ A(1,0)ϕ(θ(1,0), ·)+ A(0,1)ϕ(θ(0,1), ·)
(4.4.6)

with uniquely defined coefficients or amplitudes Aα . We will analyze how the coef-
ficients Aα are transformed if the multigrid components in (4.4.1) are applied to ψ .
We will treat each of the multigrid components separately in the following, but first
summarize the results with respect to KHh and MH

h . For clarity, we now write 2h
instead of H .

For the following theorem, we make the general assumption that Lh, I2h
h , L2h and

Ih2h are represented by stencils on Gh and G2h. Furthermore, in forming K2h
h and M2h

h
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according to (4.4.1), we have implicitly assumed that (L2h)
−1 exists. This assumption will

be discussed below. All other assumptions are made explicitly in the theorem itself.

Theorem 4.4.1
(1) Under the above assumptions, the coarse grid correction operator K2h

h is repre-

sented on Eθh by the (4 × 4)-matrix K̂2h
h (θ)

K̂2h
h (θ) = Îh − Î h2h(θ)(L̂2h(2θ))−1Î 2h

h (θ)L̂h(θ) (4.4.7)

for each θ ∈ T low. Here, Îh, L̂h(θ) are (4×4)-matrices, Î 2h
h (θ) is a (4×1)-matrix,

(L̂2h(2θ))−1 is a (1 × 1)-matrix, and Î h2h(θ) is a (1 × 4)-matrix.

In other words: If we apply K2h
h to any ψ ∈ Eθh , the corresponding coefficients

Aα in (4.4.6) are transformed according to⎛⎜⎜⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎟⎟⎠ ⇐ K̂2h
h (θ)

⎛⎜⎜⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎟⎟⎠. (4.4.8)

(2) If the spaces Eθh are invariant under the smoothing operator Sh, i.e.

Sh : Eθh → Eθh for all θ ∈ T low,
(4.4.9)

we also obtain a representation ofM2h
h onEθh by a (4 × 4)-matrix M̂2h

h (θ) with respect
to Eθh . Here,

M̂2h
h (θ) = Ŝh(θ)

ν2K̂2h
h (θ) Ŝh(θ)

ν1 (4.4.10)

with K̂2h
h (θ) from (4.4.7) and the (4 × 4)-matrix Ŝh(θ) which represents Sh. This means

thatM2h
h ψ can be written as

M2h
h ψ = B(0,0)ϕ(θ(0,0), ·)+ B(1,1)ϕ(θ(1,1), ·)

+ B(1,0)ϕ(θ(1,0), ·)+ B(0,1)ϕ(θ(0,1), ·) (4.4.11)

where ⎛⎜⎜⎝
B(0,0)

B(1,1)

B(1,0)

B(0,1)

⎞⎟⎟⎠ = M̂2h
h (θ)

⎛⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠. (4.4.12)
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We will prove the above theorem and specify the (4 × 4)-matrices K̂2h
h (θ) and M̂2h

h (θ)

in more detail below. But first, we discuss the assumption that (L2h)
−1 exists. Apart from

the existence of (L2h)
−1, the existence of (Lh)−1 is also implicitly assumed. If (Lh)−1 does

not exist, we can, in general, not expect that any iterative method will be convergent. As
the following example shows, these assumptions are not formally fulfilled even in standard
situations.

Example 4.4.1 Let Lh = −�h and L2h = −�2h be discretizations of the Laplacian on
the infinite grid. Then, obviously, for θ = 0 (i.e. ϕ(θ, x) ≡ 1), the corresponding symbols
(formal eigenvalues) are zero:

L̃h(θ) = L̃2h(θ) = 0.

In addition, L̃2h(θ) = 0 for all four harmonics which coincide on G2h with ϕ ≡ 1, i.e.
θ = (θ1, θ2) ∈ {(0, 0), (−π, 0), (0,−π), (−π,−π)}. We will find the same behavior for
those Lh (= [sκ,h]) and L2h (= [sκ,2h]), for which

∑
κ∈V

sκ,h = 0 and
∑
κ∈V

sκ,2h = 0, respectively.

�

Remark 4.4.1 These sums are 0 for consistent discretizations of those differential opera-
tors L on an infinite grid which contain only derivatives of u. �

The complications illustrated in Example 4.4.1 are only formal ones (due to the infinite
grid assumption). If we have, for example, an application with Dirichlet boundary condi-
tions, we do not have to bother about these symbols and the corresponding eigenfunctions.
If we have a singular discrete operator (due to, for example, periodic or pure Neumann
boundary conditions), this singular behavior has to be taken into account separately by
any iterative solver. In order to make sure that M2h

h can be formed and gives a reasonable
iterative operator, we remove all θ from our analysis for which Lh or L2h have the symbol
0. That is, we will exclude the set

� =
{
θ ∈

[
− π

2
,
π

2

)2
: L̃h(θ) = 0 or L̃2h(θ) = 0

}
. (4.4.13)

From the above theorem, we can draw conclusions for the convergence behavior of the
two-grid method under consideration: we have reduced the problem to the investigation (of
spectral radii and norms) of (4 × 4)-matrices.
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Supplement Based on the representation ofM2h
h by the (4×4)-matrices M̂2h

h (θ),
we can calculate the asymptotic convergence factor

ρloc(M
2h
h ) = sup{ρloc(M̂

2h
h (θ)): θ ∈ T low, θ �∈ �}. (4.4.14)

Here, ρloc(M̂
2h
h (θ)) is the spectral radius of the (4 × 4)-matrix M̂2h

h (θ).
Similarly, we can introduce an error reduction factor σloc(M

2h
h ) with respect to an

appropriate norm. In particular, we consider

σloc,S(M
2h
h ) = sup{||M̂2h

h (θ)||: θ ∈ T low, θ �∈ �}. (4.4.15)

Here || · || denotes the spectral norm associated with the Euclidean vector norm
in C

4.

We will now derive the representation ofM2h
h by (4 × 4)-matrices in Theorem 4.4.1 by

considering each multigrid component separately.

OperatorsLh, Ih Under the general assumption thatLh is characterized by the difference
stencil Lh

∧= [sκ]h, Lemma 4.2.1 immediately implies that the Aα are transformed by Lh
as follows:⎛⎜⎜⎝

A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠ ⇐

⎛⎜⎜⎝
L̃h(θ

(0,0))

L̃h(θ
(1,1))

L̃h(θ
(1,0))

L̃h(θ
(0,1))

⎞⎟⎟⎠
⎛⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠.
(4.4.16)

We denote this (4 × 4)-matrix by L̂h(θ). Trivially, the identity operator Ih is represented
by the (4 × 4)-identity matrix on Eθh .

Restriction operator I 2h
h We also assume that the transfer operator I2h

h is characterized
by a stencil

I 2h
h

∧= [t̂κ]2h
h , i.e. I2h

h wh(x) =
∑
κ∈V

t̂κwh(x + κh), (x ∈ G2h) (4.4.17)

with a finite index set V . Then we obtain

I 2h
h ϕh(θ

α, ·) = Ĩ2h
h (θ

α)ϕ2h(2θ(0,0), ·) (4.4.18)

(see (4.4.4)) with

Ĩ2h
h (θ

α) :=
∑
κ∈V

t̂κe
iθα·κ. (4.4.19)
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For the coefficients Aα , this results in the transformation

A2h = Î2h
h (θ)

⎛⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠, (4.4.20)

whereA2h is the resulting coefficient of the 2hFourier componentϕ2h(2θ(0,0), ·) and Î2h
h (θ)

is the (1 × 4)-matrix

[Ĩ 2h
h (θ

(0,0)), Ĩ2h
h (θ

(1,1)), Ĩ2h
h (θ

(1,0)), Ĩ2h
h (θ

(0,1))].

Example 4.4.2 (injection and FW) For injection, the Fourier symbol is 1 for all
frequencies:

Ĩ 2h
h (θ

α) = 1

For FW, we obtain

Ĩ2h
h (θ

α) = 1
4 (1 + cos θ̄1)(1 + cos θ̄2)

from (4.4.19) with θ̄i as in (4.4.2). �

Solution on 2h-grid According to the general assumption, L2h is also given by a stencil:

L2h
∧= [sκ,2h]2h.

For θ = θ(0,0) and θ ∈ T low, we thus have

L2hϕ2h(2θ, ·) = L̃2h(2θ)ϕ2h(2θ, ·) (4.4.21)

with the symbol

L̃2h(2θ) =
∑
κ∈V

sκ,2he
i2θ·κ . (4.4.22)

The solution on the 2h-grid induces (for 2θ �∈ �) for the respective coefficient

A2h ⇐ 1

(L̃2h(2θ))
A2h. (4.4.23)



112 MULTIGRID

Interpolation operator Ih2h For the interpolation operator, we use the stencil nota-
tion from Section 2.3.4. We can prove the following representation for Ih2h if applied to
ϕ2h(2θ(0,0), ·):

Ih2hϕ2h(2θ(0,0), ·) =
∑
α

Ĩ h2h(θ
α)ϕ(θα, ·) with Ĩ h2h(θ

α) = 1
4

∑
κ∈V

tκe
iθα·κ .

Interpreting this representation for the coefficients Aα and A2h of ϕh(θα, ·) and
ϕ2h(2θ(0,0), ·), we obtain⎛⎜⎜⎝

A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠ ⇐ Î h2h(θ
(0,0))A2h with Î h2h(θ

(0,0)) =

⎛⎜⎜⎜⎜⎝
Ĩ h2h(θ

(0,0))

Ĩ h2h(θ
(1,1))

Ĩ h2h(θ
(1,0))

Ĩ h2h(θ
(0,1))

⎞⎟⎟⎟⎟⎠. (4.4.24)

For the proof of the above representation, we can apply an argument like that already
used in Section 3.3.4 (step 3) in the context of rigorous Fourier analysis. Starting with the
stencil representation of Ih2h, we can find a representation of Ih2hϕ2h(2θ(0,0), ·) in terms of
ϕh(θ

(0,0), ·) similar to the one in (3.3.14). Here the coefficients δ1, δ2, δ3, δ4 correspond to
the four types of grid points characterized by the indices (i, j) with x1 = ih, x2 = jh:
even–even, odd–odd, odd–even, even–odd. We use the following remark, which corresponds
directly to Remark 3.3.4.

Remark 4.4.2 Any grid function c(x1, x2)e
iθ·x/h with c(x1, x2) as in (3.3.15) can be

represented on Gh as a linear combination

a(0,0)eiθ
(0,0) · x/h + a(1,1)eiθ(1,1) · x/h + a(1,0)eiθ(1,0) · x/h + a(0,1)eiθ(0,1) · x/h,

where the coefficients a(0,0), a(1,1), a(1,0), a(0,1) are given by (3.3.16). �

Example 4.4.3 For the bilinear interpolation operator (2.3.8), we obtain (with θ = θ(0,0))

Ih2hϕ2h(2θ, x) = ϕ2h(2θ, x) ·

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x1/h1 and x2/h2 even

cos θ1 cos θ2 if x1/h1 and x2/h2 odd

cos θ1 if x1/h1 odd, x2/h2 even

cos θ2 if x1/h1 even, x2/h2 odd.

(4.4.25)

The above remark gives⎛⎜⎜⎜⎜⎝
Ĩ h2h(θ

(0,0))

Ĩ h2h(θ
(1,1))

Ĩ h2h(θ
(1,0))

Ĩ h2h(θ
(0,1))

⎞⎟⎟⎟⎟⎠ = 1

4

⎛⎜⎜⎝
(1 + cos θ1)(1 + cos θ2)
(1 − cos θ1)(1 − cos θ2)
(1 + cos θ1)(1 − cos θ2)
(1 − cos θ1)(1 + cos θ2)

⎞⎟⎟⎠ (4.4.26)
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or simply
Ĩ h2h(θ

α) = 1
4 (1 + cos θ̄1)(1 + cos θ̄2),

which is the same as for the FW operator (up to a constant scaling factor). This also reflects
the fact that bilinear interpolation and FW are transpose to each other. �

Remark 4.4.3 It can be shown that the symbol of linear interpolation in d dimensions can
be written as the product

Ĩ h2h(θ
α) =

d∏
j=1

1 + cos θ̄j
2

.

If in d dimensions, 2dI2h
h is the transpose of some interpolation Ih2h, we have Î2h

h (θ) =
2−d Î h2h(θ)

T . �

From the representations ofLh, I 2h
h , Ih2h, Ih and the solution on the coarse grid, we imme-

diately obtain the representation of K2h
h . In order to extend it to M2h

h , we have to include
the representations of Sh in the analysis.

Smoothing operator Sh This is particularly simple if the assumptions of the last section
are fulfilled. In that case all Fourier components ϕ(θ, .) are formal eigenfunctions of Sh,
and Sh can be represented by the diagonal (4 × 4)-matrix⎛⎜⎜⎝

A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠ ⇐

⎛⎜⎜⎝
S̃h(θ

(0,0))

S̃h(θ
(1,1))

S̃h(θ
(1,0))

S̃h(θ
(0,1))

⎞⎟⎟⎠
⎛⎜⎜⎝
A(0,0)

A(1,1)

A(1,0)

A(0,1)

⎞⎟⎟⎠ (4.4.27)

for each θ ∈ T low. Under the more general assumption (4.4.9), Sh is represented on Eθh by
a (4 × 4)-matrix Ŝh(θ).

4.5 SMOOTHING ANALYSIS II

In Section 4.3, we considered smoothing procedures which have the property that all ϕ(θ, ·)
are eigenfunctions of the smoothing operators Sh. For such smoothers, the definition of a
smoothing factor μloc(Sh) is straightforward. In the two-grid analysis in the last section,
we made the more general assumption that only the invariance property

Sh : Eθh → Eθh for all θ ∈ T low (4.5.1)

is valid for the smoothing operator under consideration. This assumption is fulfilled for a
larger class of smoothers, including GS-RB relaxation as well as “multicolor” and “zebra”-
type relaxations which will be described in the following chapters.
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In the following, we will generalize the definition of the smoothing factor for all
smoothers which have the invariance property (4.5.1).

We will describe a concrete class of smoothing procedures including red–black
type smoothers, based on a straightforward generalization of the splitting formalism in
Section 4.3.

If a smoother has the invariance property (4.5.1), high and low frequencies may be
intermixed by Sh. In order to be able to measure the smoothing properties of Sh, the idea
is to assume an “ideal” coarse grid operatorQ2h

h (instead of the real coarse grid operator
K2h
h ), which annihilates the low frequency error components and leaves the high frequency

components unchanged. More precisely,Q2h
h is a projection operator, defined on Eθh by

Q2h
h ϕ(θ, ·) =

{
0 if θ = θ(0,0) ∈ T low

ϕ(θ, ·) if θ ∈ {θ(1,0), θ(0,1), θ(1,1)}. (4.5.2)

As a consequence, the (4×4)-matrix K̂2h
h (θ) in (4.4.7) is replaced by the (4×4)-projection

matrix

Q̂2h
h (θ) = Q̂2h

h =

⎛⎜⎜⎝
0

1
1

1

⎞⎟⎟⎠ for θ ∈ T low (4.5.3)

for the smoothing analysis. Furthermore, we replace

M2h
h = S

ν2
h K

2h
h S

ν1
h by S

ν2
h Q

2h
h S

ν1
h

and ρloc(M
2h
h ) in (4.4.14) by

ρloc(S
ν2
h Q

2h
h S

ν1
h ) := sup

{
ρ(Ŝh(θ)

ν2Q̂2h
h Ŝh(θ)

ν1): θ ∈ T low}. (4.5.4)

This quantity ρloc(S
ν2
h Q

2h
h S

ν1
h ) is a good measure of the total smoothing effect resulting

from ν = ν1 + ν2 smoothing steps. In addition, one can expect that this quantity gives a
realistic prediction of the convergence factor ρloc(M

2h
h ) as long as the replacement ofK2h

h

by Q2h
h is acceptable. Practically this means that the transfer and the coarse grid operator

should be sufficiently good and that not too many smoothing steps are carried out per
two-grid cycle. Since

ρloc(Ŝh(θ)
ν2Q̂2h

h Ŝh(θ)
ν1) = ρloc(Q̂

2h
h Ŝh(θ)

ν) (with ν = ν1 + ν2),

we arrive at the following definition of a general LFA smoothing factor.

Definition 4.5.1 Under the assumption that Sh has the invariance property (4.5.1), we
define the smoothing factor μloc(Sh, ν) of Sh by

μloc(Sh, ν) := sup

{
ν

√
ρloc(Q̂

2h
h Ŝh(θ)

ν), θ ∈ T low
}
. (4.5.5)

Here, μ depends on ν!
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Remark 4.5.1 For the practical calculation of μloc(Sh, ν), note that the first row of the
(4 × 4)-matrixQ2h

h S
ν
h is zero. �

Remark 4.5.2 For the special case that all ϕ(θ, ·) are eigenfunctions of Sh, the above
definition coincides with Definition 4.3.1 given in Section 4.3. In that case Ŝh(θ)ν is
the diagonal matrix in (4.4.27) and Q̂2h

h Ŝh(θ)
ν contains only the high frequency symbols

S̃h(θ
(1,0))ν, S̃h(θ

(0,1))ν, S̃h(θ
(1,1))ν . �

4.5.1 Local Fourier Analysis for GS-RB

We now apply the above general definition of a smoothing factor. For that purpose, we
first generalize the assumption on smoothing procedures in Section 4.3 in such a way that
red–black type smoothers and similar “pattern” smoothers, like four-color relaxation, are
included.

A corresponding smoothing operator Spartial
h is then given by

S
partial
h vh(x) =

{
−(L+

h )
−1L−

h vh(x) for x ∈ G̃h
vh(x) for x ∈ Gh\G̃h

(4.5.6)

(assuming that (L+
h )

−1 exists). Here, G̃h is a subset of Gh, typically defined by a pattern
that is characteristic for the smoothing procedure under consideration. Obviously, only the
grid points of G̃h are processed in the above partial relaxation step; the remaining points
(Gh\G̃h) are not treated.

A typical example for such a smoothing operator is the GS-RB smoother forLh = −�h.
Using the above notation, GS-RB consists of two partial steps, each of which is of Jacobi
type. In the first partial step, G̃h consists of the “red” and in the second step G̃h consists of
the “black” points ofGh. For both steps, we now use (4.3.4) with a relaxation parameter ω.

The partial step smoothing operators, denoted by SRED
h and SBLACK

h , respectively, then
both have the form (4.5.6), with G̃h being the red/black points of Gh, respectively. The
complete GS-RB smoothing operator is, of course, the product

SRB
h = SBLACK

h SRED
h . (4.5.7)

In order to calculate the smoothing factor (4.5.5) of SRB
h , we must find the (4 × 4)-matrix

representation ŜRB
h (ω, θ) for SRB

h (ω). Since we have

Sh(ω) = −(L+
h )

−1L−
h = Ih − ωh2

4
Lh

for ω-JAC (4.3.4), we find from (4.5.6) that

S
partial
h ϕ(x) =

{
(1 − (ωh2/4)L̃h(θ))ϕ(θ, x) (x ∈ G̃h)
ϕ(θ, x) (x ∈ Gh\G̃h).

(4.5.8)
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This is not yet a Fourier representation of Spartial
h . Note, however, that any ψ ∈ Eθh

ψ(θ, x) =
{
β1ϕ(θ, x) (x ∈ G̃h)
β2ϕ(θ, x) (x ∈ Gh\G̃h)

(4.5.9)

(with a fixed Fourier component ϕ and constants β1 and β2) can easily be written as a linear
combination of ϕ(θα, ·) with θα = θ and ϕ(θᾱ, ·), where ᾱ = (1, 1)− α. This is actually a
special case of Remark 4.4.2. We obtain the following (4 × 4)-matrix representations for
SRED
h and SBLACK

h with respect to Eθh(−π/2 ≤ θ < π/2):

ŜRED
h (θ, ω) = 1

2

⎛⎜⎜⎝
A(0,0) + 1 A(1,1) − 1 0 0
A(0,0) − 1 A(1,1) + 1 0 0

0 0 A(1,0) + 1 A(0,1) − 1
0 0 A(1,0) − 1 A(0,1) + 1

⎞⎟⎟⎠

ŜBLACK
h (θ, ω) = 1

2

⎛⎜⎜⎝
A(0,0) + 1 −A(1,1) + 1 0 0

−A(0,0) + 1 A(1,1) + 1 0 0
0 0 A(1,0) + 1 −A(0,1) + 1
0 0 −A(1,0) + 1 A(0,1) + 1

⎞⎟⎟⎠
with

Aα := 1 − ωh2

4
L̃h(θ

α).

From this representation, one can compute the smoothing factor μloc(S
RB
h (ω), ν). For the

standard value ω = 1, we obtain

μloc(ν) = max
{1

4 , χ(ν)
}

(4.5.10)

(see [378]), where

χ(ν) =
(2ν − 1

2ν

)2/
ν
√

2(2ν − 1). (4.5.11)

Some particular values of χ(ν) are χ(1) = 0.125, χ(2) = 0.229 and χ(3) = 0.322.
χ(ν) ∼ ν

√
1/(4eν) for ν → ∞.

Remark 4.5.3 The smoothing analysis of ω-GS-RB can also be carried out in the context
of the rigorous Fourier analysis (see Section 7.5 of [378]). The representation of the (4×4)-
block matrices is the same as in the LFA case. �

4.6 SOME RESULTS, REMARKS AND EXTENSIONS

In this section we will give some additional LFA results. More results can be found in
[58, 378]. We also outline straightforward extensions of LFA with respect to other coars-
ening strategies. Furthermore, a simplified two-grid analysis is presented, which gives a
basic insight into the quality of the coarse grid correction.
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4.6.1 Some Local Fourier Analysis Results for Model Problem 1

We consider Lh = −�h and a multigrid method based on GS-LEX smoothing, FW and
bilinear interpolation. LFA two-grid analysis gives the two-grid convergence factors ρloc
as listed in Table 4.1. For comparison, experimentally measured convergence factors for
Model Problem 1 are included (W-cycle, h = 1/128). The correspondence of theoretical
and practical values is excellent and typical for many applications.

We also recognize a good prediction of the two-grid convergence factors by the smooth-
ing analysis. This good agreement can be expected only for small numbers ν of smoothing
steps. If too many smoothing steps are performed per multigrid cycle, the coarse grid approx-
imation can no longer cope with the smoothing effect. Therefore, the smoothing factorsμνloc
are too optimistic for ν ≥ 4 in this case.

Table 4.2 compares the influence of the restriction operator on the convergence factors
ρloc for GS-LEX, comparing full weighting (FW) and injection (INJ). The results show that
INJ is a satisfactory restriction operator if combined with GS-LEX for Model Problem 1.
(This is particularly true if the computational effort is taken into account.) INJ is cheaper
than FW. Intuitively, it seems to be clear that INJ is the better, the smoother the defects are.
This is reflected by the convergence factors for ν ≥ 3, where ρloc(INJ) is even smaller than
ρloc(FW).

The application of the INJ operator has, however, the disadvantage that the spectral
norm of the corresponding two-grid operators is not bounded, see Table 4.3, where also the
influence of the pre- and postsmoothing on the norm σloc,S is presented.

Table 4.1. LFA smoothing factors, LFA two-grid conver-
gence factors and measured W-cycle convergence factors
(Model Problem 1).

ν1, ν2 μ
ν1+ν2
loc ρloc W-cycle (h = 1/128)

1,0 0.500 0.400 0.40
1,1 0.250 0.193 0.19
2,1 0.125 0.119 0.12
2,2 0.063 0.084 0.08

Table 4.2. ρloc for GS-LEX relaxation (for
Lh = −�h).
ν ρloc(FW) ρloc(INJ)

1 0.400 0.447
2 0.193 0.200
3 0.119 0.089
4 0.084 0.042
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Table 4.3. σloc,S corresponding to the methods in Table 4.2.

(ν1, ν2) I 2h
h (FW) I 2h

h (INJ)

(1,0) 0.447 ∞
(0,1) 1.000 ∞
(2,0) 0.208 ∞
(1,1) 0.203 ∞
(0,2) 1.000 ∞
(3,0) 0.128 ∞
(2,1) 0.119 ∞
(1,2) 0.131 ∞
(0,3) 1.000 ∞

One thus needs to be careful with this operator, in particular if it is used in FMG or,
more generally, if only one or a small number of cycles is used. Remember that injection is
a restriction of order 0 (see Section 2.7). Again, FW is more robust and reliable.

All the values given for ρloc above can be confirmed by numerical measurements. In all
cases, the measured convergence factors are close to ρloc if h is chosen to be small enough
(here for instance h = 1/128).

In the following chapters, we will use LFA for many different operators and multigrid
approaches, 3D cases, singularly perturbed problems, operators with mixed derivatives,
systems of PDEs and so on. In most cases, the LFA results will be very helpful in designing
multigrid algorithms and understanding difficulties. Of course, LFA also has its limitations.
If the local view which is characteristic for LFA is not sufficient for the description of certain
global phenomena (e.g. singularly perturbed or hyperbolic situations), other considerations
have to be added.

Brandt has proposed and developed extensions and generalizations of LFA. One exten-
sion is the so-called half-space analysis [63], which allows the inclusion of boundary effects
into the analysis.

4.6.2 Additional Remarks

In this section we add some remarks about LFA approaches, modifications of LFA and
about the relationship between LFA and rigorous Fourier analysis.

LFA smoothing analysis is usually the first step in analyzing a given problem and its
multigrid solution. Smoothing analysis is typically much easier than two-grid analysis.
This is particularly true if the eiθ · x/h functions are eigenfunctions of Sh as assumed in
Section 4.3. But even if only the spaces Eθh are invariant under Sh, the smoothing analysis
is simpler since it uses the “ideal” coarse grid operator given in Section 4.5.

Remark 4.6.1 (coarse grid correction and simplified two-grid analysis) In order to
avoid the complete two-grid analysis which may become rather involved, in particular in
3D cases and for systems of PDEs, one can analyze the smoothing procedure and the
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coarse grid correction separately. Therefore, in addition to smoothing analysis, “coarse grid
correction analysis” approaches have been proposed. One idea in this context is the so-
called simplified two-grid analysis, which is based on the first differential approximation
(FDA) [426]. The goal here is to obtain some insight into the quality of the approximation
of the operator Lh by L2h for very low frequencies. The analysis neglects high frequencies
and the coupling of harmonics. Furthermore, for very low frequencies, the transfer operators
act nearly like identities. Therefore, the behavior of K2h

h can be approximately described
by the quantity

Ĩh − (L̃2h)
−1
L̃h with Ĩh = 1

(for very low frequencies). The analysis of this term gives some insight into the quality
of the coarse grid correction especially for problems with characteristic directions (like
convection–diffusion equations, see Chapter 7). If we consider a low frequency θ = (θ1, θ2)

along a characteristic direction with θ2 = cθ1, we can compute

lim
θ1→0

(
1 − L̃h(θ)

L̃2h(2θ)

)
.

This estimate of the coarse grid approximation for the lowest frequencies should be a very
small number. If it is not, the multigrid performance will be negatively influenced by a bad
coarse grid correction due to very low frequencies (see Section 7.2.3 for an example). �

Remark 4.6.2 Some authors use the LFA approach without allowing θ to vary con-
tinuously in −π ≤ θ < π . In this case, θ varies in the finite set Th as introduced
in (3.4.8). Such approaches can be useful if the real convergence factors are substantially
dependent on h. �

Remark 4.6.3 Table 4.4 illustrates which of the analysis approaches can be used to analyze
the three smoothers ω-JAC, GS-LEX and GS-RB. �

Remark 4.6.4 As we have pointed out before, GS-LEX is a smoothing procedure which
can be analyzed by LFA, not, however, by the rigorous Fourier analysis presented in
Section 3.3. The reason is that the GS-LEX smoothing operator Sh for the infinite grid
is different from the GS-LEX smoothing operator for periodic boundary conditions on a

Table 4.4. Which analysis can be applied to which smoothing scheme?

Rigorous Fourier analysis LFA

ϕ(θ, ·) eigenfunctions of Sh ω-JAC ω-JAC
GS-LEX

Eh,θ invariant under Sh ω-JAC ω-JAC
GS-LEX

GS-RB GS-RB
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finite domain. On an infinite grid there is no natural starting point for GS-LEX, contrary to
the finite grid situation. If one tried to mimic the “infinite grid GS-LEX” in a finite domain
situation with periodic boundary conditions, an implicit smoothing scheme would result.

�

Remark 4.6.5 (how to use LFA in practice) The two-grid LFA is rather com-
plicated at the first glance. It is usually carried out with a computer program (see
http://www.gmd.de/SCAI/multigrid/book.html for such a program by R.
Wienands). An even simpler program can be used for the LFA smoothing analysis. Here,
we present some general guidelines for the use of LFA:

If one wants to design (or analyze) a multigrid algorithm for a concrete problemLu = f ,
we recommend using the following LFA ladder:

(1) Find an appropriate discretization for the problem, e.g. with good “h-ellipticity”
Eh(Lh) (to be discussed in Section 4.7).

(2) Find a smoothing scheme with a satisfactory smoothing factor.
(3) Choose appropriate transfer operators and check whether the two-grid LFA conver-

gence factors are close to the smoothing factors.
(4) Check whether the convergence of multigrid cycles in your program approximates the

LFA prediction.
(5) Use FMG and check whether you obtain discretization accuracy.

Of course, one could often skip some of these steps, e.g. check directly whether the multigrid
program (Step 4) produces the efficiency anticipated by the smoothing factors (Step 2). If
not, then perform the intermediate steps. �

Remark 4.6.6 (debugging) In the debugging phase, it is advisable to use as coarse grids
as possible.

If a multigrid code does not show a good convergence for a particular problem, a useful
debugging approach is to start with an example, for which the exact discrete solution is
known. This is easy if the example can be chosen such that the discretization error is 0, e.g.
u(x, y) = x + 2y in the case of the standard Laplacian.

A discrete approximation from the algorithm can then be compared with the exact
solution of the discrete problem. One can check, whether the error between the approxima-
tion and the reference solution is smooth after the relaxation. Maybe it is not smooth near
a boundary (see Section 5.6 for the boundary treatment). Also the defect can give some
insight. It might be large in only a few grid points, for example. This debugging can be
carried out graphically, e.g. by plotting the defects or the errors with available tools such as
“gnuplot”.

If a problem without a discretization error is not known, one can solve the problem first
(possibly with a single grid solver), store the obtained solution and compare the multigrid
approximations with this discrete solution. Additional insight is gained by printing norms
of the defect on all grid levels, for example, after presmoothing and after the coarse grid
correction and postsmoothing. These defects should also decrease on coarser grids. �
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4.6.3 Other Coarsening Strategies

In introducing LFA in this chapter, we have assumed standard coarsening, H = (2h1, 2h2).
LFA can be extended to other coarsening strategies in a straightforward manner. What has to
be changed is the definition of low and high frequencies. As a consequence, the definitions
of spaces of harmonics Eθh and of the central quantities μloc(Sh), ρloc(M

H
h ) and σloc(M

H
h )

have to be adapted.
In Fig. 4.3, we consider the following coarsening strategies:

(1) x-semicoarsening (H = (2h1, h2), upper left picture in Fig. 4.3),
(2) y-semicoarsening (H = (h1, 2h2), upper right picture in Fig. 4.3),
(3) red–black-coarsening (lower left picture in Fig. 4.3),
(4) (h, 4h)-coarsening (lower right picture in Fig. 4.3).

Instead of formally defining the respective low and high frequency terms, we simply show
in Fig. 4.3 how Fig. 4.1 is to be changed for these four cases.

Note that the spaces of harmonics are two-dimensional in the first three coarsen-
ing strategies listed above, but 16-dimensional for (h, 4h)-coarsening. These facts have
obvious and straightforward implications for the definition of μloc(Sh), ρloc(M

H
h ) and

σloc(M
H
h ).

Remark 4.6.7 If GS-RB is used in connection with red–black-coarsening, the two-
dimensional spaces of harmonics (characterized in Fig. 4.3) are invariant under Sh and
KHh and thusMH

h .
If GS-RB is used, however, in connection with x- or y-semicoarsening, the correspond-

ing two-dimensional spaces that are invariant under Sh and under KHh are not the same. In
this case, the four-dimensional “standard” spaces Eθh in (4.4.5) have to be used again for
the two-grid LFA. They are again invariant under Sh and KHh . �

4.7 h-ELLIPTICITY

In Section 1.1, we gave afirst impression of the properties a PDE should fulfill for “standard”
multigrid to work properly. The ellipticity of a PDE was explicitly addressed in this context.
In describing basic multigrid algorithms in Chapter 2, we considered discrete elliptic dif-
ferential operators Lh, or more concretely, Poisson-like equations in 2D or 3D. Finally, all
the concrete theoretical results in Chapter 3 were related to the discrete Poisson equation.

Ellipticity of a differential operator L is, however, neither a necessary nor a sufficient
condition for the applicability of multigrid. In the following chapters we will also consider
differential operators which may lack ellipticity or become nonelliptic depending on some
characteristic parameters: anisotropic operators, convection-dominated operators, the full
potential equation, Euler equations and Navier–Stokes equations.

In this section, we will use the LFA terminology to (qualitatively) characterize the
properties a discrete operator Lh should have to be suitable for multigrid. For that purpose,
we will introduce the concept of h-ellipticity proposed by Brandt [61]. This property is



122 MULTIGRID

2 2

2

2

2 2

2

2

4

4

4 42 2

2

2

0

0

1

2

0

0

1

2

0

0

1

2

0

0

1

2

Figure 4.3. Low frequencies (interior white regions) and high frequencies (shaded regions) for
various coarsening strategies; for a given low frequency θ(◦), the other frequencies θ for which the
corresponding ϕ(θ, x) coincide on GH are marked by •.

defined for operators Lh given on an infinite grid Gh. Throughout this section, we make
the same assumptions on Lh as for the LFA.

The central result of this section is that, in a certain sense, the h-ellipticity of Lh
is a necessary and sufficient condition for the existence of pointwise smoothing
procedures for Lh.

If a discrete operator lacks h-ellipticity, the addition of some “artificial ellipticity” (or
“discrete ellipticity”) is one way to make Lh sufficiently h-elliptic. The idea of intro-
ducing artificial viscosity is a classical approach in the case of convection-dominated
problems.
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In Section 4.7.1 we will introduce the concept of h-ellipticity and define the h-ellipticity
measure of a discrete operatorLh and give some examples. In Section 4.7.2, we will discuss
the relation of smoothing and h-ellipticity in detail.

The concept of h-ellipticity is of particular importance for systems of equations. We
will give a corresponding generalization in Section 8.3.2.

4.7.1 The Concept of h-Ellipticity

The h-ellipticity concept is based on the LFA and also represents the LFA philosophy.
When speaking of h-ellipticity in the following, we implicitly assume standard coarsening
H = 2h unless mentioned otherwise explicitly. This means again that θ is a high frequency
if θ ∈ T high := [−π, π)2 \ [−π/2, π/2)2.

Definition 4.7.1 The h-ellipticity measure Eh of Lh can be defined as

Eh(Lh) := min{|L̃h(θ)|: θ ∈ T high}
max{|L̃h(θ)|: − π ≤ θ < π} (4.7.1)

where L̃h(θ) represents the Fourier symbol of Lh.

Remark 4.7.1 The denominator in this definition is a scaling factor, which guarantees that

0 ≤ Eh(Lh) ≤ 1.

Other scalings are also used, for example,

Ēh(Lh) := min

{ |L̃h(θ)|
|Lh| : θ ∈ T high

}
(4.7.2)

where |Lh| is the sum of the absolute values of the coefficients in the stencil. In this section,
we will work with Eh, later on we will also use Ēh if convenient. �

Here, and in the following chapters, we will use the notation that an operator Lh is
“h-elliptic” or has a “good measure of h-ellipticity”. This is a loose way of saying that

Eh(Lh) ≥ const > 0,

i.e., Eh is sufficiently far from 0 for certain ranges of parameters on which Lh depends.
Heuristically, an h-ellipticity measure Eh(Lh), which is close to zero, indicates that very
small eigenvalues exist for high frequencies.

We will discuss the h-ellipticity for various examples. They illustrate that the lack of
h-ellipticity of Lh may have different reasons: It may be due to the fact that L is not elliptic
itself (and artificial ellipticity is not introduced in Lh). It may, however, also be caused by
an instability of the Lh discretization, even if L is uniformly elliptic.

Example 4.7.1 The standard five-point discrete Laplacian on a square mesh is a stable
discretization of �. For its h-ellipticity measure, we find

Eh(�h) = 0.25. (4.7.3)
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The minimum in the numerator (= 2/(h2)) is attained, for example, at (0, π/2), the maxi-
mum in the denominator (= 8/(h2)), for example, at (π, π). �

Example 4.7.2 The discrete operator

Lh = 1

2h
[−1 0 1]h, (4.7.4)

which is a central O(h2)-discretization of the first derivative, Lu = ux is not h-elliptic:
Eh(Lh) = 0.

The one-sided first-order operator

Lh = 1

h
[−1 1 0]h,

however, which also approximates the first derivative ux (withO(h)-accuracy), is h-elliptic,
Eh(Lh) = 1/

√
2. The above operator (4.7.4) is a (typical) example for non-h-ellipticity

due to central differencing. �

Example 4.7.3 The discrete operator

Lh = 1

4h2

⎡⎣−1 0 1
0 0 0
1 0 −1

⎤⎦
h

, (4.7.5)

which is a discretization of the hyperbolic operatorLu = uxy , is noth-elliptic:Eh(Lh) = 0.
The discretization

Lh = 1

h2

⎡⎣ 0 0 0
−1 1 0

1 −1 0

⎤⎦
h

,

is not h-elliptic either: Eh(Lh) = 0. In these two cases, the non-h-ellipticity is basically
due to the underlying differential operator (mixed derivatives). �

Example 4.7.4 The discretization

Lh = 1

h2

⎡⎣0 −1 0
0 2 0
0 −1 0

⎤⎦
h

of the parabolic operator Lu = −uyy (in 2D) is not h-elliptic: Eh(Lh) = 0. �

Example 4.7.5 A simple example of a discretization of the elliptic operator L = −�
which is not h-elliptic is (in stencil notation)

Lh = −�√
2h = 1

2h2

⎡⎣−1 0 −1
0 4 0

−1 0 −1

⎤⎦
h

on a square grid with mesh size h



LOCAL FOURIER ANALYSIS 125

Figure 4.4. A 4 × 4 grid with red (i.e. white) and black points indicated.

(the skew five-point stencil for −�). We obtain Eh(Lh) = 0 here since L̃h(θ) = 0 for
θ = (π, π). Indeed, on the infinite gridGh, the red and the black points ofGh are separated
by Lh. Therefore, any function which has constant values at the red points and constant
values of a different size at the black points lies in the kernel of the discrete operator. This is
an example of a uniformly elliptic operator�, a discretization of which lacks h-ellipticity.
Because of the decoupling of red and black points in this discretization, this phenomenon
is often referred to as the checkerboard instability.

If we use Lh with Dirichlet boundary conditions on a finite domain (see Fig. 4.4,
where h = 1/4), the “Dirichlet binding” of the discrete solution makes the discretiza-
tion asymptotically stable in the classical sense in some appropriate norm. In the case of
periodic boundary conditions, however, the discretization is unstable in the classical sense
(if h = 1/n, n even). �

Example 4.7.6 An example with positive and negative operator elements is the O(h4)

discretization of −�

1

12h2

⎡⎢⎢⎢⎢⎣
1

−16
1 −16 60 −16 1

−16
1

⎤⎥⎥⎥⎥⎦
h

. (4.7.6)

The fourth-order accuracy of Lh is easily verified by a Taylor expansion. The resulting
matrix is not an M-matrix. Nevertheless, the h-ellipticity measure Eh ≈ 0.22 (= 7/32)
is satisfactory. Multigrid methods for the Poisson equation discretized by this stencil are
described in Example 5.4.1 and, in particular, in Remark 5.4.3. �

Example 4.7.7 The parabolic operator Lu = −uyy above is the limit case of the
anisotropic operator

L(ε)u = −εuxx − uyy (0 < ε � 1). (4.7.7)
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Anisotropic problems will be discussed in detail in Section 5.1. For any ε > 0, L(ε) is
elliptic, but not uniformly elliptic with respect to ε. For the discrete analog of L(ε)

Lh(ε) = 1

h2

⎡⎣ −1
−ε 2(1 + ε) −ε

−1

⎤⎦
h

, (4.7.8)

we obtain Eh(Lh) = ε/(2 + 2ε) → 0 for ε → 0 (for a coarsening different from H = 2h
see Remark 4.7.5). �

4.7.2 Smoothing and h-Ellipticity

In this section, we will show that h-ellipticity is a necessary and sufficient condition for
the existence of pointwise smoothers. Again we consider pointwise smoothers based on a
splitting

Lh = L+
h + L−

h , (4.7.9)

as in Section 4.3. Obviously, Eh(Lh) = 0 means that Eh(θ∗) = 0 for at least one high
frequency θ∗, and therefore L̃+

h (θ
∗) = −L̃−(θ∗). If we additionally assume

L̃+
h (θ) �= 0, (4.7.10)

for all θ ∈ T high, we obtain
|L̃−
h (θ

∗)|/|L̃+
h (θ

∗)| = 1

and therefore, according to (4.3.6) and (4.3.7),

μloc(Sh) ≥ 1.

In other words: no splitting of the form (4.7.9) can lead to a reasonable smoother ifEh(Lh) =
0 and (4.7.10) is excluded.

This simple result is summarized as Statement (1) in the following theorem.

Theorem 4.7.1

(1) If Eh(Lh) = 0, we have

μloc(Sh) ≥ 1

for any smoother Sh satisfying (4.7.9) and (4.7.10).
(2) If, on the other hand, Eh(Lh) is bounded away from 0 by some constant c > 0:

Eh(Lh) ≥ c > 0 ( for h → 0), we can always construct a pointwise smoothing
procedure Sh with a smoothing factor μloc < 1 that is bounded away from 1 by
some constant that depends only on c.



LOCAL FOURIER ANALYSIS 127

(3) If (4.7.9) holds and we additionally assume that Lh is characterized by a symmetric
stencil

si,j = s−i,−j (i, j = 0, 1, 2, . . . ), with s0,0 > 0,

and that L̃h(θ) > 0 for θ �= 0, then a pointwise ω-JAC smoother Sh exists for which

μloc(Sh(ω-JAC)) ≤ const < 1.

Proof. We first consider the symmetric case (3). L̃h(θ) and s0,0 are thus real numbers. For
the ω-JAC smoother, we have

Sh(ω) = Ih − ω

s0,0
Lh and S̃h(ω, θ) = 1 − ω

s0,0
L̃h(θ)

and therefore

μloc = μloc(Sh(ω)) = sup
{

|1 − ω

s0,0
L̃h(θ)|: θ ∈ T high

}
.

With m := min
θ∈T high L̃h(θ) andM := max−π≤θ<π L̃h(θ), (4.7.1) reads

Eh(Lh) = m

M
.

We now choose

ω = ω∗ = 2s0,0
m+M (4.7.11)

and obtain

μloc(Sh(ω
∗)) = M −m

M +m = 1 − Eh(Lh)
1 + Eh(Lh)

. (4.7.12)

Obviously, we have μloc ≤ const < 1 if Eh(Lh) ≥ c > 0 with const = (1 − c)/(1 + c).
The proof of Statement (2) is similar, but technically more involved. For nonsymmetric

Lh, instead of ω-JAC for Lh, an ω-JAC relaxation for the operator LhLTh is used for
smoothing. This means that smoothing is applied to the system

LhL
T
h wh = fh,

where uh = LTh wh and wh is a new grid function. LhLTh is symmetric and has the symbol

LhL
T
h̃ (θ) = |L̃h(θ)|2.

With similar arguments as above, we obtain

μloc = μloc(ω
∗) = 1 − Eh2(Lh)

1 + Eh2(Lh)
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for

ω∗ = 2s0,0(LhLTh )

m2 +M2
s0,0(LhL

T
h ) =

∑
i,j

(si,j )
2 > 0.

For details, see [63, 240].

Remark 4.7.2 (Kaczmarz relaxation) The relaxation used for the proof of Statement
(2) is also known as an ω-Jacobi–Kaczmarz relaxation [207] or Cimmino method [108].
It is a special type of “distributive” relaxation (see Section 8.2.5). According to the above
theorem, this relaxation always gives smoothing (for Eh > 0) but it is often far from being
an efficient smoother.

This can easily be seen for Lh = −�h (Example 4.7.1). Since Eh(Lh) = 0.25, the
above relaxation has the smoothing factor μloc = 15/17 = 0.882 which is far worse than
that of the cheaper standard relaxation schemes introduced in Chapter 2. �

Example 4.7.8 In Example 4.7.1, we have seen thatm = 2/h2 andM = 8/h2. With s0,0
being 4/h2, we immediately obtain from (4.7.11) and (4.7.12),

ω∗ = 8/(2 + 8) = 4/5 and μloc = 8 − 2/(8 + 2) = 3/5,

for ω-JAC in the case of Poisson’s equation. �

Example 4.7.9 In Example 4.7.2, we have seen thatEh(Lh) = 0 for the central discretiza-
tion of a first derivative. If we consider the 1D convection–diffusion operator L,

Lu = −εuxx + ux,
with the central discretization

Lh = − ε

h2
[1 − 2 1]h + 1

2h
[−1 0 1]h,

we find the Fourier symbol

L̃h(θ) = 2ε

h2
(1 − cos θ)+ i sin θ

h
,

which is O(ε) for θ = π . Correspondingly,

S̃h(θ) =
∣∣∣∣ (ε − h/2)eiθ
2ε − (ε + h/2)e−iθ

∣∣∣∣ for GS-LEX,

and we obtain μloc → 1 as ε → 0. The convection–diffusion equation will be discussed in
detail in Section 7.1. �

Remark 4.7.3 Statement (1) of the theorem refers to the case Eh(Lh) = 0. If
Eh(Lh) > 0, but is very small, we will be unable to construct efficient pointwise
smoothers. In that case, small highly oscillating variations in the discrete right-hand
side result in large oscillations of the discrete solution. �
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Remark 4.7.4 Statements (2) and (3) guarantee the existence of pointwise smoothers,
whereas Statement (1) at first sight seems to say that no splitting-based smoother can exist
if Eh(Lh) = 0. This is, however, only true for pointwise smoothers. In Chapter 5, we
will consider anisotropic equations like εuxx + uyy = f . Although Eh(Lh) = O(ε)

for such equations (see Example 4.7.4), we will find smoothers with a smoothing factor
μloc(Sh) ≤ const < 1, where the constant is independent of ε. Such smoothers are also
based on a splitting of the form (4.7.9). They are, however, not pointwise but linewise
smoothers.

The above theorems can be generalized to cover line smoothers [240]. �

Since the h-ellipticity measure depends on the set of high frequencies, a different coars-
ening also has an impact on the h-ellipticity measure. The semicoarsening strategies

(Hx,Hy) = (2hx, hy), (Hx,Hy) = (hx, 2hy),

for anisotropic operators will be discussed in Chapter 5.

Remark 4.7.5 (semi-h-ellipticity) We consider the anisotropic operator (4.7.7) in 2D. As
we will see in Chapter 5, semicoarsening in the y-direction is a natural coarsening for this
operator. We define

ESh(Lh) := min{|L̃h(θ)|: θ2 ∈ [−π, π) \ [−π/2, π/2)}
max{|L̃h(θ)|: − π ≤ θ < π} . (4.7.13)

For the operator (4.7.8), we find ESh(Lh) = 1/(2 + 2ε) → 1/2 for ε → 0 instead of
Eh(Lh) = ε/(2+2ε) → 0 for ε → 0 in case of standard coarsening. Thus, this coarsening
strategy can be combined with pointwise smoothers for the anisotropic problem under con-
sideration. (4.7.13) is an example for the so-called semi-h-ellipticity [66] which gives guide-
lines for the design of multigrid solvers based on semicoarsening or line relaxation. �



5
BASIC MULTIGRID II

In Chapter 2, we introduced basic multigrid. Although the formal description has been quite
general, the examples we have discussed all refer to Model Problem 1, Poisson’s equation, or
similarly simple problems. In this chapter we will discuss straightforward modifications of
the previously introduced multigrid components so that more general second-order problems
can be handled well.

An emphasis is laid on efficient multigrid methods for 2D and 3D anisotropic equations
(see Sections 5.1 and 5.2) and for nonlinear equations (see Section 5.3). In particular, we will
introduce some other smoothing methods: line smoothers in Section 5.1, plane smoothers
in Section 5.2 and nonlinear smoothing variants in Section 5.3.

Furthermore, in Section 5.4, we focus on the application of multigrid methods to high
order discretizations. In Section 5.5, we consider problems with reentrant corners, which
may lead to discrete solutions with an accuracy of less than second order.

The multigrid treatment of problems whose boundary conditions are more general than
Dirichlet boundary conditions is discussed in Section 5.6. A problem that sometimes occurs,
for example due to certain boundary conditions, is that the resulting system of discrete
equations is singular. The Poisson equation with periodic boundary conditions is presented
as a specific example. The discussion of an appropriate multigrid treatment of such systems
in more general cases is also part of Section 5.6.

In Section 5.7, we discuss the idea of finite volume discretization in the context of
curvilinear grids. In Section 5.8, we resume the discussion on grid structures and comment
on the multigrid treatment on unstructured grids.

For all examples in this chapter, we will obtain the typical multigrid efficiency as
for Model Problem 1.

Remark 5.0.1 (LFA and rigorous Fourier analysis) In this chapter, we can often apply
both LFA (as described in Chapter 4) and rigorous Fourier analysis (see Chapter 3). The
resulting smoothing and convergence factors are the same for sufficiently small h. We will
thus mainly use LFA. �

130



BASIC MULTIGRID II 131

5.1 ANISOTROPIC EQUATIONS IN 2D

As a first step away from Poisson-like elliptic equations, we consider anisotropic elliptic
problems.

Model Problem 3 (2D anisotropic model problem)

−εuxx − uyy = f�(x, y) (� = (0, 1)2)

u = f �(x, y) (∂�)
(5.1.1)

with 0 < ε � 1. (The case ε � 1 is similar, with interchanged roles of x and y.)

If we discretize Model Problem 3 by the standard five-point difference operator, we
obtain the discrete problem

Lh(ε)uh(x, y) = f�h (x, y) (�h)

uh(x, y) = f �h (x, y) (�h),
(5.1.2)

where �h = Gh ∩ � is the square grid (1.3.3) with h = hx = hy , �h is again the set of
discrete intersection points of the grid lines with the boundary � and

Lh(ε) = 1

h2

⎡⎣ −1
−ε 2(1 + ε) −ε

−1

⎤⎦
h

. (5.1.3)

Here, we restrict ourselves to the case where the discrete anisotropy is “aligned” with the
grid. In 2D such problems are characterized by coefficients in front of the uxx and uyy
terms, which may differ by orders of magnitude. Anisotropic problems play an important
role in practice. The discretization may also introduce (discrete) anisotropies, in the form
of stretched grids.

Remark 5.1.1 (stretched grids) The same discrete operator (5.1.3) is obtained, if we
discretize the Laplace operator (in Model Problem 1) by the standard five-point difference
operator on a stretched grid with mesh sizes hx = hy/

√
ε. �

5.1.1 Failure of Pointwise Relaxation and Standard Coarsening

In Example 4.7.7, we have seen that the h-ellipticity measure of an anisotropic operator
tends to 0 for ε → 0:

Eh(Lh(ε)) = O(ε) −→ 0 for ε → 0.

According to the discussion in Section 4.7.2, it is expected that the smoothing properties of
standard pointwise smoothing schemes will deteriorate for ε → 0.
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Error after 10
relaxations

Error of
initial guess

Error after 5
relaxations

Figure 5.1. Influence of (pointwise) GS-LEX on the error for the 2D anisotropic model problem
with ε � 1.

In particular, highly anisotropic problems cannot be treated efficiently with standard
coarsening and the multigrid components introduced so far. Therefore, they are a first and a
very illustrative example of the fact that multigrid, in general, has to be adapted and tuned to
the problem at hand. However, the proper ways to treat anisotropic problems by multigrid
are fully understood and can easily be explained.

If we apply a standard pointwise relaxation such as ω-JAC, GS-LEX or GS-RB to the
above discrete system, we find that the smoothing effect of this relaxation is very poor with
respect to the x-direction. The reason is that pointwise relaxation has a smoothing effect
only with respect to the “strong coupling” in the operator, i.e. in the y-direction. This effect
is illustrated in Fig. 5.1 for ε = 10−2.

If we consider GS-LEX, for example, we find the error relation

vh(xi, yj ) = 1

2(ε + 1)
[εvh(xi−1, yj )+ εvh(xi+1, yj )

+ v̄h(xi, yj−1)+ vh(xi, yj+1)], (5.1.4)

which for ε → 0 becomes

v̄h(xi, yj ) = 1
2 [v̄h(xi, yj−1)+ vh(xi, yj+1)]. (5.1.5)

Obviously, there is no averaging effect with respect to the x-direction and, hence, no
smoothing with respect to this direction is achieved. (For ε � 1, it is the other way
round.) Such nonsmooth errors can no longer be efficiently reduced by means of a coarser
grid which is obtained by standard coarsening, i.e. by doubling the mesh size in both
directions.

This failure can be directly explained by applying LFA smoothing analysis as in
Section 4.3 to the GS-LEX pointwise smoother for Model Problem 3. By adapting the
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Table 5.1. Two-grid convergence factors ρloc for the anisotropic model
problem using GS-RB (ν = three smoothing steps), FW and bilinear inter-
polation for different values of ε.

ε 0.001 0.01 0.1 0.5 1 2 10 100 1000

ρloc 0.99 0.94 0.56 0.088 0.053 0.088 0.56 0.94 0.99

splitting from (4.3.3) to (5.1.3) we obtain

L−
h = 1

h2

⎡⎣ −1
0 0 ε

0

⎤⎦ , L+
h = 1

h2

⎡⎣ 0
−ε 2 + 2ε 0

−1

⎤⎦. (5.1.6)

Following the procedure in Section 4.3, the smoothing factor μloc of GS-LEX for (5.1.3)
is found to be

μloc = sup
θ∈T high

∣∣S̃h(θ)∣∣ = sup
θ∈T high

∣∣∣ εeiθ1 + eiθ2

εe−iθ1 + e−iθ2 − 2 − 2ε

∣∣∣. (5.1.7)

For ε → 0 (and for ε → ∞), we obtain

lim
ε→0

μloc = lim
ε→0

S̃h(π, 0) = 1.

Table 5.1 presents corresponding two-grid convergence factors ρloc = ρloc(ν) for GS-RB
pointwise smoothing, standard coarsening, FW and linear interpolation. For large or small
values of ε, standard pointwise smoothers fail to achieve satisfactory two-grid (and thus
also multigrid) convergence.

Pointwise relaxation and standard coarsening is not a reasonable combination
for highly anisotropic problems. The multigrid convergence factor will increase
towards 1 for ε → 0 or ε → ∞.

Remark 5.1.2 It is to some extent possible to keep the GS-RB pointwise smoother for
moderate anisotropies and improve the two-grid factors from Table 5.1 by overrelaxation.
This has been shown in [427], where analytic formulas are presented for optimal relaxation
parameters ω. For ε = 0.1, for example, ωopt = 1.41 leads to ρloc = 0.12. For ε =
0.01, ωopt = 1.76 results in ρloc = 0.45, which is a major improvement compared to the
results presented in Table 5.1. For ε = 0.001, ωopt = 1.92 and ρloc = 0.78. More robust
multigrid remedies to master the difficulty of highly anisotropic problems are presented in
the subsequent subsections. �

5.1.2 Semicoarsening

The first possibility is to keep pointwise relaxation for smoothing, but to change the grid
coarsening according to the one-dimensional smoothness of errors. The coarse grid is
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defined by doubling the mesh size only in that direction in which the errors are smooth.
Semicoarsening in the y-direction, as introduced in Section 2.3.1, is appropriate if ε � 1.
(The 1D restriction operator for semicoarsening has been introduced, for example, in
Remark 2.3.2.)

In the case of semicoarsening, LFA can also be applied. For example, we can use (5.1.7)
for GS-LEX and y-semicoarsening. But the range of high frequencies is changed now to{

(θ1, θ2): θ2 ∈ [−π, π)
∖[

− π

2
,
π

2

)}
(see Section 4.6.3). Maximizing over this range, we find

μloc = 1 + ε√
5 + ε .

For ε → 0, we obtain the satisfactory value μloc → 1/
√

5 ≈ 0.45. This shows that the
quality of a smoother depends on the range of high frequencies and thus on the choice of
the coarse grid. (For ε � 1,μloc rapidly increases towards 1. In this case GS-LEX provides
good smoothing if x-semicoarsening is employed.)

The operator LH on the coarse grid �H is

LH(ε) = 1

H 2

⎡⎣ −1
−4ε 2(1 + 4ε) −4ε

−1

⎤⎦
H

(5.1.8)

in the case of y-semicoarsening. Compared to the fine grid operator (5.1.4), the anisotropy
has decreased. If we continue the y-semicoarsening process, the anisotropy will decrease
further.

Remark 5.1.3 For isotropic problems such as Model Problem 1 on a standard grid with
h = hx = hy , repeated semicoarsening in the same direction will not give satisfactory con-
vergence results if pointwise smoothers are used. This occurs because a discrete anisotropy
that arises from cells that have been stretched too much will be built up by the semicoars-
ening process (see also Remark 5.1.1). �

5.1.3 Line Smoothers

An alternative multigrid approach for highly anisotropic problems is to keep the standard
multigrid coarsening, but to change the relaxation procedure from pointwise relaxation to
linewise relaxation (called line relaxation in short). That is, all unknowns on a line are
updated collectively (simultaneously). Line relaxations are thus block iterations in which
each block of unknowns corresponds to a line. For Model Problem 3, the collective solu-
tion of all equations corresponding to a line means the solution of a tridiagonal system of
equations.

Figure 5.2 shows the order in which the unknowns are relaxed for lexicographic x- and
y-line Gauss–Seidel relaxation.
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4 4 4 4 1 2 3 4

3 3 3 3 1 2 3 4

2 2 2 2 1 2 3 4

1 1 1 1 1 2 3 4

(a) (b)

Figure 5.2. Order in which unknowns are solved for collectively by lexicographic line Gauss–Seidel
relaxation; (a) x-line Gauss–Seidel, (b) y-line Gauss–Seidel relaxation.

Gauss–Seidel-type line relaxations are particularly efficient smoothers for anisotropic
problems (if the anisotropy is aligned with the grid). This is due to the general observation
that errors become smooth if strongly connected unknowns are updated collectively.

The good smoothing properties of (lexicographic) line Gauss–Seidel can also be seen
by LFA. Using the same notation as in Section 4.3, the lexicographic y-line Gauss–Seidel
for (5.1.3) can be written as

1

h2

⎡⎣ −1
2(1 + ε)

−1

⎤⎦
h

w̄h = fh + 1

h2
([ε 0 0]hw̄h + [0 0 ε]hwh). (5.1.9)

It is thus characterized by the splitting

L−
h = 1

h2

⎡⎣ 0
0 0 −ε

0

⎤⎦ , L+
h = 1

h2

⎡⎣ −1
−ε 2 + 2ε 0

−1

⎤⎦ , (5.1.10)

and the smoothing factor μloc for (5.1.3) can be calculated as in Section 4.3. We find

μloc = sup
θ∈T high

∣∣S̃h(θ)∣∣ = sup
θ∈T high

∣∣∣ εeiθ1

εe−iθ1 + e−iθ2 − 2 − 2ε + eiθ2

∣∣∣. (5.1.11)

μloc of lexicographic y-line Gauss–Seidel for arbitrary ε > 0 turns out to be

μloc = max

(
1√
5
,
ε

2 + ε
)
, (5.1.12)

the first value being obtained for (θ1, θ2) = (π/2, 0) and the latter one for (θ1, θ2) =
(0, π/2). Equation (5.1.12) implies that

μloc = 1/
√

5 for 0 < ε ≤ 1.
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The influence of the y-line smoother on the error for Model Problem 3 with ε = 10−2 is
presented in Fig. 5.3.

For ε � 1 the smoothing factor of y-line relaxation tends to 1. In such cases, x-line
relaxation is to be used instead: line relaxation parallel to the y-axis (y-line relaxation) is
suitable if ε < 1, and x-line relaxation if ε > 1.

Line smoothers other than lexicographic line Gauss–Seidel are, for example, line
ω-Jacobi (with underrelaxation), or zebra line Gauss–Seidel smoothing. Zebra line Gauss–
Seidel relaxation is the line analog to pointwise RB Gauss–Seidel relaxation. Smoothing
again consists of two half-steps. First all odd lines are processed, then all even ones. In the
second half-step, the updated approximations on the odd lines are used. Figure 5.4 presents
the points that are updated collectively in an x- and in a y-line zebra smoothing procedure,
by the solution of tridiagonal systems.

Table 5.2 contains two-grid convergence factors ρloc for zebra line GS obtained by
two-grid LFA (see Section 4.4). It can be seen that the line smoother in the direction of the

Error after 10
relaxations

Error of
initial guess

Error after 5
relaxations

Figure 5.3. Influence of y-line Gauss–Seidel relaxation on the error for the 2D anisotropic model
problem with ε = 10−2.

1 1 11

2 2222

11 1 11

2 2222

11 1 11

21 1

(b)

11 2

2 1 11 2

2 1 11 2

2 1 11 2

2 1 11 2

(a)

Figure 5.4. Zebra line Gauss–Seidel relaxation: approximations in points marked by 1 are updated
in the first, those marked by 2 in the second half-step of the relaxation. (a) x-zebra line Gauss–Seidel
(xZGS), (b) y-zebra line Gauss–Seidel relaxation (yZGS).
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Table 5.2. Two-grid convergence factors ρloc for the anisotropic model problem
using x- or y-zebra line Gauss–Seidel (ν = 2 smoothing steps), FW and bilinear
interpolation for different values of ε.

ε 0.001 0.01 0.1 0.5 1 2 10 100 1000

xZGS: 0.996 0.96 0.68 0.20 0.063 0.028 0.047 0.052 0.053
yZGS: 0.053 0.052 0.047 0.028 0.063 0.20 0.68 0.96 0.996

“weak coupling” fails to achieve satisfactory convergence. Line smoothing in the direction
of the strong coupling works perfectly.

The cost of the zebra line smoother is the same as that of lexicographic line
Gauss–Seidel.

Remark 5.1.4 One advantage of using zebra line Gauss–Seidel is that its smoothing factors
and thus also the multigrid convergence factors are better than those of lexicographic line
Gauss–Seidel relaxations (e.g. μloc (ν = 1) = 0.125 for yZGS and ε ≤ 0.5 [378] versus
1/

√
5 in the lexicographic case). �

Remark 5.1.5 The degree of parallelism of zebra line Gauss–Seidel is higher than
that of lexicographic line Gauss–Seidel relaxation. For five (or compact nine-point
stencils (1.3.11)), the degree of parallelism is

par-deg(zebra GS) ≥ 1
2

√
#�h.

Half of the lines can be processed in parallel. It depends on the concrete choice of the
tridiagonal solver whether or not there is a further degree of parallelism inherent and how it
can be exploited (see Section 6.4.2). Of course, the degree of parallelism is even better with
line Jacobi relaxation, but, similarly to the point Jacobi for Model Problem 1, its smoothing
factor turns out to be worse than that of zebra line Gauss–Seidel. For example, we find that
the smoothing factor μloc of x-line Jacobi relaxation is μloc = 1/3 for ε = 1000 and the
optimal ω = 2/3. �

Remark 5.1.6 (h-dependence of convergence factors) Generally, line relaxation meth-
ods are “less local” than pointwise relaxation; often, long range effects cannot be neglected.
This is the reason why the measured multigrid convergence factors can differ considerably
for different values of h (and can become much better than predicted by LFA). For example,
for Model Problem 3 ρloc is first observed on a grid with h = 1/2048; on coarser grids a
much better convergence is observed. This can be confirmed by rigorous Fourier analysis
(for a fixed h). �

5.1.4 Strong Coupling of Unknowns in Two Directions

Up to now we have discussed the multigrid remedies for anisotropic problems with constant
coefficients. In practice, ε is often not constant but varying: ε = ε(x, y). Then, ε may be
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much larger than 1 in some parts of the domain, whereas it may be much smaller than
1 in other parts. As an example we can think of Poisson’s equation on stretched grids
with stretching in two directions towards the domain boundaries. In this case stretched
cells that are thin and long and cells that are wide and short occur (see the examples in
Fig. 5.6).

The two approaches introduced above to regain optimal multigrid convergence can be
adapted to this more general situation.

(1) Alternating line relaxation
An alternating linewise relaxation method is a combination of an x-line and a y-line
smoother. After the x-line smoothing step a y-line smoothing step is performed. The cost
of an alternating line smoother is twice that of a pure x- or y-line relaxation.

In contrast to pure x-line or y-line relaxations, alternating line relaxations are suit-
able smoothers for problems with strong coupling of unknowns in varying directions (see
Section 5.1.5 for an example). As we see in Table 5.3, the alternating zebra line smoother
(aZGS) provides excellent two-grid (and multigrid) convergence for Model Problem 3,
independent of the size and the direction of the anisotropy. The aZGS smoother considered
here consists of four partial steps in the following ordering: first the odd x-lines are updated,
then the even x-lines. After that the even y-lines are treated and finally the odd y-lines. This
smoother leads to results that are symmetric in ε.

Remark 5.1.7 (robustness) An advantage of alternating line smoothers is their robust-
ness: we can obtain excellent smoothing properties for a large class of problems. Not only
the discrete isotropic or anisotropic model problems are solved satisfactorily by the corre-
sponding multigrid method but, as we will see in Chapters 7 and 8, other types of equations
can also be solved very well with multigrid based on alternating line smoothers. �

Remark 5.1.8 (segment relaxation) A more sophisticated approach than alternating line
relaxation is to use block relaxation on segments (parts) of lines instead of on whole lines
[339]. For example, if the strong coupling in one direction is restricted to some part of the
domain only, it is sufficient to perform the block relaxation only in that part. In the remaining
part another appropriate smoothing procedure can be applied locally (see Section 10.1.3 for
an example of segment relaxation). �

Table 5.3. Two-grid convergence factors ρloc for the anisotropic model problem
using alternating zebra-line GS (ν = 2 smoothing steps), FW and bilinear interpola-
tion for different values of ε.

ε 0.001 0.01 0.1 0.5 1 2 10 100 1000

aZGS: 0.053 0.051 0.038 0.013 0.009 0.013 0.038 0.051 0.053
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Figure 5.5. Multiple semicoarsened grids in 2D with a finest grid consisting of 9 × 9 grid points.

(2) Multiple semicoarsening
We have seen that using only x-semicoarsening or only y-semicoarsening (in connection
with pointwise smoothers) for the general case of varying anisotropic coefficients is not
appropriate since in both cases errors are not smoothed in some part of the domain. In
this general case, advanced and robust approaches based on point smoothers and multiple
semicoarsening can be employed. Multiple semicoarsening is based on using more coarse
grids than in standard coarsening or in semicoarsening (see the diamond-like structure of
coarse grids in Fig. 5.5). There are various possibilities for processing the coarse grids
and defining proper weighted interpolations of the corrections from these coarse grids
(see [275, 277, 289] for different choices). V- or F-cycles still require O(N) operations,
whereas the W-cycle is more expensive (O(N logN)).

In advanced multiple semicoarsening approaches, only a subset of the coarse grids is
processed [411].

5.1.5 An Example with Varying Coefficients

We will apply multigrid to the discrete Poisson equation on a stretched grid�h with variable
stretching, which leads to anisotropies in different directions. Instead of a discretization with
h = hx = hy , we have to take into account the variation of the mesh sizes δxi = xi − xi−1
etc. (We still use the index h in the following in order to distinguish the fine stretched
grid from the next coarser one.) The difference operator Lh for Poisson’s equation then
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reads

Lh =

⎡⎢⎣ −2/
(
(δyj + δyj+1)δyj+1

)
−2/

(
(δxi + δxi+1)δxi

) −∑ −2/
(
(δxi + δxi+1)δxi+1

)
−2/

(
(δyj + δyj+1)δyj

)
⎤⎥⎦
h

,

(5.1.13)

where
∑

is the sum of the other four coefficients.
The coarse grid �2h is obtained by removing every other grid point in both directions

from the stretched grid �h. The discretization L2h on �2h is defined in the same way as
Lh on �h.

For this problem, we will consider various smoothing schemes for a multigrid algo-
rithm with

– restriction I2h
h : standard FW of defects (2.3.3),

– prolongation Ih2h: the (scaled) transpose (2.3.8) of the restriction operator.

As a special stretched grid we choose a grid based on the Gauss–Lobatto–Legendre
(GLL) points [37]. GLL leads to an accumulation of grid points near the domain
boundaries.

The grid we consider consists of 128 grid cells in both directions. An indication of the
grid stretching is that for the 1282 grid on the unit square there are five points between 0.99
and 1. This GLL grid is shown in the left picture of Fig. 5.6.

In addition to the GLL grid, which has a particular theoretical background, we consider
an extremely (continuously) stretched 1282 grid (see right picture in Fig. 5.6). The extreme

Figure 5.6. The stretched GLL grid (left) and an extremely stretched grid (right).
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Table 5.4. Measured multigrid convergence factors on the stretched grids
shown in Fig. 5.6 (using alternating zebra line smoothing).

Cycle V(0,1) F(0,1) V(1,1) F(1,1)

GLL grid 0.15 0.06 0.04 0.02
Extremely stretched grid 0.18 0.11 0.10 0.04

stretching may be somewhat artificial here, but is needed for singularly perturbed problems,
where strong gradients in the solution occur near boundaries of a domain, for example in
typical CFD applications. In such cases a high resolution of grid points perpendicular to
the boundary is required.

Table 5.4 compares the measured convergence of the multigrid algorithm using the
alternating zebra line smoother for both stretched grids shown in Fig. 5.6. Excellent con-
vergence factors are obtained for the GLL grid as well as for the extremely stretched
grid. Results for W-cycles are very similar to those for F-cycles. They are therefore
omitted.

If the GS-RB pointwise smoother is used instead of the alternating line smoother, we
obtain, e.g. for the F(1,1)-cycle, the convergence factors 0.70 on the GLL grid and 0.96 on
the extremely stretched grid. The convergence when using ω-GS-RB, is also unsatisfac-
tory. Comparing these numbers with those in Table 5.4, the efficiency of alternating line
smoothers is obvious.

Figure 5.7 compares the convergence history for multigrid using the pointwise smoother
GS-RB, the y-line zebra smoother (yZGS) and the alternating zebra line smoother (aZGS)
on the extremely stretched grid. For aZGS we consider the convergence of the F(1,1)- and
the V(1,1)-cycle. For the first two smoothers the convergence is presented for cycles with
ν1 = ν2 = 2 to make their cost comparable to that of the alternating smoothers.

The pointwise smoother and the y-line smoother do not show satisfactory multigrid
convergence results. Their poor convergence behavior is almost identical. However, the
convergence is excellent if the alternating line smoother is used.

5.2 ANISOTROPIC EQUATIONS IN 3D

In this section, we introduce multigrid methods for 3D anisotropic elliptic problems (with
anisotropies aligned with the grid). The principal phenomena in the 3D anisotropic case are
similar to those in 2D and the theoretical background for the development of fast multigrid
algorithms is fully understood. However, with respect to optimal algorithms, the situation
is somewhat more involved than in 2D. There are more possibilities for choosing different
multigrid components, especially for coarsening and smoothing operators.

In Section 5.1, we have seen that basically two strategies can be applied for 2D
anisotropic problems. The first is to maintain the standard multigrid coarsening and change
the smoother to the problem at hand. The second is to keep the smoothing procedure, but to
adapt the coarsening according to the problem. These two approaches can be generalized to
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Figure 5.7. The convergence history of different multigrid cycles and smoothers for the Poisson
equation on an extremely stretched grid. The discreteL2 norm of the defect is plotted in a logarithmic
scale along the y-axis.

the 3D anisotropic situation. One can either adapt the smoother or the coarsening or both,
as will be discussed in more detail in the following subsections.

We start our discussion with the introduction of the 3D anisotropic model problem:

Model Problem 4

−auxx − buyy − cuzz = f�(x, y, z) (� = (0, 1)3)

u = f �(x, y, z) (� = ∂�)
(5.2.1)

We assume that the operator is elliptic, that all coefficients a, b and c have the same sign
and that (5.2.1) is discretized on Gh (2.9.2) by the well-known seven-point discretization.
In the 3D stencil notation, the discrete operator is

1

h2

⎡⎣⎡⎣ 0 0 0
0 −c 0
0 0 0

⎤⎦
h

⎡⎣ 0 −b 0
−a 2(a + b + c) −a

0 −b 0

⎤⎦
h

⎡⎣0 0 0
0 −c 0
0 0 0

⎤⎦
h

⎤⎦ . (5.2.2)
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For constant coefficients, four representative parameter sets can be distinguished (without
loss of generality):

Case 1: a ≈ b ≈ c

Case 2: a � b ≈ c

Case 3: a ≈ b � c

Case 4: a � b � c.

(5.2.3)

Different multigrid components are needed for good multigrid convergence in these four
cases. Case 1 has already been discussed in Section 2.9, where it has been found that standard
coarsening combined with GS-RB results in an efficient multigrid solver.

5.2.1 Standard Coarsening for 3D Anisotropic Problems

In this section suitable multigrid solution methods based on standard coarsening are intro-
duced for the cases (5.2.3). Compared with the 3D multigrid solver in Section 2.9, only the
smoother is changed in order to obtain the typical multigrid efficiency. This means that the
computational work estimates presented in Section 2.9.3 are still valid, except for a possible
change in the cost of the smoother.

A general rule in the case of standard coarsening, which carries over from the 2D
situation, is that we obtain good smoothing of errors in all coordinate directions if
we relax all strongly coupled unknowns collectively.

We will see in the following that all the above cases (5.2.3) can be handled with
standard coarsening if plane relaxation is employed, in which all unknowns lying
in the plane of strongly coupled unknowns are relaxed simultaneously.

Although plane relaxation is robust, other more efficient methods exist for some of the
cases which we will detail in this section.

In Case 2, for example, we have a strong coupling of unknowns only in the x-direction.
Correspondingly, we relax the unknowns of each single line in that direction collectively.
x-line relaxation as presented in Section 5.1.3 can be safely used and will result in excellent
smoothing.

One might think that one would obtain a robust 3D smoothing method by a straightfor-
ward generalization of the 2D case, i.e. by using alternating line relaxation with respect to
three directions. This, however, is not true.

For Cases 3 and 4 in (5.2.3), the situation is more involved. In Case 3, all unknowns
lying in the same (x, y)-plane are strongly coupled. This means that all these unknowns
should be relaxed collectively (plane relaxation).

Plane relaxation schemes (similar to line relaxation) are block iterative methods. How-
ever, in contrast to line relaxation, which leads to tridiagonal matrices that are easily solved,
plane relaxation is basically different. For each plane we have to solve a discrete 2D problem
similar to (2.8.2).
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A natural way to perform such a plane relaxation for Model Problem 4 is to use
2D multigrid in a plane as is analyzed in [388] and performed in [151].

For Case 4 the situation is similar: proper smoothing is guaranteed by (x, y)-plane
relaxation. If the plane relaxation is performed by 2D multigrid, one has to take into account
that the corresponding discrete 2D problems are now anisotropic themselves (in each plane).
Thus x-line smoothing should be used within the 2D multigrid plane solver.

All these considerations can be verified by LFA and by rigorous Fourier analysis, taking
into account the remarks on the generalization to 3D in Section 3.4. Table 5.5 presents
some results for the four cases in (5.2.3). Standard coarsening (H = 2h) is employed and
LH is the seven-point discretization of L on �H . The transfer operators IHh and IhH are
FW and trilinear interpolation. As smoothing schemes, we consider point, line or plane
relaxation according to the cases considered. More specifically, we choose 3D red–black
point relaxation, x-line relaxation in a 2D red–black ordering of lines and (x, y)-plane
relaxation in a zebra ordering of planes.

The correct choice of smoothers for the four cases considered is emphasized in Table 5.5.
The corresponding convergence factors are excellent. Table 5.5 confirms that alternating
x-/y-line smoothing is not suited for Case 3.

Remark 5.2.1 (plane relaxation in practice) In general, it is not necessary to
solve the 2D problems arising in plane relaxation exactly. In [388] it has been
shown by a rigorous two-grid Fourier analysis and by numerical experiments that
the use of one V(1,1)- or one F(1,1)-cycle within each plane is sufficient to obtain
the convergence factors predicted by the analysis in Table 5.5. The cost of this
approach, employing plane smoothers based on point relaxation (for Case 3) and
on line relaxation (for Case 4) is then about twice the cost of the solvers based
on standard multigrid with a point smoother (for Case 1), or with a line smoother
(for Case 2). In fact, it turns out that the use of one V(1,0)- or F(1,0)-cycle per
plane relaxation is even more efficient. A small deterioration of the 3D convergence
factors is compensated for by the reduced cost (one relaxation step instead of two)
of these plane relaxation schemes. �

Remark 5.2.2 (optimality of 3D multigrid) An important result of this analysis
is the asymptotic optimality of 3D multigrid for Cases 1–4 because a fixed (and
small) number of appropriate smoothing steps is sufficient to guarantee excellent
h-independent convergence.

In particular, using FMG, discretization accuracy can be obtained inO(N) oper-
ations for all four cases, with a small constant of proportionality. �

Remark 5.2.3 In principle, it is also possible to use other fast methods for the solution
of the corresponding 2D problems per plane (e.g. preconditioned Krylov methods [291]).



BASIC MULTIGRID II 145

Table 5.5. Two-grid convergence factors ρloc for Model Problem 4 and stan-
dard coarsening (ν = 2 smoothing steps being performed on the fine grid).

Case a b c Relaxation ρloc

Case 1 1 1 1 Point 0.198

Case 2 100 1 1 Point 0.961
x-line 0.074

Case 3 100 100 1 Point 0.980
Alt. x-/y-line 0.938
(x, y)-plane 0.052

Case 4 10 000 100 1 Point 1.0
x-line 0.961

(x, y)-plane 0.052

But the numerical cost and convergence of the method applied is crucial for the overall
performance of the 3D multigrid solver. The solution of these 2D problems per plane
should be as economic as possible, consistent with obtaining sufficient smoothing within
the overall 3D multigrid algorithm (see Remark 5.2.1). �

Remark 5.2.4 (alternating plane relaxation) For 3D anisotropic problems with
(smoothly varying) variable coefficients a(x, y), b(x, y) and c(x, y) in (5.2.1), a robust
multigrid method exists which has good convergence properties, independent of the size
of a(x, y), b(x, y) and c(x, y). This robust 3D method is based on the combination of
standard coarsening and alternating plane relaxation for smoothing (with, for example FW
and trilinear interpolation as transfer operators). Each smoothing step consists of applying
three plane relaxations (an (x, y)-, a (y, z)- and an (x, z)-plane relaxation). If 2D multi-
grid is used as the plane solver, alternating line relaxation within each plane solver is
required in order to guarantee good smoothing properties for all choices of a, b and c.

�

5.2.2 Point Relaxation for 3D Anisotropic Problems

In the 3D case, we also have the option of using point relaxation and semicoarsening
strategies instead of block (line or plane) relaxations and standard coarsening. However, as
already mentioned, in 3D there are more cases and possible combinations than in 2D.

For Case 2, the 1D semicoarsening strategy from Section 5.1.2 still holds. The
strong coupling is in one direction and x-semicoarsening, i.e. coarsening only in the x-
direction, will result in an efficient solver if combined with point smoothing. (Similarly,
y-semicoarsening and z-semicoarsening will result in satisfactory solution methods if the
strong coupling is in only one of these directions.) Figure 5.8(a) shows a coarse grid in the
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: coarse grid point

(b) (c)(a)

Figure 5.8. A 3D fine grid with different coarse grids coming from (a) 1D semicoarsening in
x-direction, (b) 2D semicoarsening in (x, y)-directions, (c) standard coarsening.

Table 5.6. Two-grid factors ρloc for Model Problem 4 (ν = 2 GS-RB steps being performed
on the fine grid).

Case a b c Coarsening ρloc

Case 2 100 1 1 (x, y)-semi 0.961
x-semi 0.017

Case 3 100 100 1 (x, y)-semi 0.074

Case 4 10 000 100 1 (x, y)-semi 0.961
x-semi 0.009

case of 1D semicoarsening. As in the case of 1D semicoarsening in 2D problems, the num-
ber of grid points is reduced by a factor of 2 on coarse grids in the case of 1D semicoarsening
for 3D problems. Based on the same consideration as in Remark 2.4.9, the computational
work of an F-cycle is still O(N), but that of a W-cycle is not.

A straightforward generalization to Case 3 means that coarsening should take place in
two directions. Indeed, 2D semicoarsening in (x, y)-direction (see Fig. 5.8(b)) together with
red–black or lexicographic point GS relaxation results in an efficient solver. Coarsening in
two directions means that #�H ≈ #�h/4. According to (2.4.14), the computational work
for W-cycles is still O(N).

An efficient semicoarsening strategy for Case 4 is the x-semicoarsening (as in
Fig. 5.8(a)).

Some Fourier two-grid analysis results are presented in Table 5.6. LH is the seven-
point discretization of L on �H and the transfer operators IHh and IhH are FW and trilinear
interpolation. We use 3D GS-RB for smoothing in all cases.
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5.2.3 Further Approaches, Robust Variants

So far, we have discussed two variants to handle the cases presented in (5.2.3). The first one
is standard coarsening with different smoothing methods. A robust variant is then based
on alternating plane smoothing. The second approach is based on pointwise relaxation and
different semicoarsening strategies.

Efficient 3D multigrid solution methods for the different cases can also be based on
“intermediate” variants. They are based on the combination of semicoarsening and block
(line, plane) relaxation. Block relaxation is then applied along a subset of the coordinates
and the coarsening takes place only in the other coordinate directions. Although these
techniques seem to be rather complicated at first sight, they can result in very efficient and
robust methods.

An alternative for Case 4 is, for example, (x, y)-semicoarsening (see Fig. 5.8(b)), but
then combined with x-(zebra)-line relaxation instead of point relaxation; its asymptotic
two-grid convergence factor ρloc is then 0.052 for a = 10 000, b = 100 and c = 1 [388].

The smoothing factor of such an approach is the same as that of the lower dimensional
problem obtained by neglecting the directions along which the grid is not coarsened [427].
For example, if in (5.2.1) we know that a ≈ b, but have no information on c, we can use
z-line (zebra) relaxation and coarsen only in x and y. The resulting smoothing factor is the
same as that of GS-RB for the 2D equation

−auxx − buyy = f�.

If there is no information at all about the relative size of the coefficients, then a robust
variant based on semicoarsening is to coarsen only along one coordinate, say z, while
employing plane relaxation for x and y. This plane relaxation itself may be carried out by a
multigrid cycle, which employs line relaxation in one direction and semicoarsening in the
other [122]. This (complicated) method is more efficient than alternating plane relaxations
(but less straightforward) in the general case.

Remark 5.2.5 (3Dmultiple semicoarsening) Another alternative is to use multiple semi-
coarsening strategies as sketched in Section 5.1.4 for the 2D case. In general, too many coarse
grids are processed in situations with general anisotropies if a point smoother is used. An
efficient compromise is to use a 2D multiple semicoarsening strategy with line relaxation
in the third dimension. In order to obtain a robust solver for general anisotropies, this third
dimension should not be coarsened [411]. �

5.3 NONLINEAR PROBLEMS, THE FULL APPROXIMATION SCHEME

So far, we have considered linear problems. We will now discuss how multigrid methods
can be used to solve nonlinear problems. In principle, there are two approaches.

The first is to apply some global linearization method like Newton’s iteration to the
nonlinear problem. In each iteration step, we then have to solve a linear problem. Under
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suitable conditions, multigrid can be used to solve each of these linear problems. We will
describe this approach in detail in Section 5.3.3.

In the second approach, multigrid is applied directly to the nonlinear problem. The
two multigrid ingredients, the error smoothing and the coarse grid correction ideas are not
restricted to linear situations but can immediately be used for the nonlinear problem itself.
This leads to the so-called full approximation scheme (FAS) [58]. We will describe this
method in Section 5.3.4. In Section 5.3.6, we will apply FAS to a quasilinear problem from
fluid dynamics (the full potential equation). For linear problems, FAS and linear multigrid
as described in Chapter 2 are equivalent.

However, the FAS is also the basis of a number of advanced numerical techniques (see
Section 5.3.7). In this respect, the FAS is also of interest for linear problems. A simple
example of such a technique is the so-called τ -extrapolation which provides solutions of
higher accuracy.

Before we describe these multigrid methods, we will review some classical approaches
for nonlinear problems in Sections 5.3.1 and 5.3.2.

5.3.1 Classical Numerical Methods for Nonlinear PDEs: an Example

For the numerical treatment of nonlinear PDEs, one has, in principle, a variety of choices
of how to proceed. We give a rough survey of possible approaches here, emphasizing those
aspects which are relevant in the multigrid context.

We will use the general notation

Nu = f� (�) (5.3.1)

Bu = f � (�) (5.3.2)

in the following. Here N is assumed to be a nonlinear elliptic differential operator and B is
a boundary operator.

We assume that (5.3.1) and (5.3.2) have been discretized on a given grid�h. We denote
a nonlinear system of discrete equations by

Nhuh = fh (�h) (5.3.3)

with a nonlinear operator Nh : G(�h) → G(�h). For ease of presentation, we assume that
the boundary conditions have been eliminated and that they are implicitly contained in the
discrete right-hand side fh.

In order to be concrete and for illustration, we will again consider a model problem.

Model Problem 5
We consider the semilinear equation

−�u(x, y)+ g(x, y, u) = f�(x, y) ((x, y) ∈ �) (5.3.4)
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with Dirichlet boundary conditions

u(x, y) = f �(x, y) ((x, y) ∈ � = ∂�)

in a bounded domain � ⊂ IR2. Here, g, f� and f � as well as � are assumed to be suffi-
ciently smooth. Furthermore, we assume that the problem has a uniquely defined (classical)
solution u.

Discretizing the operator � in (5.3.4) with the standard five-point stencil on �h, the
system (5.3.3) is given by

−�huh(x, y)+ g(x, y, uh(x, y)) = fh(x, y) ((x, y) ∈ �h). (5.3.5)

�

In the description of classical approaches for solving (5.3.3), we will distinguish between
global linearization methods and (local) relaxation-type methods. This distinction is not
rigid in all cases since some methods can be interpreted in either way and certain approaches
are very similar.

From global linearization, we obtain a sequence of linear discretized PDEs. A classical
method of this type is Newton’s iteration

um+1
h = umh − (Kmh )−1(Nhu

m
h − fh) (m = 0, 1, 2, . . . ) (5.3.6)

with some initial approximation u0
h. Here,

Kmh = Nh
′[umh ] (5.3.7)

is the Jacobian of Nh, i.e. in matrix terminology, the matrix of first partial derivatives. For
the practical use of Newton’s iteration, instead of (5.3.6) the equivalent defect correction
notation

umh −→ dmh := fh −Nhumh −→ Kmh v̂
m
h = dmh −→ um+1

h = umh + v̂mh

is suitable. Here, the box highlights the linear equation which has to be solved at the mth
step of Newton’s iteration.

Example 5.3.1 (Newton’s method) In Model Problem 5,Kmh v̂
m
h = dmh is represented by

−�hv̂mh + cmh (x, y)v̂mh = dmh (x, y) ((x, y) ∈ �h)

with

cmh (x, y) = ∂g

∂u
(x, y, umh (x, y)). (5.3.8)



150 MULTIGRID

Thus, in each Newton step, a discrete Helmholtz-like equation (with nonconstant Helmholtz
coefficient cmh (x, y)) has to be solved in this case. �

It is well known that Newton’s iteration converges quadratically under suitable
conditions, i.e.

||vm+1
h || ≤ const ||vmh ||2 (m = 0, 1, 2, . . . )

holds for the errors vmh = u−umh and vm+1
h = u−um+1

h . However, a drawback of Newton’s
method is that its domain of attraction is usually small. Therefore, Newton’s method is often
preceded by a slower but more robust algorithm in order to enlarge the domain of attraction.
If the approximations are close enough to the solution, the method is switched to Newton’s
iteration in order to obtain the quadratic convergence.

Next to Newton’s iteration in its original form (5.3.6), many variants and simplifications
are used in practice. We list some of them in the following. They all belong to the class of
global linearization methods. The simplified Newton iteration is obtained if

Kmh = Kh = N ′
h[u0

h]

is used instead of (5.3.7). In this case, the Jacobian needs to be calculated only once and
the discrete linear differential operatorKh is the same for all iteration steps. The simplified
Newton iteration converges only linearly (under suitable conditions).

Example 5.3.2 (simplified Newton’s method) For Model Problem 5, the operatorKmh is
then as in Example 5.3.1, but cmh is replaced by

c0
h(x, y) = ∂g

∂u
(x, y, u0

h(x, y)). �

Remark 5.3.1 A different simplification, which also leads to linear convergence, is to
replace cmh (x, y) in Example 5.3.1 by a constant, e.g.

ĉmh :=
(

min
x,y

cmh (x, y)+ max
x,y

cmh (x, y)
)
/2.

In this case, Kmh is the discrete Helmholtz operator

Kmh = −�h + ĉmh Ih,
where Ih denotes the identity operator. This choice is of interest if one of the special fast
elliptic solvers from Table 1.1 are to be applied (in simple domains) for the solution of
Kmh v

m
h = dmh . These solvers are usually only applicable to elliptic problems with constant

coefficients. Such restrictions are irrelevant when using multigrid. �

Remark 5.3.2 (Picard’s method) An even simpler choice of Kmh is to use

Kmh = Kh = −�h
for Model Problem 5, which gives Picard’s iteration. �
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Remark 5.3.3 (Newton-SOR) For the linear problems which have to be solved in each
step of global linearization methods, in principle, any linear solver can be applied. Iterative
methods like SOR have been discussed in the traditional numerical literature [286]. If, for
example, Newton’s iteration is used for global linearization and SOR for the resulting linear
systems, this combination is usually called Newton-SOR. �

5.3.2 Local Linearization

Apart from global linearization, the second principal approach for the solution of nonlinear
systems is to employ methods using only local linearization. We use a somewhat different
notation here. For instance, let

Ni(u1, . . . , ur ) = 0 (i = 1, . . . , r)

denote a nonlinear system of algebraic equations for the unknowns u1, . . . , ur . A nonlinear
Jacobi iteration to solve for the ith unknown from the ith equation then reads

Ni(u
m
1 , . . . , u

m
i−1, u

m+1
i , umi+1, . . . , u

m
r ) = 0

(here, the indices m and m+ 1 denote the current and the new approximations).
Correspondingly, a nonlinear Gauss–Seidel iteration reads

Ni(u
m+1
1 , . . . , um+1

i−1 , u
m+1
i , umi+1, . . . , u

m
r ) = 0 (i = 1, 2, . . . , r).

In both cases, a single nonlinear equation for a (single) unknown um+1
i has to be solved.

One option is to use Newton’s method again, which, of course, is an iteration for a single
equation then.

In the following, we will consider such relaxation-type methods in the context of the
nonlinear discrete problems (5.3.3). For simplicity, we confine our description to Model
Problem 5.

Example 5.3.3 For Model Problem 5, the nonlinear Jacobi iteration is

1

h2
[4]um+1

h + g(x, y, um+1
h ) = fh − 1

h2

⎡⎣ −1
−1 0 −1

−1

⎤⎦ umh , (5.3.9)

while the nonlinear Gauss–Seidel relaxation with lexicographic ordering is

1

h2

⎡⎣ 0
−1 4 0

−1

⎤⎦ um+1
h + g(x, y, um+1

h ) = fh − 1

h2

⎡⎣ −1
0 0 −1

0

⎤⎦ umh .
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If the nonlinearity (in g) is treated by one step of Newton’s iteration, we obtain the “Jacobi–
Newton” relaxation

1

h2
[4]um+1

h + cmh (x, y)um+1
h

= cmh (x, y)u
m
h − g(x, y, umh )+ fh − 1

h2

⎡⎣ −1
−1 0 −1

−1

⎤⎦ umh
with cmh (x, y) as in (5.3.8). A corresponding formula is obtained for “Gauss–Seidel–
Newton”. �

With respect to relaxation parameters ω �= 1, similar results as in the linear case can be
derived. In particular, the convergence properties of Gauss–Seidel relaxations can usually
be improved by a parameter ω > 1.

Remark 5.3.4 As in the linear case, relaxation-type methods like Jacobi–Newton
and Gauss–Seidel–Newton turn out to be inefficient solvers for typical nonlin-
ear elliptic problems. However, if applied in the context of (nonlinear) multigrid
methods, which we will describe in Section 5.3.4, these relaxations are natural as
smoothers. �

Remark 5.3.5 Instead of Jacobi–Newton or Gauss–Seidel–Newton, sometimes g(x, y,
um+1
h ) is simply replaced by g(x, y, umh ) in Example 5.3.3. We call the corresponding relax-

ations Jacobi–Picard and Gauss–Seidel–Picard, respectively. Typically, these relaxations
are less expensive since the derivatives of g need not to be calculated in the relaxation. For
smoothing purposes, this simplification often works well (see Section 5.3.5). �

Remark 5.3.6 We have made a major distinction between global linearization and local
linearization in this section. In that respect, the two algorithms Newton–Gauss–Seidel (i.e.
global linearization by Newton’s iteration and Gauss–Seidel iteration for the resulting linear
systems) and Gauss–Seidel–Newton (i.e. pointwise nonlinear Gauss–Seidel relaxation and
Newton’s iteration for the corresponding nonlinear scalar equations in each grid point) are
basically different. However, if applied to the semilinear Model Problem 5, the algorithms
are very similar. For a systematic comparison see, for example, [286]. �

Remark 5.3.7 (exchangeability of discretization and linearization processes) In our
description of numerical methods for nonlinear PDEs, we have assumed that we have dis-
cretized the equationNu = f first and then applied a global linearization of the form (5.3.7)
to the discrete problemNhuh = fh. However, we can also apply a linearization approach like
Newton’s iteration to the nonlinear PDEs first and discretize the linearized PDEs afterwards.
This approach can have advantages (like more flexibility with respect to the discretization)
and may be regarded as more elegant. In many cases both ways lead to the same algorithm.
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Formally, the linearization of the PDE is more ambitious since appropriate derivatives in
adequate spaces have to be defined. �

5.3.3 Linear Multigrid in Connection with Global Linearization

The linear problems which arise in the context of global linearization can efficiently be
solved by linear multigrid. Here, not only one linear problem has to be solved but the
global linearization leads to a sequence of linear problems, which typically are closely
related. If multigrid cycles are used, an outer iteration (global linearization) is combined
with an inner iteration (linear multigrid). In this section, we discuss how to adapt the
convergence properties of the outer and the inner iteration so that the overall efficiency is
satisfactory.

One way to combine Newton’s method with an iterative linear multigrid method for
Kmh v

m
h = dmh is to choose the number of multigrid iterations in each Newton step such

that the convergence speed of Newton’s method is fully exploited. This means that the
number of multigrid iterations should roughly be doubled from one Newton step to the
next as soon as Newton’s method converges quadratically. We will refer to this method as
Method I.

The main problem in this method is that one has to establish an appropriate control
mechanism in order to obtain the required information on the convergence of Newton’s
method. If, for instance, too many multigrid cycles are carried out per Newton step, the
overall efficiency of this approach will be reduced.

Another possibility is tofix the number of multigrid iterations per Newton step. For exam-
ple, one may perform only one multigrid iteration per Newton step. A control mechanism
is not needed in this case. As a consequence, Newton’s method is, of course, truncated to
a linearly convergent method. This method has the disadvantage that the Jacobian (5.3.7)
needs to be calculated more often. We will refer to this as Method II. Some results for
Methods I and II are shown in the following example.

Example 5.3.4 Consider the problem

Nu = −�u+ eu = f�(x, y) ((x, y) ∈ �),
u = f �(x, y) ((x, y) ∈ �), (5.3.10)

where the domain � sketched in Fig. 5.9 has a boundary composed of semicircles and
straight lines and where f� and f � are chosen such that the solution u is u(x, y) =
sin 3(x + y). The Laplace operator is discretized by the standard five-point formula (with
h = (hx, hy) = (h, h)) except for grid points near the boundary, where the Shortley–Weller
approximation (2.8.13) is used.

Table 5.7 compares the methods discussed above for this problem. In Method II, one
multigrid cycle is performed per (global) Newton step, in Method I the number of multigrid
cycles is doubled from one Newton step to the next. In both cases the multigrid cycle for
the linear problems uses GS-RB, FW and bilinear interpolation of the corrections. For all
methods, the zero grid function u0

h = 0 is used as the initial multigrid approximation.
Further parameters are ν1 = 2, ν2 = 1 and γ = 2 (W-cycles).
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x1

3/4

– 3/4

1/4

3/4

Figure 5.9. Domain � in (5.3.10).

Table 5.7. Behavior of || uh−umh || 2 (h = 1/32) for (5.3.10); for the Methods I
and II and FAS, horizontal lines indicate that a new (global) Newton step is
performed.

Number of
cycles (m) Method I Method II FAS

1 0.18 (+2) 0.18 (+2) 0.14 (+2)

2 0.20 (0) 0.20 (0) 0.20 (0)

3 0.86 (−2) 0.55 (−2) 0.54 (−2)

4 0.14 (−3) 0.14 (−3) 0.14 (−3)

5 0.43 (−5) 0.42 (−5) 0.42 (−5)

6 0.13 (−6) 0.13 (−6) 0.13 (−6)

7 0.47 (−8) 0.39 (−8) 0.38 (−8)

8 0.13 (−9) 0.12 (−9) 0.12 (−9)

9 0.42 (−11) 0.40 (−11) 0.39 (−11)

If we compare the results of Methods I and II, we observe that the quadratic convergence
speed of Newton’s method is fully exploited in Method I. An accuracy of 10−8 is reached
after three Newton steps. The linearly convergent Method II needs seven steps of the “multi-
grid truncated” Newton iteration to reach the same accuracy. However, if we compare the
errors after the same number of multigrid iterations, the accuracy is nearly the same in both
cases.

Furthermore, the work and the storage requirements for Methods I and II are similar. In
that respect, the efficiency of both methods is essentially the same. The fact that the Newton
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iteration in Method I converges quadratically, whereas that of Method II does not, does
not say anything about the overall efficiency of the methods. In other words, both methods
give quadratic convergence if we define one algorithmical unit to consist of 1, 2, 4, . . .
multigrid steps.

The third column in Table 5.7 corresponds to the nonlinear multigrid method (FAS)
which will be discussed in detail in Section 5.3.4. In principle, it is a nonlinear analog of
a linear red black multigrid solver described in Section 2.5, where GS-RB relaxation is
essentially replaced by a corresponding nonlinear GS-RB relaxation method. �

5.3.4 Nonlinear Multigrid: the Full Approximation Scheme

Similar to the linear case, the nonlinear FAS multigrid method can be recursively defined
on the basis of a two-grid method. Thus we start with the description of one iteration cycle
of the nonlinear (h,H) two-grid method for solving (5.3.3), computing um+1

h from umh . The
fundamental idea of nonlinear multigrid is the same as in the linear case. First, the errors
to the solution have to be smoothed such that they can be approximated on a coarser grid.
An analog of the linear defect equation is transferred to the coarse grid. The coarse grid
corrections are interpolated back to the fine grid, where the errors are finally smoothed.
However, formally we do not work with the errors, but with full approximations to the
discrete solution on the coarse grid.

In the nonlinear case the (exact) defect equation on �h is given by

Nh(ū
m
h + vmh )−Nhūmh = d̄mh (5.3.11)

and this equation is approximated on �H by

NH(ū
m
H + v̂mH )−NH ūmH = d̄mH , (5.3.12)

where NH is an appropriate discrete operator on �H . An illustration of the corresponding
two-grid cycle, which is similar to the one given in Fig. 2.4 for the linear correction scheme
is given in Fig. 5.10.

umh ūmh d̄mh = fh −Nhūmh v̂mh ūmh + v̂mh um+1
h

� � �

SMOOTHν1

�

SMOOTHν2

�

ÎHh

ūmH

�

IHh

�

IhH

d̄mH � NH(ū
m
H + v̂mH )−NH ūmH = d̄mH

Figure 5.10. FAS (h,H) two-grid method.
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In this description, SMOOTH stands for a nonlinear relaxation procedure (for example,
one of those described in Section 5.3.2) which has suitable error smoothing properties. As
in the linear case, ν1 smoothing steps are performed before and ν2 smoothing steps after
the coarse grid correction.

In contrast to the linear case, not only the defect dmh is transferred to the coarse grid
(by some restriction operator IHh ) in the FAS two-grid method, but also the relaxed
approximation ūmh itself (by some restriction operator ÎHh , which may be different
from IHh ).

On the coarse grid �H , we deal with the problem

NHwH = fH , (5.3.13)

where wH = ūmH + v̂mH and where the right-hand side fH is defined by

fH := IHh (fh −Nhūmh )+NH ÎHh ūmh . (5.3.14)

The transfer of the current approximation to the coarse grid is used to obtain ūmH = ÎHh ū
m
h .

The most common choice for ÎHh is injection (for vertex-centered grids).

Remark 5.3.8 If Nh and NH are linear operators, the FAS two-grid method is equivalent
to the (linear) correction scheme introduced in Section 2.4.2. This can be seen immediately
from (5.3.12). �

As mentioned above, in the FAS method, the correction v̂mH is transferred back to the
fine grid�h as in the linear case. This is important since only correction grid functions (i.e.
errors) are smoothed by relaxation processes and can therefore be approximated well on
coarser grids (see the explanations in Sections 2.1 and 2.2, which, in principle, also apply
to the nonlinear case). v̂mH is computed as the difference of ÎHh ū

m
h andwH = ūmH + v̂mH after

solution on the coarse grid.

Remark 5.3.9 (warning for beginners) The approach to interpolate the full approxi-
mation obtained on the coarse grid back to the fine grid does, in general, not lead to a
converging nonlinear solution method. This is the source of an error that is often made by
multigrid beginners. �

In the corresponding nonlinear multigrid process, the nonlinear coarse grid equa-
tion (5.3.12) is not solved exactly, but by one or several multigrid cycles using still coarser
grids. In the following algorithmic description of one FAS cycle, we use a similar notation
as in Section 2.4. In particular, we assume a sequence of grids �k and grid operators Nk,
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I k−1
k , Î k−1

k , I k
k−1 etc. to be given. One FAS multigrid cycle starting on the finest level k = �

(more precisely: FAS (�+ 1)-grid cycle) for the solution of

N�u� = f� (� ≥ 1, fixed) (5.3.15)

proceeds as follows. If k = 1, we just have the two-grid method described above with �0
and �1 instead of �H and �h, respectively. For general k = 1, . . . , �, we have:

FAS multigrid cycle um+1
k = FASCYC(k, γ, umk ,Nk, fk, ν1, ν2)

(1) Presmoothing

– Compute ūmk by applying ν1(≥ 0) smoothing steps to umk

ūmk = SMOOTHν1(umk ,Nk, fk).

(2) Coarse-grid correction
– Compute the defect d̄mk = fk −Nkūmk .
– Restrict the defect d̄m

k−1 = I k−1
k d̄mk .

– Restrict ūmk ūm
k−1 = Î k−1

k ūmk .

– Compute the right-hand side fk−1 = d̄m
k−1 +Nk−1ū

m
k−1.

– Compute an approximate solution
ŵm
k−1 of the coarse grid equation on �k−1

Nk−1w
m
k−1 = fk−1. (5.3.16)

If k = 1 employ a fast solver for this purpose.
If k > 1 solve (5.3.16) by performing γ (≥ 1) FAS k-grid cycles
using ūm

k−1 as initial approximation

ŵmk−1 = FASCYCγ (k − 1, γ, ūmk−1, Nk−1, fk−1, ν1, ν2).

– Compute the correction v̂m
k−1 = ŵm

k−1 − ūm
k−1.

– Interpolate the correction v̂mk = I k
k−1v̂

m
k−1.

– Compute the corrected
approximation on �k u

m,after CGC
k = ūmk + v̂mk .

(3) Postsmoothing

– Compute um+1
k by applying ν2 (≥ 0) smoothing steps to um,after CGC

k

um+1
k = SMOOTHν2(u

m,after CGC
k , Nk, fk).
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One can observe from this description that no global linearization is needed in the
FAS multigrid process, except on the coarsest grid. Only nonlinear relaxation methods are
required as well as (linear) fine-to-coarse and coarse-to-fine transfer operators. These trans-
fer operators are thus often chosen as in the linear case: FW, HW and linear interpolation.
As discussed in Section 5.3.1, there are usually several nonlinear analogs to a given linear
relaxation method [286] which correspond to a (locally) linearized problem. (See also Sec-
tion 5.3.5 for some remarks about simple nonlinear relaxation methods and their smoothing
properties.)

The combination of FAS with full multigrid (FMG), i.e, starting FAS on the coarsest
grid, is also easily possible and a natural choice in many cases.

In the nonlinear case, again bicubic interpolation is typically used as the FMG
interpolation.

Remark 5.3.10 (continuation) In order to obtain a reasonable initial approximation on
a fine grid, i.e. an approximation that lies in the domain of attraction, a continuation
process can be incorporated within an FMG iteration combined with FAS. The idea of
this approach is to start with a weakly nonlinear or even linear problem on the coarsest
grid and increase the strength of the nonlinearity step by step, when going to finer levels
in FMG. �

Remark 5.3.11 (FAS versus global linearization) In Example 5.3.4, the results of the
FAS nearly coincide with those of Method II (see the errors in Table 5.7). This is a general
observation. Although the FAS and the indirect multigrid Methods I and II may look quite
different at first sight, they often show similar convergence.

In fact, if we consider one iteration step of Method II (see Section 5.3.3, one linear
multigrid cycle per linearization step) and one FAS cycle, the main differences lie in the
solution process on the coarsest grid and in the relaxation process (which in the one case
refers to Nh and in the other case refers to its current linearization Nmh ).

An advantage of FAS compared to Methods I and II is the memory requirement of FAS.
It is not necessary to compute and store the (fine grid) Jacobian in the FAS process, as is
necessary in the Newton-based solution methods. �

Remark 5.3.12 A more general proposal for a nonlinear multigrid method is Hackbusch’s
NLMG method [176]. The main difference between NLMG and FAS is the choice of the
initial approximation on the coarse grid (ūmH in the FAS). In principle, any grid function
can be used as initial guess on a coarse grid. NLMG uses, for example, a coarse grid
approximation from the FMG process as a first approximation on the coarse grid since this
is a solution of the nonlinear coarse grid equation, whereas in the FAS the restriction of a
current fine grid solution umh is employed.

In addition, NLMG allows a scaling factor s in front of the restricted defect d̄mH in the
right-hand side of the coarse grid equation (and the factor 1/s in front of the correction v̂mh
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back to the fine grid). This parameter can be used to ensure the solvability of the coarse
grid equation [176]. �

5.3.5 Smoothing Analysis: a Simple Example

In the nonlinear multigrid context, we are interested in the smoothing properties of nonlinear
relaxation methods. We want to discuss this question briefly for (5.3.5). For simplicity, we
consider only Jacobi-type iteration. A corresponding analysis can, of course, also be carried
out for other relaxation methods.

We compare ω-Jacobi–Newton and ω-Jacobi–Picard relaxation (see Remark 5.3.5).
They differ in the way in which the nonlinear function g is treated in the relaxation. Newton
linearization uses

g(x, y, umh )+ ∂g

∂u
(x, y, umh )(u

m+1
h (x, y)− umh (x, y)), (5.3.17)

whereas Picard uses

g(x, y, umh ) (5.3.18)

as an approximation for g(x, y, um+1
h ) while performing the relaxation at any fixed grid

point.

Remark 5.3.13 We consider only the linear case g(x, u) = cu, with constant c > 0. The
relaxation operators of theω-Jacobi–Newton and theω-Jacobi–Picard methods are given by

SNh =
(

1 − ωNch2

4 + ch2

)
Ih − ωNh2

4 + ch2
�h, (5.3.19)

SPh =
(

1 − ωP ch2

4

)
Ih − ωPh2

4
�h. (5.3.20)

Obviously, both operators coincide if

ωN = 4 + ch2

4
ωP . (5.3.21)

It is therefore sufficient to analyze SNh = SNh (ω).
By considerations similar to those in Section 2.1, we obtain the eigenvalues χN,k,�h and

the smoothing factor μ(h;ω) for SNh (ω):

χ
N,k,�
h = 4

4 + ch2
χ
k,�
h + (1 − ω)ch2

4 + ch2

= 1 − ω

4 + ch2
(4 + ch2 − 2 cos kπh− 2 cos �πh)

μ(h;ω)N = max

{∣∣∣∣1 − ω
(

1 − 2 cosπh

4 + ch2

)∣∣∣∣, ∣∣∣∣1 − ω
(

1 + 4 cosπh

4 + ch2

)∣∣∣∣},
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with χk,�h = 1 − (ω/2)(2 − cos kπh − cos �πh) from (2.1.5). Of course, the ω-Jacobi–
Newton relaxation coincides with ω-JAC in this linear case. From (5.3.22), we see that,
for any fixed 0 < ω < 1 (and any fixed h), the smoothing properties of SNh improve for
increasing c:

μ(h;ω) → 1 − ω (0 ≤ c → ∞).

The Jacobi–Picard ω-relaxation method should, however, be used with some care [378].
From (5.3.21), we can see that for any fixed ω = ωP , 0 < ωP < 1, the ω-Jacobi–Picard
method has no smoothing properties, if ch2 is sufficiently large. �

More generally, this means that for the nonlinear case the ω-Jacobi–Picard relaxation
with fixed ω cannot be used for smoothing purposes whenever

h2 ∂g

∂u
(x, y, uh(x, y))

is large compared to 1 for certain (x, y) ∈ �. This is quite likely to occur, at least on coarse
levels of the FAS algorithm. If, however,

0 ≤ h2 ∂g

∂u
(x, y, uh(x, y)) < 1 ((x, y) ∈ �h)

and if umh is sufficiently close to uh, the Jacobi–Picard method should give results similar
to those of the Jacobi–Newton method.

Even in the general case, typically one Newton step in relaxing each single equation
turns out to be sufficient for many applications. We finally remark that all other smoothing
methods for linear problems (point, line, plane relaxations) have natural nonlinear analogs.

5.3.6 FAS for the Full Potential Equation

The full potential equation describes a steady, inviscid, isentropic and irrotational flow and
is a nonlinear differential equation for the potential �. For convenience, we use the scaled
potential φ = �/u∞, where u∞ is the flow velocity of the free undisturbed flow, which we
assume to be inx-direction (v∞ = 0). In 2D, the full potential equation can then be written as

−�φ + 1

c2

(
(φx)

2φxx + 2φxφyφxy + (φy)2φyy
) = 0, (5.3.22)

where c = c(φx, φy) is the (local) speed of sound defined by

c2 = 1

(M∞)2
+ γ − 1

2
(1 − ((φx)2 + (φy)2))

and M∞ = u∞/c∞ is the Mach number (c∞ the speed of sound) of the undisturbed flow.
The parameter γ is the ratio of the specific heats at constant pressure and volume (≈ 1.4
for air). The flow velocities (also scaled by u∞) in the x- and y-directions are

u = φx and v = φy.

In the limit c → ∞ (incompressible flow), (5.3.22) reduces to the Laplace equation for the
potential φ.
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It can easily be seen that the full potential equation is elliptic if the velocity is smaller
than the speed of sound, i.e.

u2 + v2 < c2 (subsonic flow),

and hyperbolic if

u2 + v2 > c2 (supersonic flow).

For the range of subsonic potential flow, (5.3.22) is elliptic and standard nonlinear multigrid
works very efficiently.

As an example, we consider the full potential flow around the unit circle. This flow is
subsonic up toM∞ ≈ 0.4. (For larger Mach numbersM∞, the flow becomes transonic, i.e.
there will be regions in which the flow is supersonic.) We assume that the undisturbed flow
is in the x-direction. Due to symmetry, we can restrict ourselves to the flow around a quarter
of the circle. In this example, it is convenient to use polar coordinates (r, θ). Figure 5.11
presents the geometry of this problem in Cartesian and in polar coordinates.

In polar coordinates, the corresponding boundary value problem is given by the PDE

−�φ + 1

c2

(
φr

2φrr + 2

r2
φrφθφrθ + 1

r4
φθ

2φθθ − 1

r3
φrφθ

2
)

= 0 (�) (5.3.23)

with

�φ = φrr + 1

r2
φθθ + 1

r
φr (5.3.24)

and

c2 = 1

(M∞)2
+ γ − 1

2

(
1 −

(
φr

2 + 1

r2
φθ

2
))

2

1

x

y

P

2

(a)

P

2

r

1

1 1

33

1

(b)

�

Figure 5.11. Relevant domains � for the computation of the full potential flow around the circle
(indicated by P) in (a) Cartesian coordinates, (b) polar coordinates.
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and the boundary conditions

φ = 0 (�2) (5.3.25)

φn = 0 (�1, �3) (5.3.26)

φ −→ r cos θ (for r −→ ∞). (5.3.27)

Instead of the far-field condition (5.3.27), we use the nonlinear boundary condition

φφn = r cos2 θ (for r = R with R sufficiently large).

which is a better approximation than the Dirichlet boundary condition φ = r cos θ or
the Neumann boundary condition φr = cos θ [345]. (The proper multigrid treatment of
boundary conditions will be described in Section 5.6.)

To solve this system by nonlinear multigrid (FAS), we discretize all occurring derivatives
by standard second-order central differences. It can be seen in the linear case, i.e. the
Laplace operator in polar coordinates (5.3.24), that the resulting PDE becomes anisotropic
for large values of r . Therefore, we use a zebra line relaxation in the radial direction. Within
the (nonlinear) line relaxation, one Newton step is used for each line. FW and bilinear
prolongation are used as transfer operators.

Table 5.8 shows measured multigrid convergence factors in dependence of the Mach
number of the undisturbed flowM∞.

Obviously, the convergence rates hardly depend on M∞ as long as the flow remains
subsonic. They are very close to those of the pure Laplacian (M∞ = 0).

ForM∞ larger than about 0.4, the flow is locally hypersonic and, as a consequence, the
discrete equation is no longer h-elliptic as long as central differences are used. According
to the discussion in Section 4.7.2, the divergence of the algorithm has thus to be expected
for such Mach numbers. In such cases the discretization has to be modified [369].

Note that in the transonic case, the assumptions leading to the full potential equation are
not fulfilled physically; the compressible Euler equations describe the physical flow much
better.

Table 5.8. Measured multigrid convergence rates depending on
M∞ (4 grids, hr = 1/16, hθ = π/32, R = 4).

M∞ ν1 = ν2 = 1 ν1 = 2, ν2 = 1

0 0.064 0.035
0.1 0.065 0.035
0.2 0.067 0.037
0.3 0.066 0.039
0.4 0.062 0.037
0.41 0.068 0.037
0.42 0.067 0.039
0.43 div. div.
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5.3.7 The (h,H)-Relative Truncation Error and τ -Extrapolation

A variety of more sophisticated multigrid techniques is based on the FAS method. In the
following, we use the notation of a linear operator Lh for convenience, although these
techniques can also be applied in nonlinear applications.

The coarse grid equation (5.3.13), (5.3.14) in the FAS scheme can be written in the form

L2hw
m
2h = I2h

h fh + τ 2h
h (ū

m
h ) (5.3.28)

where

τ 2h
h (uh) := L2hÎ

2h
h uh − I 2h

h Lhuh. (5.3.29)

Clearly, the identity

L2h(Î
2h
h uh) = I2h

h fh + τ 2h
h (uh) (5.3.30)

holds for the discrete solution uh. τ2h
h (uh) is called the (h, 2h)-relative truncation error

(with respect to I2h
h , Î

2h
h ). With respect to the grids �h and �2h, τ

2h
h plays a role similar

to the truncation error (local discretization error)

τh(u) := LhÎhu− ÎhLu (5.3.31)

of the continuous solution u with respect to � and �h. (Here Îh denotes the injection
operator from � to �h.)

If, in particular,�2h ⊂ �h and Î2h
h is the injection operator from�h to�2h, we see

from (5.3.30) that τ 2h
h (uh) is that quantity which has to be added to the right-hand

side I 2h
h fh to obtain the values of the fine grid solution uh on �2h. By solving

(5.3.30), we obtain the fine grid solution represented by Î 2h
h uh on the coarse grid.

The quantity τ2h
h is the starting point for several techniques, all of which are based on

a somewhat different interpretation of multigrid. This is the dual point of view of multi-
grid [66], in which the coarse grid is regarded as the primary grid. In this view, the fine grid
is used to provide fine grid accuracy to the problem on the coarse grid, instead of regarding
the coarse grid as a means of providing a correction for the solution of the problem on
the fine grid. For this purpose, of course, a suitable approximation for τ2h

h (uh) has to be
provided. Some of the advanced techniques are

• τ -estimation, where τ 2h
h is used to estimate the discretization error,

• adaptive mesh refinement techniques, where the utilization of locally refined grids can
be based on criteria using τ 2h

h (see Chapter 9)
• τ -extrapolation, which we discuss in some more detail in the following.
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For details and further techniques based on τ2h
h (e.g. so-called frozen-τ techniques which

can be useful for problems in which a sequence of similar systems of equations needs to be
solved, like in time-dependent problems) see [66, 447].

Employing τ -extrapolation is one way to obtain more accurate approximations. How-
ever, in order to obtain high order approximations in general situations, we refer to the
defect correction approach (see Section 5.4.1).

Let us consider a discrete linear problem

Lhuh = fh, (5.3.32)

where Lh is a pth order discretization. If τ2h
h (uh) is added to the right-hand side of

L2hu2h = I2h
h fh,

we will obtain fine grid accuracy. A simple modification of τ 2h
h , however, provides an

approximation uτ2h, the accuracy of which will be better than that of uh. A formula for the
modification is easily derived if we assume asymptotic expansions of the form

Lhu− Lu = e1h
p +O(hq) (5.3.33)

L2hu− Lu = e12php +O(hq) (5.3.34)

uh − u = e2h
p +O(hq) (5.3.35)

(q > p) and further assume that all functions appearing are sufficiently smooth. We consider
the 2h-grid problem

L2hu
τ
2h = I2h

h fh + 2p

2p − 1
τ 2h
h (uh). (5.3.36)

Choosing injection as the restriction operator I2h
h and omitting it for ease of presentation,

we find from (5.3.33–5.3.35) that

L2hu
τ
2h = fh + 2p

2p − 1
(L2hu− Lhu)+ 2p

2p − 1
hp(L2he2 − Lhe2)+O(hq)

= fh + 2p

2p − 1
(L2hu− Lhu)+O(hq̃) (where q̃ = min {2p, q})

= Lu+ 2phpe1 +O(hq̃)
= L2hu+O(hq̃).

Obviously, the order of accuracy of uτ2h is higher than that of uh.

Remark 5.3.14 In practice, (5.3.36) can also be used if the asymptotic expansion (5.3.35)
does not hold or cannot be proved. From (5.3.33) and (5.3.34) we see that

L2hu = Lu+ 2p

2p − 1
(L2hu− Lhu)+O(hq). (5.3.37)

�
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. . .. . .

Figure 5.12. An example of how to apply τ -extrapolation. ◦, solution on coarsest grid; •, smoothing;
�, τ -extrapolation, i.e. setting up the right-hand side of the coarse grid equation (5.3.36).

τ -extrapolation means that the transfer from the finest grid is modified. Here, (5.3.36)
is used as the problem on the 2h-grid. The additional amount of work compared to standard
FAS is only the multiplication of τ2h

h with the constant factor (2p)/(2p− 1) per coarse grid
point. Note that onlyuτ2h is higher order accurate,uh is the original low order approximation.
Therefore, relaxation should not be employed anymore on the finest grid if τ -extrapolation
has been applied.

Figure 5.12 shows a simple, although not asymptotically optimal method, for which
high order accuracy is obtained. The basic idea is to avoid any relaxation on the fine grid,
once the τ -restriction has been applied. The approximation before the τ -restriction has to
be sufficiently accurate, and the number of cycles afterwards (on the coarse grid) has to be
large enough to really reach high order accuracy.

For optimal approaches and a more detailed description we refer to [40, 346].

Remark 5.3.15 The use of injection in (5.3.36) provides good approximations of Lhuh
and fh at the coarse grid points.

FW, however, is not the appropriate scheme in (5.3.36). This is because FW itself
provides only second-order accurate approximations. In the usual FAS iteration, FW is
applied to the defect which tends to zero during the multigrid iterations and therefore the
second-order does not damage the accuracy of the discrete solution. In the computation of
the right-hand side on the coarse grid (5.3.36), however, fh and Lhuh have been restricted
with different weights (1 and 2p/(2p − 1)). �

Remark 5.3.16 If we have non-Dirichlet boundary conditions, τ -extrapolation should be
applied separately to the discrete boundary conditions and to the discrete equations of the
PDEs, i.e. not to the eliminated equations at the boundary (see [346] for details). �

Finally, we apply the τ -extrapolation to the subsonic full potential equation (see
Section 5.3.6).

Example 5.3.5 In order to show that the τ -extrapolation can also be used for nonlinear
problems, we reconsider the full potential flow around the unit circle in 2D (see Fig. 5.11
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Table 5.9. Approximations M̃∗
∞ of M∗

∞ computed on grids with
different resolution (correct digits are underlined).

(hz, hθ ) M̃∗
∞ M̃∗

∞(τ )

(1/8, π/16) 0.3956 0.3956
(1/16, π/32) 0.39759 0.39767
(1/32, π/64) 0.397908 0.397954
(1/64, π/128) 0.397953 0.397968728
(1/128, π/256) 0.3979646 0.3979688565

and [375]). Here, we want to compute the lowest Mach numberM∗∞ for which supersonic
regions in the flow exist.

We transform the full potential equation to polar coordinates and perform a further
transformation to (1/r, θ)-coordinates which corresponds to a refinement of the grid near
the profile. Table 5.9 shows approximations M̃∗∞ and M̃∗∞(τ ) of M∗∞ computed with and
without τ -extrapolation for different grid sizes. For this purpose, the critical Mach number
has been determined from solutions φh(M∞) and φτh(M∞). For each Mach number M∞,
we have checked whether or not supersonic flow appears at the top of the circle.

The number of significant digits of M̃∗∞(τ ) is increased by at least one if the mesh size
is reduced by a factor of 2. The accuracy obtained without τ -extrapolation is worse. �

5.4 HIGHER ORDER DISCRETIZATIONS

So far, we have mainly considered second-order accurate discretizations of PDEs in detail.
In many situations, however, higher order discretizations have advantages. One benefit of
higher order discretizations is that the same accuracy can be achieved on a much coarser
grid provided the solution is sufficiently smooth. If an efficient solution method for a higher
order discretization is available, a large gain in computing time (and in computer memory)
can be achieved.

Uniformly elliptic problems tend to have smooth solutions. However, the shape of a
domain or the type of the boundary conditions involved may cause complications. In the
case of uniformly elliptic problems, “low order” discretization usually means O(h2) and
“high order” usually O(h4) accuracy.

We will present two ways of combining multigrid with high order discretizations:

• the direct multigrid solution (long stencil or “Mehrstellen” discretization in Sec-
tion 5.4.2),

• the solution via defect correction (see Section 5.4.1).

Here, we will restrict our discussion to uniformly elliptic problems. The defect correction
approach, however, is more general. In Section 7.1, for example, we will use it for (singularly
perturbed) convection–diffusion problems. For such problems, even efficient solvers for
second-order accurate discretizations cannot be obtained easily.
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Example 5.4.1 We want to solve the Poisson equation −�u = f with Dirichlet boundary
conditions u = g on the domain� = (0, 1)2 with fourth-order accuracy. ForLh, we choose
the O(h4)-accurate discretization

Lh = −4

3
�h + 1

3
�2h = 1

12h2

⎡⎢⎢⎢⎢⎣
1

−16
1 −16 60 −16 1

−16
1

⎤⎥⎥⎥⎥⎦
h

. (5.4.1)

The fourth-order accuracy of Lh is easily verified by a Taylor expansion.
At grid points adjacent to boundary points, the nine-point stencil (5.4.1) cannot be

applied since it has entries which are outside�h. Here, we use a modified stencil, e.g. near
the left (west) boundary:

Lh = 1

12h2

⎡⎢⎢⎢⎢⎣
1

−16
0 −12 54 −12 0

−16
1

⎤⎥⎥⎥⎥⎦
h

. (5.4.2)

The stencil (5.4.2) is obtained by the use of fourth-order extrapolation in order to eliminate
the entries of (5.4.1), which are outside of �h.

We set the boundary conditions g and the right-hand side f such that the analytical
solution is u(x, y) = exy . In order to see the benefits of a higher order discretization,
we compare the errors ||u − uh||∞ of the fourth order and the standard O(h2) five-point
stencil. Table 5.10 presents the difference between the analytical and numerical solutions
and the measured order p of accuracy hp for several grid sizes (p is obtained using the
asymptotic relation 2p ≈ ||u2h−u||∞/||uh−u||∞). Obviously, the accuracy of theO(h2)-
discretization on the 5122 grid is the same as that of theO(h4)-discretization on the 642 grid.
Solving the 642 problem with fourth-order accuracy is much cheaper than solving the 5122

problem with second-order accuracy. �

For simple high order operators such as (5.4.1), multigrid can be applied directly. We
have already seen in Example 4.7.6 that the h-ellipticity measure of this operator is satisfac-
tory. For (5.4.1), the smoothing factorμloc of GS-LEX and the two grid factorρloc(ν) (for the
components GS-LEX, FW and linear interpolation) are μloc = 0.53, ρloc (ν = 1) = 0.43
and ρloc (ν = 2) = 0.24.

This is an example for the direct multigrid treatment of higher order discretizations.
In general, the efficient solution of problems discretized by higher order schemes is more
difficult than that of lower order schemes since it becomes more difficult to find efficient
smoothing schemes.

Remark 5.4.1 (a trivial hint) Even if a solver for a higher order discretization is not
asymptotically optimal, it may be much more efficient than an asymptotically optimal
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Table 5.10. Higher order accuracy for Poisson’s equation.

(Second order) −�h (Fourth order ) Lh (5.4.1)

Grid ||uh − u||∞ p ||uh − u||∞ p

82 4.6 × 10−5 – 1.9 × 10−5 –
162 1.2 × 10−5 1.9 2.0 × 10−6 3.2
322 3.1 × 10−6 2.0 1.7 × 10−7 3.6
642 7.7 × 10−7 2.0 1.2 × 10−8 3.8
1282 1.9 × 10−7 2.0 8.5 × 10−10 3.8
2562 4.8 × 10−8 2.0 5.7 × 10−11 3.9
5122 1.2 × 10−8 2.0 3.6 × 10−12 4.0

procedure for a lower order discretization. Let us assume, for example, that a second-order
accurate solution for a 2D problem is obtained by an optimal FMG algorithm and that
a fourth-order accurate approximation is calculated in O(N logN) operations. In order
to achieve a similar discretization accuracy, FMG based on the low order discretization
would require O(N2) grid points and thus O(N2) operations, which is obviously much
less efficient than the high order approach. �

5.4.1 Defect Correction

The high order defect correction iteration offers a general possibility to employ low order
schemes and obtain high order accuracy. The basic idea of defect correction is simple.
Consider the problem

Lhuh = fh (�h),

where Lh is a high order discretization of L. A general defect correction iteration can be
written as

L̂hu
m
h = f̂h with f̂h := fh − Lhum−1

h + L̂hum−1
h , (5.4.3)

where L̂h is a low(er) order discretization of L.
Ifρ(I−(L̂)−1

h Lh) < 1, the iterated defect correction procedure converges to the solution
of the high order discrete problem. Defect correction can be applied to linear and nonlinear
problems. For linear problems, it can even be shown that, under suitable assumptions, one
defect correction step gains at least one order of accuracy (e.g. fromO(h2) toO(h3)) if the
low order problem is solved sufficiently accurately [176].

There are various possibilities for combining defect correction with multigrid. Some
of them are outlined in [7, 185]. The simplest approach to combining the defect correction
iteration with multigrid is to solve the L̂h equation by an efficient multigrid method in
each defect correction step such that the defect correction is the “outer iteration” given
by (5.4.3) and multigrid is the “inner iteration” used to obtain an approximation of umh
in (5.4.3). In this approach it is not necessary to develop smoothing schemes for higher order
discretizations.
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Figure 5.13. A defect correction strategy with one F-cycle per defect correction step; ◦, solution
on coarsest grid; •, smoothing; �, correction of the right-hand side.

The low order equation (5.4.3) does not have to be solved exactly by multigrid. A simple
example for multigrid with defect correction as an outer iteration is depicted in Fig. 5.13.
We demonstrate the result of this procedure in the Example 5.4.2.

Example 5.4.2 (Poisson’s equation and defect correction) We solve the Poisson equa-
tion −�u = f with Dirichlet boundary conditions on � = (0, 1)2 with the O(h4) dis-
cretization (5.4.1), (5.4.2) by defect correction. For L̂h we choose the five-point Laplace
operator −�h.

We use only one F(1,1)-cycle of the RBMPS from Section 2.5 per defect correction
step. Nested iteration (FMG) is used to obtain an initial approximation on the finest grid.
Figure 5.14 shows the convergence of the errors ||umh − u||∞ and of the defects
||fh − Lhumh ||∞ on a 2562-grid with boundary conditions and right-hand side such that
u = exy is the analytical solution. �

In this example, we observe that, although the defect for the higher order discretization is
still relatively large after three defect correction steps, the discretization accuracy is already
reached. This is a more generally observed behavior.

Figure 5.15 presents the Fourier symbols of the defect correction iteration matrix
I − (L̂h)

−1Lh in this case. The spectral radius ρloc(I − (L̂h)
−1Lh) is found to be 0.33.

This convergence is also seen for the defects in the above experiment. However, Fig. 5.15
also shows that the convergence of the low frequency components of the solution is faster
than that of the high frequency components. This is important since, typically, the low
frequency parts of a solution determine the accuracy. This is the reason why, in general,
the defect-corrected approximation is better than indicated by the reduction of the defect,
which is governed by the worse convergence of high frequency error components.

In order to illuminate this statement, we consider the corresponding 1D case. We com-
pare the Fourier symbols of L = −d2/dx2 and of its discretizations

L̂h = − 1

h2
[1 − 2 1], Lh = − 1

12h2
[−1 16 − 30 16 − 1].
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Figure 5.14. Behavior of differential error and defects for an example of a defect correction iter-
ation on a 2562 grid. �, ||umh − u||∞ (lower curve); +, ||fh − Lhumh ||∞ (upper curve).
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Figure 5.15. The Fourier symbol of I − (L̂h)
−1Lh for Poisson’s equation. Left, the 2D case with

isolines; right, the 1D case.

The corresponding symbols (formal eigenvalues of the operators with respect to ϕ =
eiθx/h) are

L̃ = θ2

h2
,

˜̂
Lh = 2 − 2 cos θ

h2
, L̃h = 30 − 32 cos θ + 2 cos(2θ)

12h2
.
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Figure 5.16. Fourier symbols L̃, L̃h,
˜̂
Lh for Poisson’s equation. (a) L̃; (b) ˜̂

Lh; (c) L̃h (all multiplied
by h2). Left, the region [−π, π ]; right, zooming the region [−π/2, π/2].

They are presented in Fig. 5.16. Indeed, the high frequency components of the discrete
operators do not approximate the symbols of L well, whereas the low frequency part of
L is actually better approximated by the fourth-order operator. This, together with the
fast convergence of the low frequencies in defect correction, as found in Fig. 5.15, is an
indication for the fast convergence of the solution to higher order accuracy with defect
correction.

Often, however, there is no other convergence measure available than the defect
reduction.

Remark 5.4.2 When replacing θ by kπh, i.e. considering a discrete spectrum for Dirichlet
boundary conditions as in the rigorous Fourier analysis, one can apply a Taylor expansion to
the cosine terms with respect to h. In this case, one finds that the two discretizations approx-
imate the eigenvalues π2k2 of the continuous problem by second- and fourth-order, respec-
tively. Again, we see that small values of k (low frequencies) are much better approximated
than high frequencies. �

Remark 5.4.3 As we have seen above, it is also possible to use multigrid directly for the
operator (5.4.1). From a programmer’s point of view, however, even in this case it may be
convenient to work with theO(h2) discretization of the Poisson equation and obtainO(h4)

accuracy “easily” by only changing the right-hand side on the finest grid, i.e. via defect
correction. �

Remark 5.4.4 The computational work when starting defect correction on the finest grid
is at least O(N logN). The amount of work is not only governed by the convergence
speed of defect correction, but also by the number of required multigrid cycles. If the
inner iteration consists only of one multigrid cycle, the convergence of the defect correc-
tion is also limited by the convergence factor of one multigrid cycle. O(N)-methods can
be developed by integrating the defect correction process into FMG (see, for example,
Fig. 5.17) [346]. �
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Figure 5.17. An F-cycle FMG defect correction strategy with r = 2 (◦: solution on coarsest grid,
•: smoothing, �: correction of the right-hand side).

5.4.2 The Mehrstellen Discretization for Poisson’s Equation

Fourth-order accuracy can also be achieved with a 2D Mehrstellen discretization which is
based on a compact nine-point stencil,⎡⎣ s−1,1 s0,1 s1,1

s−1,0 s0,0 s1,0
s−1,−1 s0,−1 s1,−1

⎤⎦
h

. (5.4.4)

We consider again the 2D Poisson equation on the unit square. On a square Cartesian grid
�h, a 2D Mehrstellen discretization [111] is

−�Mh uh = RMh fh, (5.4.5)

where �Mh is the compact nine-point stencil

−�Mh = 1

6h2

⎡⎣−1 −4 −1
−4 20 −4
−1 −4 −1

⎤⎦
h

and RMh = 1

12

⎡⎣ 1
1 8 1

1

⎤⎦
h

.

It can be easily verified by Taylor’s expansion of u and f that this discretization is O(h4)

accurate. The h-ellipticity measure of −�Mh is Eh = 0.375.
The transfer operators such as injection, FW and linear interpolation need not be changed

for this compact nine-point stencil. Furthermore, the smoothing schemes ω-JAC, GS-LEX
and GS-RB can be applied immediately and have similar features to the five-point stencils.

Remark 5.4.5 (parallel smoothers for compact nine-point stencils) For GS-RB, how-
ever, the situation is somewhat different with respect to parallelization. Each partial step
of GS-RB when applied to five-point stencils can be carried out fully in parallel since
there are no data dependencies. However, GS-RB is not directly parallelizable for nine-
point stencils since it contains data dependencies with respect to the diagonal stencil ele-
ments. For nine-point stencils, there are basically two different parallel generalizations
of GS-RB.
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Figure 5.18. Four-color distribution of grid points in �h.

Table 5.11. Results for the nine-point Mehrstellen operator (ν1 = ν2 = 1).

ω-JAC (ω = 10/11) GS-RB GS-FC GS-LEX JAC-RB

(μloc)
2 0.21 0.060 0.048 0.22 0.040

ρloc 0.21 0.044 0.039 0.13 0.066

The first extension of the GS-RB idea is the multicolor Gauss–Seidel relaxation. Mul-
ticoloring allows the parallel execution of Gauss–Seidel relaxation if larger stencils are
used for discretization. A standard example is four-color pointwise Gauss–Seidel relax-
ation (GS-FC) in 2D, illustrated in Fig. 5.18. Here, a full relaxation step consists of four
“quarter steps”, corresponding to the four colors of the grid points (•, ◦, ,×). All grid
points of one type can be treated simultaneously and independently if the corresponding
difference stencil is a compact nine-point stencil.

A second generalization of GS-RB is the two-color compromise JAC-RB, i.e. per-
forming a Jacobi sweep over the red points, followed by a Jacobi sweep over the black
points using the updated values at the red points. The degree of parallelism is twice as
large as that of GS-FC, and the convergence is often very satisfactory. This smoother often
turns out to be better than either ω-JAC or GS-LEX for smoothing compact nine-point
operators. �

Example 5.4.3 Table 5.11 presents LFA smoothing and two-grid factors for various
smoothers, i.e., for ω-JAC, GS-RB, GS-FC, GS-LEX and JAC-RB. The transfer opera-
tors are FW and bilinear interpolation. The optimal parameter for the smoothing properties
of ω-JAC is found to be ω = 10/11 [58].

From Table 5.11, we see that GS-RB, GS-FC and JAC-RB have better smoothing and
two-grid convergence factors than GS-LEX and ω-JAC. We obtain the typical multigrid
efficiency in a straightforward way. �
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Remark 5.4.6 (3D Mehrstellen discretization) A corresponding O(h4) discretization
also exists in 3D. �Mh is then

−�Mh = 1

6h2

⎡⎣⎡⎣ 0 −1 0
−1 −2 −1
0 −1 0

⎤⎦
h

⎡⎣−1 −2 −1
−2 24 −2
−1 −2 −1

⎤⎦
h

⎡⎣ 0 −1 0
−1 −2 −1
0 −1 0

⎤⎦
h

⎤⎦
and RMh is

RMh = 1

12

⎡⎣⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦
h

⎡⎣0 1 0
1 6 1
0 1 0

⎤⎦
h

⎡⎣0 0 0
0 1 0
0 0 0

⎤⎦
h

⎤⎦ .
The typical multigrid efficiency is also easily obtained in the 3D case. In fact, for this
nineteen-point stencil it is sufficient to use four colors for a parallel GS variant. �

5.5 DOMAINS WITH GEOMETRIC SINGULARITIES

In this subsection we consider a class of domains with geometric singularities, as sketched
in Fig. 5.19.

All of these domains are nonconvex and have a reentrant corner or a cut, leaving an
(interior) angle απ , 1 < α ≤ 2. We consider Poisson’s equation with Dirichlet boundary
conditions. For the discretization we use a Cartesian grid in these domains. (For a general
angle α, one can employ the Shortley–Weller discretization (2.8.13) near the boundary.)

In general, for smooth right-hand sides f� and smooth boundary conditions the solution
u can be represented as

u = ũ+ const us,

where ũ is smooth and us reads

us(r, φ) = α
√
r sin

(
φ

α

)
. (5.5.1)

Here (r, φ) are polar coordinates with respect to the singular point (0, 0). The function
us has the characteristic singular behavior. Obviously, the larger α, the stronger is the

=5/4 =3/2 =7/4
 (cut)(L-shape)
=2

Figure 5.19. Some domains with geometric singularities with an angle απ at the reentrant corner
(0, 0) marked by •.
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singularity. The four problems sketched in Fig. 5.19 are mathematically well understood, in
particular with regard to the influence of the singular behavior on the discretization accuracy.
More precisely, the following estimate is valid under natural assumptions [228]. For any
1 ≤ α ≤ 2 and any ε > 0, there exists a constant C such that

|u(r, φ)− uh(r, φ)| ≤ Ch2/α−2εr−1/α+ε =
{
O
(
h2/α−2ε) if r fixed

O
(
h1/α−ε) if r = O(h).

(5.5.2)

Therefore, these examples are good candidates for qualitative and quantitative case
studies, for example, on how standard multigrid methods are influenced by such singular-
ities, which complications occur and how these complications can be mastered. Here, we
will discuss the following questions.

(1) How is the convergence speed affected by the singularities if we use uniform global
grids for discretization and standard multigrid iterations (V-cycles, W-cycles)?

(2) How can a deterioration of the multigrid convergence speed (that we will observe) be
overcome?

(3) What are the effects in the context of FMG (on uniform global grids)?

Concerning Question (1), we recall that on a rectangular domain with hx = hy = h the
corresponding two-grid convergence factor (with HW and ν = 3) is given by ρ∗ ≈ 0.033
(see Section 3.3.1). In Section 2.8.3, we have seen that the measured W-cycle convergence
factors are very close to this value for more general domains if there are no reentrant corners.
For two domains with reentrant corners (α = 3/2 and α = 2, see Fig. 5.19), the observed
multigrid convergence is presented in Table 5.12.

The worst convergence factors can be observed for the domain with a cut. Nevertheless,
the F- and the W-cycle convergence are satisfactory even for this problem. The convergence
of the V-cycle is worse (and h-dependent).

We point out that the given convergence factors remain essentially unchanged, if the
cycle index γ is further increased.

Concerning Question (2), it is generally observed that standard error smoothing is some-
what less efficient near the singularity [14, 320]. Figure 5.20 shows that the error between
the current approximation after smoothing and the exact discrete solution for the L-shaped

Table 5.12. Measured convergence factors for problems with reentrant corners,
h = 1/128, varying restriction operator and number of smoothing steps.

L-shape (α = 3/2) Cut (α = 2)

FW HW FW HW
Cycle (ν1 = ν2 = 1) (ν1 = 2, ν2 = 1) (ν1 = ν2 = 1) (ν1 = 2, ν2 = 1)

V 0.26 0.14 0.37 0.26
F 0.11 0.051 0.16 0.10
W 0.11 0.050 0.15 0.10
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Figure 5.20. Typical error after smoothing for Poisson’s equation in an L-shaped domain.

Table 5.13. ||u−uFMG
h ||∞ for the L-shaped problem; grid size, cycle type and number

of relaxations are varied (the exponent E in 10E is in brackets).

h−1 ||u− uh||∞ V(1,1) V(2,1) F(0,1) F(1,1) F(2,1)

32 0.83 (−2) 0.98 (−2) 0.92 (−2) 0.11 (−1) 0.92 (−2) 0.89 (−2)
64 0.52 (−2) 0.63 (−2) 0.58 (−2) 0.72 (−2) 0.58 (−2) 0.56 (−2)

128 0.33 (−2) 0.40 (−2) 0.37 (−2) 0.45 (−2) 0.37 (−2) 0.35 (−2)
256 0.21 (−2) 0.25 (−2) 0.23 (−2) 0.45 (−2) 0.23 (−2) 0.22 (−2)

problem is not smooth in the neighborhood of (0,0). The addition of local smoothing sweeps
in a neighborhood of the singularity is one possibility to improve the smoother in a cheap
way and to overcome this convergence degradation. It has been shown [14] that the region
where these local smoothing sweeps are needed grows slightly for h → 0. Also the number
of local smoothing sweeps should be increased in order to achieve the convergence factor
0.033. The additional work, however, is still negligible.

The feasibility of this approach has been investigated in detail for Poisson’s equation
on domains with reentrant corners in [320].

Regarding Question (3), for the full multigrid version, we use the cycle structure r = 1
(see Section 2.6.1), V- or F-cycles and cubic FMG interpolation. Tables 5.13–5.15 present
the FMG results for the two domains with reentrant corners. For some values of h, both the
error ||uFMG

h −uh||∞ and the discretization error ||uh−u||∞ are shown in Table 5.13. The
maximum norm measures, in particular, the behavior of the error near the singularity. The
corresponding errors in the L2 norm are presented for the L-shaped problem in Table 5.14
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Table 5.14. ||u−uFMG
h ||2 for the L-shaped problem; grid size, cycle type and number

of relaxations are varied.

h−1 ||u− uh||2 V(1,1) V(2,1) F(0,1) F(1,1) F(2,1)

32 0.11 (−2) 0.18 (−2) 0.15 (−2) 0.20 (−2) 0.13 (−2) 0.12 (−2)
64 0.45 (−3) 0.83 (−3) 0.65 (−3) 0.87 (−3) 0.53 (−3) 0.49 (−3)

128 0.18 (−3) 0.38 (−3) 0.28 (−3) 0.37 (−3) 0.21 (−3) 0.20 (−3)
256 0.72 (−4) 0.17 (−3) 0.12 (−3) 0.16 (−3) 0.85 (−4) 0.79 (−4)

Table 5.15. ||u − uFMG
h ||2 for the problem with a cut; grid size, cycle type and

number of relaxations are varied.

h−1 ||u− uh||2 V(1,1) V(2,1) F(0,1) F(1,1) F(2,1)

32 0.58 (−2) 0.10 (−1) 0.82 (−2) 0.10 (−1) 0.71 (−2) 0.66 (−2)
64 0.29 (−2) 0.59 (−2) 0.46 (−2) 0.57 (−2) 0.36 (−2) 0.33 (−2)

128 0.15 (−2) 0.35 (−2) 0.26 (−2) 0.31 (−2) 0.19 (−2) 0.17 (−2)
256 0.73 (−3) 0.21 (−2) 0.15 (−2) 0.17 (−2) 0.95 (−3) 0.86 (−3)

and for the problem with the cut in Table 5.15. In all examples, the continuous solution is
u = us as in (5.5.1).

As we have seen in Table 5.12, the multigrid convergence factors are somewhat worse
for the domains with reentrant corners for increasingα (1 < α ≤ 2). One then asks, whether
or not the corresponding convergence speed is still sufficient for satisfactory performance
of FMG (see Theorem 3.2.2).

On the other hand, the discretization error is also worse for increasing α (see (5.5.2)).
The value of κ in (3.2.10) is smaller than 2 in these cases.

Tables 5.14 and 5.15 show indeed that the main objective of FMG (see Section 2.6),
namely to obtain approximate solutions uFMGh with

||uFMGh − u||2 ≤ (1 + β)||u− uh||2

can be achieved for the examples considered (for example, when using the F(1,1)-cycle):
The loss of multigrid convergence speed is, so to speak, compensated for by a loss of
discretization accuracy.

We will return to this class of problems in Chapter 9. There, it will be shown that local
grid refinement near the singularity can help to improve the overall accuracy of the solution.

5.6 BOUNDARY CONDITIONS AND SINGULAR SYSTEMS

For ease of presentation of the basic ideas of multigrid, we have assumed eliminated Dirichlet
boundary conditions. In practice, however, it is often necessary and/or convenient to use
the separated, i.e. noneliminated form of boundary conditions.
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Figure 5.21. The grid �h with interior and boundary points.

5.6.1 General Treatment of Boundary Conditions in Multigrid

For Dirichlet boundary conditions, noneliminated boundary conditions have the advantage
that one can apply the five-point difference stencil at all interior points and that one need not
use a different eliminated stencil near boundary points in a computer program. Of course,
in the case of Dirichlet boundary conditions, the discrete boundary unknowns are usually
initialized with the correct values (in the first relaxation) so that all boundary conditions are
fulfilled from the very beginning. Figure 5.21 indicates at which points of a grid the interior
equations (the grid points characterized by •) and at which points the discrete Dirichlet
boundary equations (those grid points marked by ◦) are located.

We here consider the 2D problem

L�u = f� (�)

L�u = f � (� = ∂�)

with a discretization

L�h uh = f�h (�h) (5.6.1)

L�huh = f �h (�h). (5.6.2)

In the multigrid correction scheme, the general idea of how to treat the boundary con-
ditions can be summarized in the following way. (The generalization to the FAS is
straightforward.)

• The smoothing procedure consists of a relaxation of the interior difference equa-
tions (5.6.1) and of a relaxation of the discrete boundary conditions (5.6.2). In the
simplest case, this means that we have a loop over the boundary points and relax the
discrete boundary conditions (see, however, Remark 5.6.1).
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• The transfer of the defects from the fine grid to the coarse grid is performed sepa-
rately for the boundary conditions (5.6.2) and for the interior equations (5.6.1). This
separation is important since the discrete boundary conditions and the discrete inner
equations have different operators, typically with different powers of h.

• The defects d�h = f �h − L�h ūmh of the discrete boundary conditions are transferred
to the coarse grid via injection or via 1D restriction operators: d�H = IHh d

�
h (see the

next section for an example).
• The complete discrete problem (5.6.1)–(5.6.2) is thus represented on the coarse grid

by
L�HvH = d�H (5.6.3)

L�HvH = d�H , (5.6.4)

where vH denotes the coarse grid correction and d�H and d�H denote the defects at
interior and boundary points, respectively.

• The coarse grid correction vH is interpolated to the fine grid including its boundary,
�h ∪ �h.

If all discrete boundary conditions are satisfied before the coarse grid correction, the
defects of the boundary conditions are zero and, consequently, we have homogeneous
boundary conditions on the coarse grid.

Remark 5.6.1 Often, a more specific and more involved boundary relaxation is required
than that described above. One reason is that a boundary relaxation may spoil the smoothness
of the errors near the boundary. In order to overcome this problem, two practical approaches
are to add local relaxations near the boundary (as in Section 5.5) or to relax the boundary
conditions collectively with equations at adjacent interior points. We will discuss these
approaches in the context of systems of PDEs in Chapter 8. �

In the following sections, we will give some concrete examples for various types of
boundary conditions and discuss a proper multigrid treatment in each case.

For Poisson’s equation with pure periodic or pure Neumann boundary conditions, the
resulting boundary value problem is singular, i.e. it depends on the right-hand side whether
or not a solution exists. If a solution exists, then it is not unique. Any constant function
is a solution of the homogeneous system. In order to separate the two topics (treatment of
boundary conditions and treatment of singular systems), we start with the discussion of a
nonsingular system with Neumann and Dirichlet boundary conditions at different parts of
the boundary in Section 5.6.2. In Section 5.6.3, we will then discuss multigrid for periodic
boundary conditions which is a first example of a singular system. In Section 5.6.4, we will
consider a general singular case.

5.6.2 Neumann Boundary Conditions

We consider Poisson’s equation in the unit square, with a Neumann boundary condition at
one of the sides, for instance, at the left boundary (see Fig. 5.22) and Dirichlet boundary
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Figure 5.22. Domain with Neumann and Dirichlet boundary conditions.

Figure 5.23. The grid with auxiliary points (�).

conditions at the others:

L�u = −�u = f� � = (0, 1)2

L�Nu = un = f �N �N = {(x, y): x = 0, 0 < y < 1}
L�Du = u = f �D �D = ∂� \ �N

(5.6.5)

where un denotes the normal derivative of u in the direction of the outward normal.
For the discretization of the Neumann boundary conditions, we use the central second-

order approximation

L
�N
h uh(x, y) = un,h(x, y) = 1

2h
(uh(x − h, y)− uh(x + h, y)).

Here, we make use of an extended grid with auxiliary points � outside �̄ (see Fig. 5.23).
Such auxiliary points are also called ghost points.

With this discretization, we introduce unknowns at the ghost points. In order to close the
discrete system, we assume that f� is extended to �N and discretize the Laplace operator
� by the five-point approximation�h not only in the interior of� but also on the Neumann
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boundary�N . Figure 5.23 shows all the points at which the standardfive-point discretization
�h is applied (i.e., all those marked by •). The discrete system then is

−�huh = f�h (�h) (5.6.6)

L
�N
h uh = f

�N
h (�N,h) (5.6.7)

−�huh = f�h (�N,h) (5.6.8)

uh = f
�D
h (�D,h). (5.6.9)

The discrete equations for the unknowns at�N and at the corresponding ghost points are the
discrete Poisson equation at boundary points (5.6.8) and the discrete Neumann boundary
condition (5.6.7). Consequently, the discrete Poisson equation is used to provide a new
approximation at the boundary whereas the discrete Neumann boundary condition is used
to update the unknowns at the ghost points. In principle, the relaxation of these two equations
can be done one after the other or simultaneously, the latter meaning that a 2 × 2-system is
solved per pair of grid points.

We restrict the defects of the discrete Neumann boundary condition and of the dis-
crete Poisson equation at Neumann boundary points separately. For the restriction of the
discrete Neumann boundary condition (5.6.7) to the coarse grid, the 1D FW operator (see
Remark 2.3.2) is an appropriate choice. For the restriction of the discrete Poisson equa-
tion at Neumann boundary points, Condition (2.3.5) in Remark 2.3.1 leads to the so-called
modified FW operator, which, for example at vertical boundaries is

1

16

⎡⎣ 2 2
4 4
2 2

⎤⎦2h

h

. (5.6.10)

Figure 5.24 illustrates this modified FW restriction operator.

Example 5.6.1 If we apply the 1D FW for the discrete boundary conditions and the
modified FW operator for the discrete Poisson equation at the Neumann boundary points,
we obtain measured multigrid convergence factors of 0.14 and 0.09 for the V(1,1)- and
W(1,1)-cycle, respectively (using GS-RB, linear interpolation and FW at interior points).

�

Remark 5.6.2 If Neumann boundary conditions are present in two adjacent edges of the
boundary (corner points), the condition in Remark 2.3.1 gives the restriction operator

1

16

[
4 4
4 4

]2h

h

. (5.6.11)

�

Remark 5.6.3 (elimination of Neumann boundary conditions) In principle, it is also
possible to eliminate the unknowns at ghost points. In the case of Poisson’s equation, we
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N

Figure 5.24. Modified FW operator (ghost points are not shown).

obtain, e.g. for a point (x, y) on the left boundary �N

fh(x, y) = f�h (x, y)+ 2

h
f �h (x, y) (5.6.12)

Lhuh(x, y) = 1

h2

⎡⎣ −1
0 4 −2

−1

⎤⎦
h

uh(x, y). (5.6.13)

The relaxation of the eliminated boundary condition is then equivalent to the collective
relaxation of both equations located on the boundary in the noneliminated case described
above.

At boundary points, the use of the modified FW operator (5.6.10) for the eliminated
Neumann boundary conditions is equivalent to the noneliminated approach in Example 5.6.1
(use of 1D FW for the discrete Neumann boundary condition in combination with modified
FW for the discrete Poisson equation at boundary points).

Warning for beginners We point out that, especially for eliminated Neumann boundary
conditions, the use of injection (or HW modified similarly to FW) at boundary points leads
to an incorrect scaling in the coarse grid right-hand side at boundary points. This incorrect
scaling leads to a substantial deterioration of multigrid convergence. With injection, for
example, the restriction of the right-hand side of (5.6.12) gives

f�H + 2

h
f �H (5.6.14)

instead of

f�H + 2

H
f�H (5.6.15)
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which would be the coarse grid analog to the right-hand side in (5.6.12) (and which is also
obtained if the original noneliminated boundary conditions are transferred to the coarse
grid using injection and are eliminated afterwards). The modified FW operators (5.6.10)
and (5.6.11), however, weight the crucial term 2f �h /h automatically by a factor of 1/2 in
the restriction since this term appears only in the right-hand sides of the discrete equations
at boundary points. �

5.6.3 Periodic Boundary Conditions and Global Constraints

As indicated above, we obtain a singular system of equations if we have periodic or pure
Neumann boundary conditions for the Poisson equation at all boundaries. In the following,
we will discuss how such singular systems can be treated efficiently by multigrid.

We consider the problem

−�u = f (� = (0, 1)2)

with periodic boundary conditions

u(0, y) = u(1, y)

u(x, 0) = u(x, 1)

ux(0, y) = ux(1, y)

uy(x, 0) = uy(x, 1).

(5.6.16)

An alternative formulation of the periodicity condition is

u(x, y) = u(x, y + 1) = u(x + 1, y) (5.6.17)

at and near boundary points.
Solutions of the continuous boundary value problem exist if (and only if) the compati-

bility condition ∫
[0,1]2

f (x̃, ỹ) d� = 0 (5.6.18)

is satisfied. If a solution exists, it is determined only up to a constant since the constant
functions are solutions of the homogeneous problem. Of course, the singularity has to be
taken into account in the discretization and in the multigrid solution of the problem. We
consider the standard O(h2) discretization of the Laplacian

−�huh(xi, yj ) = fh(xi, yj ) ((xi, yj ), i, j = 1, 2, . . . , n),

where xi = ih, yj = jh and h = 1/n, with the discrete boundary conditions

uh(x0, yj ) = uh(xn, yj ) j = 1, 2, . . . , n

uh(xi, y0) = uh(xi, yn) i = 1, 2, . . . , n

uh(x1, yj ) = uh(xn+1, yj ) j = 1, 2, . . . , n

uh(xi, y1) = uh(xi, yn+1) i = 1, 2, . . . , n

(5.6.19)

(see Fig. 5.25). In the discrete problem, the ◦ points at the approximations at the left (lower)
boundary can be identified with those at the corresponding points marked by • at the right
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Figure 5.25. The grid �h with interior and boundary points in the case of periodic boundary
conditions.

(upper) boundary in Fig. 5.25. Note that we have neither a boundary nor explicit boundary
conditions on this logical torus structure. We only have interior equations in all points
marked by •.

This discrete system has a solution (which is unique up to a constant) if and only if the
discrete compatibility condition

n∑
k,l=1

fh(xk, yl) = 0 (5.6.20)

is satisfied. Obviously, the discrete and the continuous compatibility conditions are not
equivalent; the discrete one can be interpreted as an approximation to the continuous one.
An easy modification, which guarantees that discrete solutions exist, is to replace fh by

f̃h = fh − h2
n∑

k,l=1

fh(xk, yl).

Since f̃h = fh +O(h2), the consistency order of the discretization, O(h2), is maintained
by this replacement.

For the unique determination of the discrete solution, we have to fix the constant. This
is often done by a global constraint, for example, by setting the average of the discrete
solution to 0,

n∑
k,l=1

uh(xk, yl) = 0. (5.6.21)

In applying multigrid to this problem with the global constraint (5.6.21), it is, in general,
not necessary to relax or fulfill global constraints on all grid levels (this may be expensive
and may influence the smoothness of errors). It is sufficient to compute its defect and to
transfer it to the next coarser grid. Only on the coarsest grid (or on some of the coarse grids),
is the global constraint to be fulfilled.
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Remark 5.6.4 If we use the FAS and handle the global constraint in the case of periodic
boundary conditions only on the coarsest grid by (5.6.21), without using any information
on the defects of the global constraint on the fine grid, we already obtain a solution in the
typical multigrid efficiency. The numerically observed convergence factor for a W(2,1)-
cycle consisting of GS-RB, FW and linear interpolation on a 2562 grid is 0.025 (and 0.040
for the corresponding V-cycle). FMG again provides an O(h2)-accurate approximative
solution.

This procedure fixes the constant and gives fast convergence, the condition (5.6.21) is,
however, not fulfilled on the finest grid. At the end of the multigrid algorithm, the average
of the solution can easily be set to zero.

(Of course, even if we do not determine the constant at all during the multigrid algorithm,
we will, in general, observe fast convergence of the defects.) �

5.6.4 General Treatment of Singular Systems

Poisson’s equation with periodic boundary conditions is afirst example of a singular system.
A similar problem occurs, for example, if the periodic boundary conditions are replaced by
Neumann boundary conditions. The compatibility condition for this differential problem is∫

�

f�(x̃, ỹ) d� =
∫
∂�

f �(x̃, ỹ) ds. (5.6.22)

We will now discuss a multigrid treatment of such problems, in which the compatibility
conditions do not have to be known. This treatment can be applied to more general situations,
e.g. to problems with variable coefficients, nonsymmetric problems and to systems of PDEs.

For convenience, we switch to matrix notation. A reasonable multigrid treatment is
based on the following result.

Lemma 5.6.1 Consider the linear system

Au = f (5.6.23)

with a singularN ×N matrix A, the range of which isN − 1 dimensional. We assume that
λ = 0 is a simple eigenvalue of A with eigenvector ϕ and that ϕ∗ is an eigenvector with
eigenvalue 0 of the adjoint matrix A∗. Finally, assume two vectors v, w with 〈v, ϕ〉 �= 0
and 〈w, ϕ∗〉 �= 0 (where 〈·, ·〉 denotes the usual Euclidean inner product).

Then, the augmented system

Âû :=
(
A w

vT 0

)(
u

ξ

)
=
(
f

0

)
=: f̂ (5.6.24)

has a unique solution, i.e. Â is a regular matrix.

Proof. We have to show that Â is a regular matrix, i.e. that Âû = 0 implies û = 0. Âû = 0
means that

Au+ ξw = 0 and 〈u, v〉 = 0. (5.6.25)
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From the first equality, it follows that

〈Au, ϕ∗〉 + ξ〈w, ϕ∗〉 = 〈u,A∗ϕ∗〉 + ξ〈w, ϕ∗〉 = 0.

Since A∗ϕ∗ = 0 and 〈w, ϕ∗〉 �= 0, it follows that ξ = 0. Hence, (5.6.25) implies Au = 0,
which means that u = αϕ. The additional equation in the augmented system, 〈u, v〉 = 0,
gives 〈u, v〉 = α〈ϕ, v〉 = 0. Since the latter inner product is not 0, we have α = 0 which
means that u = 0.

The following important conclusions can be drawn from Lemma 5.6.1.

(1) If 〈f, ϕ∗〉 = 0, we find ξ = 0 and u is a solution of Au = f due to the uniqueness of
the solution of (5.6.24).

(2) For a solution
(
u

ξ

)
of (5.6.24), we have 〈f − ξw, ϕ∗〉 = 0. This means that ξw is

a correction of the right-hand side of Au = f , which makes this system compatible.
As a consequence, by solving (5.6.24), a correction of the right-hand side is deter-
mined automatically. In particular, we need not formulate or handle the compatibility
condition explicitly.

Remark 5.6.5 In practical applications, one often deals with problems whose matrix A
has only zero row sums (like in the case of the discretization of�with pure periodic or pure
Neumann boundary conditions). In such cases,ϕT = (1, 1, . . . , 1) is an eigenvector ofA and
we can choose vT = (1, 1, 1, . . . , 1). Usually, one can also choose wT = (1, 1, 1, . . . , 1).
Although ϕ∗ is not known in general, it is improbable that 〈w, ϕ∗〉 = 0. �

Based on these considerations, we outline a proper multigrid treatment of the augmented
system. We assume that vT = wT = (1, 1, 1, . . . , 1). The augmentation of the system then
consists of two parts. The first is the addition of the variable ξ to each discrete equation.
The variable ξ can be interpreted as the average defect of the discrete (nonaugmented)
system. An update of ξ (“normalization” of the defect) can thus be easily calculated. Again,
it is typically sufficient to update ξ only on the very coarse grids. This means that the
normalization of the defect is transferred to the coarse grids and determined on the coarsest
grid (or the very coarse grids). On coarse grids, the system is thus augmented in the same
way as on the finest grid.

The second part of the augmentation is the normalization of u, i.e. the condition
〈v, u〉 = 0. The normalization can be dealt with similarly as described for periodic boundary
conditions in Section 5.6.3.

Example 5.6.2 We now consider the multigrid convergence obtained by a RBMPS adapted
to Poisson’s equation with pure Neumann boundary conditions. All multigrid components
in the interior are the same as those defined for the RBMPS. At the boundary, we apply
a collective relaxation at each boundary point. The transfer of the defects at the boundary
to the coarse grid is as described in Section 5.6.2. Treating the augmented system in the
way described above, we determine ξ only on the coarsest grid. Table 5.16 shows that the
multigrid convergence factors for the V-, F- and W-cycles are again very good. �
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Table 5.16. Measured multigrid convergence factors for
Poisson’s equation with Neumann boundary conditions.

V(1,1) F(1,1) W(1,1)

0.13 0.09 0.09

5.7 FINITE VOLUME DISCRETIZATION AND CURVILINEAR GRIDS

Here, we will introduce a finite volume discretization and discuss the multigrid treatment of
a Poisson-like equation on a curvilinear grid. The finite volume approximation is an impor-
tant and natural discretization approach for general curvilinear and also for unstructured
grids. Since conservation properties in PDEs can be preserved easily with finite volume
discretizations, they are commonly used for problems from computational fluid dynam-
ics [195]. The finite volume method can also be interpreted from a finite element point of
view (see [41] for details).

We will describe the finite volume approach for a Poisson-like diffusion problem with
diffusion coefficient a(x, y):

−� · (a�u) = − ∂

∂x
(a
∂u

∂x
)− ∂

∂y
(a
∂u

∂y
) = f� (�) (5.7.1)

u = f � (∂�). (5.7.2)

For the discretization, we assume that � is divided into small (nonoverlapping) finite
volumes �i,j . In each of the finite volumes �i,j (as depicted for two grids in Fig. 5.26),
the integral formulation of (5.7.1) for the volume �i,j has the form

−
∫
�i,j

� · (a�u) d� =
∫
�i,j

f d�. (5.7.3)

A simple approximation of the right-hand side in (5.7.3) is given by∫
�i,j

f d� ≈ |�i,j |fi,j ,

where fi,j denotes the value of the function f at the center of the volume �i,j and |�i,j |
is the size of the volume.

Using the Gaussian theorem, the left-hand side of (5.7.3) can be reformulated to an
integral over the boundary ∂�i,j = ⋃4

κ=1 ∂�i,j,κ

−
∫
�i,j

� · (a�u) d� = −
4∑
κ=1

∫
∂�i,j,κ

a�u · n dSκ (5.7.4)

if a is continuous in �i,j . Here n denotes the unit outward normal vector. The integral∫
∂�i,j,κ

w · n dSκ is also called the flux of w through ∂�i,j,κ .
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In order to obtain a finite volume discretization of the left-hand side of (5.7.3) on general
curvilinear grids, the outward normal vectors n and volumes |�i,j | need to be defined
appropriately [195, 405]. The resulting discrete equation is the so-called flux balance per
finite volume which is typical for finite volume discretizations.

In the following, we will restrict ourselves to the Cartesian case (see the right domain
in Fig. 5.26), for simplicity. In this case, we have

−
4∑
κ=1

∫
∂�i,j,κ

(a�u) · n dSκ (5.7.5)

=
∫ B

A

a
∂u

∂y
dx −

∫ C

B

a
∂u

∂x
dy −

∫ D

C

a
∂u

∂y
dx +

∫ A

D

a
∂u

∂x
dy (5.7.6)

(see Fig. 5.27).

grid point

an interior finite volume

a boundary finite volume

the grid

Figure 5.26. Definition of finite volumes �i,j around the grid points on a curvilinear grid and on
a Cartesian grid.

i, j

C
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D

x + h/2xx – h/2 x + h

y

y + h/2

y – h/2

Figure 5.27. A volume �i,j .
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We approximate the second integral alongBC in (5.7.6) (the other ones are approximated
similarly) by ∫ C

B

a
∂u

∂x
dy ≈ ha

(
x + h

2
, y
)
(u(x + h, y)− u(x, y))/h

= a
(
x + h

2
, y
)
(u(x + h, y)− u(x, y)). (5.7.7)

Summarizing, the discrete stencil obtained by the finite volume discretization is⎡⎣ sn
sw sc se

ss

⎤⎦
h

with

sw = −a(x − h/2, y),
se = −a(x + h/2, y),
sn = −a(x, y + h/2),
ss = −a(x, y − h/2),
sc = −(sn + sw + se + ss).

Remark 5.7.1 In this case, obviously, the finite volume discretization results in the same
discretization as a finite difference approximation, apart from the fact that the equation
is multiplied by |�i,j |. Such a scaling has to be taken into account in multigrid (see
Remark 2.7.5). �

Remark 5.7.2 Finite volume discretizations require special attention near boundaries.
There, half volumes �i,j are used in the discretization, as illustrated in Fig. 5.26. �

Example 5.7.1 We consider the Poisson equation in a nonrectangular domain�, presented
in Fig. 5.28, and discretize it by the finite volume technique on a curvilinear grid �h. The
resulting stencil for the Poisson equation depends on the details of the grid, i.e. on the aspect
ratios and angles of the grid cells. Three different domains � = �(δ) are considered. The
height and the width of� are set to one. The parameter δ determines the deviation from the
straight line as indicated in Fig. 5.28 and thus the amount of curvature. We use δ = 0.05,
with almost rectangular grid cells, δ = 0.15 and δ = 0.25 with a strong curvature of the
cells.

Table 5.17 shows the measured multigrid V(1,1) convergence factors with the point
smoothers GS-RB, ω-GS-RB and GS-LEX, with the line smoothers lexicographical x-line
GS, y-line GS and with alternating line GS. The operator (2.3.3) is used for the restriction
and (2.3.8) for interpolation. The results for the W(1,1)-cycle are very similar. The influence
of the strong curvature on the convergence is obvious.

We have seen in Section 5.1 that grid cells with significant stretching lead to large
anisotropies in the discrete equations. The same is true for grids with curvature. The point
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Figure 5.28. A curvilinear grid in a curved domain.

Table 5.17. Measured V(1,1)-cycle convergence factors on a 1282 curvilinear grid.

δ GS-RB ω(= 1.15)-GS-RB GS-LEX x-line GS y-line GS alt. line GS

0.0 0.10 0.04 0.17 0.12 0.12 0.05
0.05 0.12 0.06 0.19 0.12 0.14 0.05
0.15 0.27 0.16 0.31 0.31 0.16 0.09
0.25 0.51 0.38 0.48 0.53 0.30 0.18

smoothers combined with standard coarsening are efficient on curvilinear grids without
severe stretching. For Poisson’s equation on�(δ)with δ = 0.05, the analog of the RBMPS
still has good multigrid efficiency. On general curvilinear grids, alternating line smoothers
(or multiple semi-coarsening strategies) have better convergence factors. Another option is
to use the ILU type smoothers (to be discussed in Sections 7.5 and 7.6). �

5.8 GENERAL GRID STRUCTURES

In this section, we return to the discussion of multigrid methods for discrete problems on
general grid structures, which we have already touched upon in Section 1.2. The introduction
of multigrid has been based on simple Cartesian grid structures. In general, Cartesian grids
can also be used for complicated (3D) geometries, e.g. for the Euler equations [1, 2,
441], based on Shortley–Weller type discretizations (2.8.13) and adaptive refinement (see
Chapter 9).

Mostly, however, non-Cartesian grids are used for problems on geometrically com-
plicated domains. As we have already seen for one example of Poisson’s equation in
Section 5.7, curvilinear grids can be treated by multigrid as regular Cartesian grids with
similar convergence factors.

For complicated geometries, a global curvilinear grid is often unavailable or too difficult
to construct. In such cases, block-structured grids are an option. The given domain is divided
into subdomains and for each subdomain a (local) curvilinear grid is constructed such
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that the local grids (blocks) fit “nicely” together, i.e. continuously or even smoothly. The
block-structured grid approach is quite general and is used for many applications even in
complicated geometries. Multigrid is compatible with block-structured grids. In programs
working on block-structured grids, line or plane smoothers are usually restricted to the
blocks [248].

Of course, finite element discretizations can also be used on structured grids. For simple
finite elements, the corresponding discrete equations can then be treated efficiently by
multigrid without any principal difficulties. For example, the standard five-point stencil for
the Laplacian is also obtained by linear finite elements on a standard regularly structured
grid and the stencil in Example 7.7.1 in Section 7.7.4 refers to the corresponding situation
with bilinearfinite elements. We will not describe multigrid forfinite element discretizations
in this book but refer to the literature [50, 89, 176, 351].

In many commercial codes, unstructured irregular grids and correspondingfinite volume
or finite element discretizations are used. Unstructured grids can be generated easily and
automatically by commercial grid generators. These grids are more flexible and can easily
be adapted to the boundary of a general domain.

However, unstructured grids cannot be handled by multigrid as easily as structured
ones. We will mention two technical complications. First, smoothers which correspond to
line or plane relaxation for anisotropic problems may be difficult to realize on unstructured
grids. An alternative is to use more general block relaxations like ILU (to be discussed
in Section 7.5) or box-type relaxations (see Section 8.7). Secondly, the construction of a
hierarchy of coarse grids is not trivial for a general unstructured grid. (This is, of course,
not a problem if the fine grid itself is constructed by using some hierarchical refinement
starting from an unstructured coarsest grid.) One way to bypass this coarsening difficulty
is to use a different coarsening instead, as referred to in the following remark.

Remark 5.8.1 (Multilevel p solvers) If higher order finite elements (so-called p ele-
ments [13]) are used on unstructured grids, a multigrid related approach is to use lower
order finite element spaces for the “coarse grid correction” instead of coarse grids. All other
multigrid components like smoothing, transfer operators etc. can be essentially maintained.
This approach is used, for instance in [253, 449]. The corresponding multilevel p solver is
usually applied as a preconditioner. This type of coarsening and conventional grid coarsen-
ing can, if applicable, also be combined (h-p elements). �

An elegant multigrid approach for unstructured grids is the algebraic multigrid
method (AMG). AMG allows us, for a certain class of problems, to define a coarsen-
ing strategy so that problems on completely unstructured grids can also be solved effi-
ciently. It combines an algebraically defined problem-dependent coarsening with point
smoothers.

We propose using AMG for problems on unstructured grids. It generates the coarse
grids automatically (see Appendix A for a detailed description of AMG).
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Typically, the application of AMG for low order finite elements, for example, for Poisson-
like equations is straightforward and efficient.

An overview of multilevel methods for problems on unstructured grids is given in [103].
Finally, we would like to mention that several general multigrid-based software packages for
unstructured grids and finite elements exist, like FEATFLOW [393], PLTMG [20], UG [30]
or the DLR-τ -code [155].



6
PARALLEL MULTIGRID IN

PRACTICE

In this chapter, we will discuss the parallel aspects of multigrid in more detail. In the
previous chapters, we have already made several remarks about parallelism and multigrid.
Although suitable multigrid components may be highly parallel, the overall structure of
standard multigrid is intrinsically not fully parallel for two reasons. The first reason is that
the grid levels are run through sequentially in standard multigrid. The second reason is
that the degree of parallelism of multigrid is different on different grid levels (i.e. small on
coarse grids). A basic theoretical complexity discussion is presented in Section 6.1. The
problem of communication, which is an important aspect in practical parallel computing,
is not addressed in this discussion.

In Sections 6.2–6.3, we deal with the question of how grid and multigrid algorithms are
implemented on parallel computers in practice. We will start with some general remarks
on parallel architectures and discuss two basic rules for an efficient parallelization. Here,
the question of communication comes into play.

In Section 6.2 the fundamental concept of grid partitioning will be introduced. Grid
partitioning is a genuinely geometric parallelization approach. We will introduce terms
such as speed-up, parallel efficiency, scalability and discuss the boundary-volume effect.
Furthermore, we will make some remarks and assumptions about parallel computer archi-
tectures. We will mainly use the terminology of parallel systems with distributed memory
in this chapter. For example, data is assumed to be communicated between processors by
sending and receiving messages. Our discussion covers also other parallel architectures,
for example shared memory computers, where other data transfer (and/or synchronization)
techniques are common.

In Section 6.3, we will discuss the extension of grid partitioning to multigrid. Whereas
(point) relaxation methods are local methods (i.e. all operations at a grid point involve
only values at points in a local neighborhood), multigrid has nonlocal features. On coarse
grids the relation of computation and communication becomes worse than on fine grids.
Thus, the definition of the coarsest grid and the corresponding solution process may have
to be reconsidered. We will also discuss the boundary-volume effect and scalability in

193
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the context of multigrid and we will give some concrete hints on programming parallel
systems.

Among the multigrid components, certain types of smoothing methods such as line
smoothers are not inherently parallel. In Section 6.4, we will discuss parallel versions of
line and plane smoothers.

Generally speaking, there are two different types of approaches for the parallel treatment
of PDEs. Both of them are based on a geometric decomposition of the domain, on which
the PDE is to be solved. The first approach is to use a fast sequential solver for the given
problem and to parallelize this solver as efficiently as possible. In practice, this means that
a fast multigrid method is used for the solution of the global problem and grid partitioning
is used for parallelization. Typically, the parallel versions of multigrid are then equivalent
to their sequential counterparts.

The second approach is to start with a decomposition of the given problem into a number
of subproblems on subdomains with or without an overlap. This is the basic principle of
the domain decomposition methods (DD). Although, in principle, the philosophy of global
multigrid partitioning and domain decomposition are quite different, in practice certain
variants of both approaches are very similar or may even lead to the same algorithm. We
will briefly discuss DD methods in Section 6.5.

Since the communication requirements in parallel multigrid may be relatively high,
certain modifications have been proposed to avoid high communication overhead (see
Sections 6.2.2 and 6.5). “New” parallel multigrid related algorithms have been consid-
ered by several authors: in particular, additive variants of multigrid [55, 161, 425] and the
parallel superconvergent multigrid method [143] belong to this class. In our opinion, these
extensions may be useful in theory and in special situations, but so far they have not been
proven to lead to general efficient parallel methods in practice. We will briefly describe
some of them in Section 6.5.

All considerations in this chapter refer to “nonadaptive” multigrid algorithms where
the grid structures are known in advance. Adaptive multigrid algorithms and their parallel
versions will be treated in Chapter 9.

In general, the presentation in this chapter is elementary. Many details are explained for
simple cases like Model Problem 1. Most of the ideas and results, however, carry over to
more general cases. Only Section 6.4, in which we deal with parallel versions of smoothers
for anisotropic problems, is technically somewhat more involved.

6.1 PARALLELISM OF MULTIGRID COMPONENTS

The degree of parallelism reflects the number of processors that can contribute to the com-
putation of an algorithm or of algorithmic components. It can be interpreted as the number
of operations that can be carried out in parallel. A parallel system that would exploit the
degree of parallelism of a fully parallel relaxation method would need to have at least as
many processors P as grid points N . (In practice, only a limited number of processors is
usually available.)

As we have seen in Chapters 2 and 5, a standard multigrid algorithm generally is
characterized by its overall hierarchical structure (MGI or FMG; V-, F- or W-cycle) and the
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specification of its components. The considerations on “parallel multigrid” in the previous
chapters refer to the parallelism of the multigrid components. This, of course, does not mean
that the choice of the overall MG-structure is unimportant for the parallel efficiency of the
algorithm. In fact, certain choices of the overall structure turn out to be advantageous and
others to be disadvantageous.

6.1.1 Parallel Components for Poisson’s Equation

We reconsider Model Problem 1 and a corresponding multigrid method with standard coars-
ening. The crucial multigrid component with respect to parallelism is usually the smoothing
procedure. We first recall the parallel properties ofω-JAC, GS-LEX and GS-RB on�h from
Section 2.1: ω-Jacobi relaxation is fully �h parallel. We say that its degree of parallelism
is #�h. Correspondingly, for GS-LEX the degree of parallelism is less than or equal to
(#�h)1/2 and for GS-RB the degree of parallelism is (1/2)#�h. For Model Problem 1,
GS-RB has the best smoothing properties of these relaxations and is highly parallel. For
discretizations with larger stencils, multicolor Gauss–Seidel relaxation or JAC-RB as intro-
duced in Section 5.4.2 have good parallelization properties.

The three other multigrid components can be applied in parallel for all (interior) grid
points:

• Calculation of defects The defect computations at different grid points are independent
of each other and can be performed in parallel for all points of �h.

• Fine-to-coarse transfer The computations and transfer operations at different grid
points are again independent of each other and can be performed in parallel for all
points of the coarse grid �2h. This applies to all of the restriction operators (FW, HW
and, trivially, injection) discussed so far.

• Coarse-to-fine transfer Interpolation from coarse to fine refers to the �h grid points.
Typically, the operations to be performed are different for different types of grid points
(see, for example, (2.3.7) and Fig. 2.6, for the case of bilinear interpolation), but the
operations can be performed in parallel.

So far, the discussion of the parallelism in multigrid components has been oriented to
the levels �h and �2h.

Clearly, all considerations carry over to any other (coarser) pair of levels hk , hk−1,
with the corresponding (smaller) degree of parallelism.

Remark 6.1.1 (parallelization below grid level) In the above considerations, we have
looked for parallelism only on the grid level, i.e. we have regarded an operation such as
the evaluation of Lh or Sh etc. as one unit, to be applied for each single grid point of �h.
In fact, such an evaluation typically consists of several arithmetic operations and therefore
has an additional potential for parallel execution. We will, however, not discuss this topic
here. �
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6.1.2 Parallel Complexity

On the coarse grids, the degree of parallelism decreases substantially since

#�k � #�� for k < �,

until finally #�0 = 1 if the coarsest grid consists of only one grid point. The problem of
the very coarse grids leads to multigrid specific parallel complications which do not occur
in classical single-grid algorithms.

This crucial impact of the coarse grids increases, the more often the coarse grids
are processed in each cycle. A parallel W-cycle, for example, has a substantially
different parallel complexity from that of a parallel V-cycle.

This can be seen by the following results of a simple analysis of parallel multigrid
complexity. Here, the parallel complexity is the number of parallel steps/operations that a
processor has to carry out, assuming that the degree of parallelism is fully exploited.

Result 6.1.1 Let N denote the overall number of fine grid points (unknowns) in case of
Model Problem 1:

N = #�h = (n− 1)2

and let us consider the RBMPS. Then we obtain the sequential and parallel complexities
(the sequential complexity being simply the number of required floating point operations)
listed in Table 6.1. For MGI (i.e. multigrid iteration) we assume an accuracy of ε (error
reduction) as stopping criterion.

Proof. The sequential complexities (total computational work) in Table 6.1 have already
been derived in Sections 2.4.3 and 2.6.2. The parallel complexities are obtained by summing
the number of times the multigrid levels are processed in the corresponding algorithms. In
the case of the W-cycle, for example, the number of visits of the level ��−k per cycle is
O(2k) which sums to O(2�) = O(

√
N). The other results can be obtained similarly.

Table 6.1. Sequential and parallel complexities of 2D-multigrid.

Cycle type Sequential Parallel

MGI V O(N log ε) O(logN log ε)
F O(N log ε) O(log2 N log ε)
W O(N log ε) O(

√
N log ε)

FMG V O(N) O(log2 N)

F O(N) O(log3N)

W O(N) O(
√
N logN)

Lower bound (for any solver) O(N) O(logN)
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That at least O(logN) parallel steps are required for any solver follows from the fact
that the solution of a discrete elliptic problem in general depends on all discrete entries.
Therefore, full (weighted) sums of all entries have to be evaluated which requires at least
O(logN) parallel steps.

The two main observations from Table 6.1 are:

• The step from V- to W-cycles gives a substantial increase of parallel complexity,
from

O(logN) to O(
√
N)

(whereas in the sequential case the number of operations is only multiplied by
a factor of 3/2).

• The parallel FMG approach (based on a V-cycle) needs

O(log2N)

parallel steps instead of the theoretical bound of O(logN) (whereas in the
sequential case FMG is optimal in the sense that it requires O(N) operations).

The increase of complexity for W-cycles means that V-cycles are preferable from a
parallel point of view. This is relevant if we want to work with a highly parallel system
which consists of nearly as many processors as grid points.

Remark 6.1.2 The results of Table 6.1 carry over to other multigrid algorithms and other
2D problems provided that:

• we have h-independent error reduction per multigrid cycle,
• all multigrid components employed are #�h-parallel (or O(#�h)-parallel),
• FMG produces an approximation with discretization accuracy,
• the treatment of boundary conditions can also be performed in parallel.

Similar results are also obtained in 3D. �

6.2 GRID PARTITIONING

The existence of a sufficiently high degree of parallelism of an algorithm, as discussed in
the previous section, is a prerequisite for the utilization of parallel computers. If a multi-
grid algorithm is to be implemented on a parallel system, many additional (mathemati-
cal and technical) aspects have to be taken into account. Here, we are interested in the
practical questions such as the objective of minimizing the corresponding parallelization
overhead.

Typically, practical questions are related to the architecture of the parallel computer at
hand and to the programming model employed.
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6.2.1 Parallel Systems, Processes and Basic Rules for Parallelization

Parallel computer architectures have been developing and changing very rapidly. The answer
to the question, how to design an ideal parallel multigrid algorithm, clearly depends on the
concrete parallel architecture to be employed: whether we use a parallel (multiprocessor)
system with shared, distributed or some hierarchical memory, whether it consists of vector,
cache or scalar processors and which type of interconnection network is used (a static or
a dynamic one, the type of topology etc.). We also regard workstation and PC clusters as
parallel systems.

Figure 6.1 shows such a parallel system, a cluster consisting of 16 workstations. We
assume that the workstations are connected by some network in order to exchange data and
to communicate with each other.

For such (and other) architectures, the memory/cache organization may have an essen-
tial impact on the overall (parallel) efficiency of an algorithm (with the phenomenon of
“superlinear speed-ups” etc.). We regard this as a more technical question, which will not
be discussed in detail in this chapter.

The real performance of a parallel algorithm on a concrete parallel system is also influ-
enced by other details like whether the hardware and the software allow an overlap of
computation and communication etc. and, of course, the operating system and the compiler
may also be important.

Overall, we have tried to find a compromise: discussing practical questions but not
confining ourselves too narrowly to a specific parallel computer model.

Remark 6.2.1 (parallel processes) Generally, we consider an abstract model of a paral-
lel computer that consists of a (possibly large) number of processors, each of which has,
logically, its own memory and can work (and be programmed) independently of all other
processors. The processors can communicate and exchange data over some suitable inter-
connection, which is not further specified. We assume that a parallel application consists
of a number of logical processes with their own address spaces. A process cannot directly
access data of another process. If such remote data are required by a process, the process
possessing them has to make them available for the requesting process.

In the case of distributed memory architectures, communication between processes
is based on message passing. However, other parallel systems can also be represented

Figure 6.1. 16 workstations as an example of 16 connected processors.
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by this concept. On shared memory architectures, for instance, “communication between
processes” corresponds to “data copying” and/or synchronization.

For simplicity, we will always assume one process per processor when discussing
parallel features of an algorithm in the following. In that respect, we will not distinguish
between processes and processors. �

There are two obvious reasons why an algorithm and/or a parallel system may perform
unsatisfactorily: load imbalance, and communication overhead. Load imbalance means that
some processors have to do much more work than most of the others. In this case, most of
the processors have to wait for others to finish their computation before a data exchange can
be carried out. A purely sequential algorithm or a sequential phase in a parallel algorithm
produces extreme load imbalance as only one processor is busy in that case.

Remark 6.2.2 (basic rule for load balance) For architectures with many pro-
cessors, in general, it does no harm if one (or a few) processors have much less
computational work than the average, but it is crucial for the performance of the
parallel application if one (or a few) processors have much more computational
work than the average. Then, most of the processors will be idle and have to wait
for the overloaded ones to finish their parts of the computations. �

Communication overhead means that the communication and data transfer between the
processors takes too much time compared to the effective computing time. This overhead
may even lead to slow-down instead of speed-up when more and more processors are used.
Summarizing:

Avoiding load imbalance and limiting the communication overhead are the two
most important principles in the parallelization of a given sequential algorithm.

6.2.2 Grid Partitioning for Jacobi and Red–Black Relaxation

If grid applications are to be implemented on parallel computers, grid partitioning is a
natural approach. In this approach, the original grid �h is split into P parts (subdomains,
subgrids), such thatP available processors can jointly solve the underlying discrete problem.

Each subgrid (and the corresponding “subproblem”, i.e. the equations and the unknowns
located in the subgrid) is assigned to a different process such that each process is responsible
for the computations in its part of the domain.

The grid partitioning idea is widely independent of the particular boundary value prob-
lem to be solved and of the particular parallel architecture to be used. It is applicable to
general d-dimensional domains, structured and unstructured grids, linear and nonlinear
equations and systems of partial differential equations. Here and in the following sections,
we focus on this approach.
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Figure 6.2. Partitioning of a 16 × 16 grid into 4 × 4 or 1 × 16 (rectangular) subgrids.

Example 6.2.1 If we consider a parallel system consisting of 16 processors as in Fig. 6.1,
we are interested in a grid partitioning into 16 subgrids. Obviously, a grid can be parti-
tioned in various ways. Two examples, a 4 × 4 (2D) and a 1 × 16 (1D) partitioning, are
shown in Fig. 6.2. The partitionings generate certain artificial boundaries within the original
domain.

When applying a 4 × 4 partitioning in the case of 16 processors, each process is respon-
sible for the computations in about n/4×n/4 of the computational grid (n being the number
of grid points in each direction). �

In order to illustrate the basic ideas of grid partitioning as simply as possible, we start our
discussion with the parallel treatment of ω-JAC as an iterative method for Model Problem 1
on the square Cartesian grid.

Remember that ω-JAC is fully �h parallel. When distributing the work performed
during ω-JAC iterations to the available processors (all of the same performance), it is
crucial that each processor obtains roughly the same amount of work at any stage of the
solution procedure. Since the work of ω-JAC is the same at each interior grid point of �h,
a good load balance can easily be obtained. �h is split into as many (rectangular) subgrids
as processors are available so that each subgrid contains approximately the same number of
grid points. (If the processors have different performances, the distribution of grid points
has to be adjusted accordingly.)

Remark 6.2.3 Even for a regular grid consisting of 2� × 2� grid cells, often, a certain
amount of load imbalance cannot be avoided. For instance, in the 4 × 4 partitioning of
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Figure 6.2, nine of the 16 subgrids have 2�−2 ×2�−2 grid points, six have (2�−2 −1)×2�−2

points and one has (2�−2 −1)×(2�−2 −1) points. This imbalance is a harmless case of load
imbalance. Parallel systems are typically used for the solution of large problems (large �),
for which such imbalances are negligible. �

Starting with some approximation umh on the partitioned grid, each process can com-
pute a new ω-JAC iterate um+1

h for each point in the interior of its subgrid. Near the subgrid
boundaries, each process needs the old approximations umh located at those points which
are direct neighbors of its subgrid (see upper picture in Fig. 6.3). In principle, each process
can obtain this data from the neighbor process by communicating it in a pointwise fashion,
whenever such data is needed for the computations. But this approach would require a very
large number of messages to be sent and received during the computations which would
result in a large communication overhead due to the corresponding large start-up time of
sending many small messages (see Section 6.2.4).

An efficient and elegant approach is obtained if each process not only stores the
data belonging to its subgrid but also a copy of the data located in neighbor subgrids
in a thin overlap area of a certain widthw, for example an overlap of one grid point
(w = 1) (see lower picture in Fig. 6.3).

Then, each process can perform a full ω-JAC iteration without any communication in
between. After an iteration, the copies in the overlap areas have to be updated by communi-
cation so that the nextω-JAC iteration can be carried out. In our example, this communication
can easily be realized. Each process sends all its data belonging to one side of the over-
lap area of a neighbor subgrid collectively (i.e. in one long message) to the corresponding
“neighbor” process and receives the data corresponding to its own overlap area from that
neighbor. This communication via the interconnection network of the processors is a typical
example of message passing in a parallel system.

The situation is very similar if we replaceω-JAC by GS-RB. Starting with an approxima-
tion umh , we can perform the first half-step of GS-RB fully in parallel. Before the relaxation
of the black points, we have to update the approximations um+1

h at the red points of the
overlap regions. After the second half-step of GS-RB, we have to update the approximation
um+1
h at the black points of the overlap regions. We thus need two communication phases per

GS-RB iteration instead of one for ω-JAC, but with only half of the points being exchanged
in each step.

In this respect, computing phases and communication phases alternate during the
execution of the parallel program for both ω-JAC and GS-RB. This alternation
of computing and communication phases is natural for parallel grid and multigrid
programs based on the grid partitioning idea.
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Figure 6.3. Introduction of an overlap area around the subgrids.

Remark 6.2.4 (algorithmic equivalence) We point out that the parallel algorithmsω-JAC
and GS-RB as described above are algorithmically equivalent to their sequential versions.
The results of both algorithms are the same. This algorithmical equivalence is, however,
not naturally achieved if sequential multigrid components such as GS-LEX are modified to
improve their parallel properties. �
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Figure 6.4. Modified GS-LEX: the subgrids are relaxed in parallel. A GS-LEX iteration is used in
each block starting, for example, at the grid points (◦).

Remark 6.2.5 (parallel modification of GS-LEX) As we have seen before, the degree
of parallelism of GS-LEX is not satisfactory. An update of unknowns in GS-LEX depends
on previously calculated values.

A modification of GS-LEX, which better suits the grid partitioning concept is to apply
the GS-LEX smoother only within a subgrid of a grid-partitioned application. As a con-
sequence, the resulting relaxation procedure is no longer a classical GS relaxation, but a
combination of Jacobi-type relaxation and GS-LEX: All the subgrids are treated simulta-
neously (block-Jacobi) and within each subgrid (block) GS-LEX is used (see Fig. 6.4).

�

In the case of five-point stencils, approximations at corner points are not needed when
applying GS-RB or ω-JAC so that these points need not be included in the update of
the overlap region. The situation is different for discretizations with compact nine-point
stencils (5.4.4).

Remark 6.2.6 (compact nine-point stencils) In this case, the corner points in the overlap
area are also important. They correspond to diagonal neighbor subgrids (and the corre-
sponding processors). Nevertheless, explicit communication between these processors can
be avoided: One can separate the communication in the x-direction and in the y-direction
such that, for example, the exchange of data in the x-direction is completed before the
communication in the y-direction starts. The correct approximations at the corner points
are obtained automatically if the exchange in the y-direction includes the approximations
at the corner points of subgrids (see Fig. 6.5 for a schematic representation). �

Remark 6.2.7 (overlap width w = 2) Using an overlap of width w = 2 grid points can
be beneficial for parallel GS-RB on certain parallel systems. In this case, we can perform
both relaxation half-steps without an intermediate communication if we additionally relax
the points in that part of the overlap region which corresponds to an overlap of width
w = 1. Then only one exchange per GS-RB step is required. However, these additional
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Figure 6.5. Avoiding diagonal sends by separating communication in x- and y-direction

computations during the first relaxation half-step at some of the overlap points represent
an “overhead of computation” (as opposed to an overhead of communication). On par-
allel systems with slow communication (more accurately: very high start-up times, see
Section 6.2.4), this approach may still be beneficial.

For larger stencils, for example, the higher order discretization for Poisson’s equa-
tion (5.4.1), it is natural to choose the overlap width w = 2. �

6.2.3 Speed-up and Parallel Efficiency

In the following, we assume that we have a homogeneous parallel system with at least P
processors (all of the same performance). We consider an algorithm for the solution of
a given problem which runs on P ≥ 1 processors in a computing time T (P ). Then the
speed-up S(P ) and the parallel efficiency E(P ) are defined as

S(P ) = T (1)

T (P )
, E(P ) = S(P )

P
. (6.2.1)

We are interested in the behavior of S and E as a function of P . Ideally, one would like
to achieve

S(P ) ≈ P, or equivalently E(P ) ≈ 1.

This would mean that we are able to accelerate the computation by a factor close to P if
we use P processors instead of one. In many cases, however, an efficiency E close to 1
cannot be achieved. Usually, the cost of interprocessor communication is not negligible,
in particular not, if for a given problem the number of processors P is increased. In other
words, the efficiency E will be low if a large parallel system (P large) is used for a small
problem.
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Increasing the number of processors is usually reasonable if the size of the problem
(characterized, for example, by the number of grid points or unknowns N ) is also
“scaled up”. Therefore, we are interested in S = S(P,N),E = E(P,N) as a
function of P and N .

The above definitions and assumptions are somewhat problematic in certain situations.
S and E as defined above usually do not merely represent the parallel properties of a
given algorithm but also include other effects due to special processor characteristics. For
example, it may be unrealistic to assume that the entire application can be executed on
one processor of the system considered. The memory of only one processor may not be
large enough for the whole application. Similar phenomena and complications occur when
considering cache-based processors or vector processors. Here, the computing time may
strongly depend on the arrangement of the unknowns in the memory and on the order and
range of the loops in the computations. In such cases, the above definition would not be
applicable, or, if used one would perhaps observe a superlinear speed-up (E(P ) > 1).

With respect to these complications, one always has to interpret the meaning of S and
E according to the situation considered. One may use the above definitions, but should not
interpret them naively.

It may also be appropriate to modify the above definitions. One suitable modification is
the following definition of parallel efficiency Ẽ(P ):

Ẽ(P ) =
∑
i ai

P maxi (ai + ci)
.

Here ai denotes the CPU time for arithmetic computations in processor i and ci the corre-
sponding total communication time (including idle time), assuming that computation and
communication are not overlapping. On one processor, only the CPU time is taken into
account in this definition. Here, we assume that the times ai and ci can be measured during
the execution of the parallel algorithm.

Most importantly, the above quantities S, E and Ẽ have a limited numerical signif-
icance. The fact that an algorithm has a “good” efficiency on a certain parallel machine,
does not at all mean that it is a numerically efficient algorithm.

Often numerically inefficient algorithms give (much) better parallel efficiencies E
than more sophisticated and numerically efficient ones since those are much easier
to parallelize. A typical example is a single grid iterative method like classical
Jacobi-type iteration compared to multigrid. As the Jacobi-type iteration is fully
parallelizable and local, one will find a very good parallel efficiency. Multigrid,
however, is more involved so that its parallel efficiency will be worse than that of
Jacobi. Nevertheless, the overall efficiency (i.e. the total computing time to solve a
given problem) will typically be better by far for the multigrid approach.
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Remark 6.2.8 In order to avoid this paradox (high parallel efficiency for numerically
inefficient methods and low parallel efficiency for numerically efficient ones), some authors
have introduced a different “speed-up” quantity

S∗(P ) = T ∗(1)
T (P )

.

Here a concrete problem is considered and T (P ) and T ∗(1) are computing times needed
to solve this problem. T (P ) is the computing time needed for the parallel algorithm under
consideration on P processors (same quantity as above in (6.2.1)). T ∗(1), however, is the
computing time needed for the fastest sequential algorithm (on one processor of the same
system). In general, two different algorithms are compared. Although the above paradox
disappears with this definition, we do not use it in this book since we regard it as not being
very practical. On different computers different algorithms or different implementations of
the same algorithm may be the fastest. �

6.2.4 A Simple Communication Model

Typically, concrete results on the parallel efficiency of an algorithm are obtained by mea-
surements on a particular parallel computer. Often not only an algorithm is evaluated, but
different parallel computer architectures (and computer products from different vendors)
are also implicitly included in a comparison.

Some quantitative and qualitative results can also be derived theoretically using com-
puter and communication models (“performance prediction”). A substantial number of
performance models have been developed, some of which are very sophisticated. Some of
them have been used for the evaluation of parallel multigrid methods, for example [197,
219, 261, 268]. (Parallel adaptive multigrid methods have also been studied in [197, 268,
446].)

One of the simplest communication models is already useful in practice. Here, the time
needed for sending a message of length L is modeled by the formula

tcomm = α + βL
with parameters α and β: α is the so-called start-up time which has to be spent whenever a
message is sent, and 1/β is the bandwidth of the respective communication channel. For a
realistic evaluation of the performance of a solution method on a particular parallel system,
tcomm has to be compared with the computing time tcomp needed, e.g. for an arithmetic
operation.

For a concrete parallel computer, it may be useful or even necessary to take the size of
α and β into account when a specific algorithm is parallelized.

If α is large, the number of messages should be minimized, and if β is large, the
communication volume is the issue.
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In any concrete case, it depends on the hardware and on the application which of these
parameters is crucial. On distributed memory systems, often α is the important parameter.

As an example, reconsider the two partitioning options in Fig. 6.2: in the square (2D)
partitioning the communication volume is smaller (less than half) than in the strip (1D)
partitioning, but the number of messages is larger (four versus two per subgrid). The amount
of data to be communicated is proportional to the total length of the interior boundaries, the
number of messages equals the total number of edges of the subgrids.

If all the communication features (number of messages, volume of data, distance of
communication, etc.) are taken into account in a concrete algorithm, this communication
complexity is a new and valuable criterion, in addition to time and memory space. We will
not, however, discuss this field in this book.

6.2.5 Scalability and the Boundary-volume Effect

In this section, we will show that the boundary-volume effect is the reason that grid parti-
tioning leads, in general, to satisfactory efficiencies for sufficiently large problems. We first
study the behavior of an algorithm if the number of processors P is fixed, but the size of
the problem N is increased. We make the following assumptions:

– the given problem is characterized by local dependencies, as in finite difference and
finite volume discretizations,

– the solution method has a sufficiently high degree of parallelism (for example, propor-
tional to the number of grid points) and is sufficiently local,

– the number of grid points and the number of arithmetic operations per grid point are
(asymptotically, for N → ∞) equal for all subgrids.

Under these assumptions, we obtain

E(P,N) → 1 for P fixed, N → ∞ (6.2.2)

for a large class of applications and algorithms. The result is known as the boundary-volume
effect. The reason for this is that the ratio Tcomm/Tcomp (i.e. the overall time for commu-
nication versus the overall time for computation) behaves like the number of boundary
grid points of the subgrids versus the number of interior grid points of the subgrids. For
N → ∞ and P fixed this means that Tcomm/Tcomp → 0 and this, together with the other
assumptions, implies E(P,N) → 1.

For local methods, like ω-JAC and GS-RB, the boundary-volume effect holds trivially.
But as we will see in Section 6.3.3, standard multigrid methods with sufficiently parallel
smoothers also exhibit the boundary-volume effect.

The situation is less trivial if both the grid size N and the number of processors P are
increased. In the grid partitioning applications considered here, it is reasonable to assume
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that the number of grid points per processor is constant if P is increased:

N/P = const for P → ∞.

The term “scalability”refers to this situation and assumption. We call a parallel algorithm
and a corresponding application “E-scalable”, if

E(P,N) ≥ const > 0 for P → ∞, N/P = const.

Typically, local parallel algorithms like ω-JAC and GS-RB relaxation methods turn out to
be E-scalable. However, numerically highly efficient algorithms, like multigrid methods
are not E-scalable (see Section 6.3.3).

As mentioned before, the terms “parallel efficiency” and “E-scalability” are question-
able because they do not take the numerical efficiency into account.

Remark 6.2.9 The term “scalability” was originally used as a feature of parallel hardware.
It addresses the fact that parallel systems can be built according to the same architectural
concept in a scalable way: small systems with a few, medium systems with a medium number
and large systems with a large number of processors. But the software and the parallel
algorithms should also be “scalable” in order to fully exploit the hardware scalability. This
led to the above definition of algorithmic scalability. �

6.3 GRID PARTITIONING AND MULTIGRID

So far, we have described the idea of grid partitioning and discussed some details of its
realization only for “local” iterative methods such as ω-JAC and GS-RB. Grid partitioning
is also the natural parallelization approach for multigrid. Its extension of the single grid
case to parallel multigrid is straightforward. As a typical example, we consider Model
Problem 1 in this section.

The mapping of the subgrids on different multigrid levels to processors will be discussed
in Section 6.3.1. We also deal with some details of the communication on coarse grids and
in the intergrid transfer. The very coarse grids have to be treated properly on a parallel
system, particularly if the number of processors to be employed is large (see Section 6.3.2).
Typically, the boundary-volume effect is maintained for multigrid methods, not, however,
E-scalability in its strict form (see Section 6.3.3). Section 6.3.4 contains some remarks on
programming parallel multigrid.

6.3.1 Two-grid and Basic Multigrid Considerations

We consider two grids in a specific multigrid algorithm (correction scheme) in order to
discuss the impact of the parallelization on the multigrid components. We choose the com-
ponents GS-RB for smoothing, HW for restriction (we will see that it requires less commu-
nication than FW) and bilinear interpolation and assume that the number of grid points on
the coarse grid �H is (much) larger than the number of available processors.
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Let us further assume that we perform the parallel computations during the smoothing
procedure on the fine grid as described in Section 6.2.2, with an overlap width of w = 1.
The computations on the coarse grid can be assumed to be of the same type as those on
the fine grid. In particular, the arithmetic relations are local with respect to the grid level
on both grids. Since the coarse grid problem is a direct analog of the fine grid problem, we
can perform grid partitioning on the coarse grid accordingly. In general, there is no reason
to change the partitioning of the subdomains and the mapping to the processors. On the
contrary, if the information on the same geometric points on different grids�h and�H were
allocated to different processors, additional communication among these processors would
be required during the intergrid transfers. Therefore, the grid partitioning of the coarse grid
is carried out as for the fine grid.

If extended to multigrid, this means that one processor is responsible for the com-
putations on a sequence of grid levels on the same subdomain.

Of course, the overlap idea has to be adapted according to the different grid levels. On
each grid, we need an overlap region of at least w = 1 in order to be able to perform the
parallel smoothing steps and defect calculations. Since the distance between two adjacent
grid points increases on coarse grids, the “geometric size of overlap regions” will be different
on different grid levels (see Example 6.3.1).

As on the fine grid, communication on the coarser grids is “local” with respect to
the corresponding grid level.

Example 6.3.1 Figures 6.6 and 6.7 show a typical grid partitioning on the coarse and on
the fine grid. Here, we show possible effects on partitionings with nonsquare subdomains.
In this example, we have 11 × 9 grid points on the fine grid. Accordingly, the coarse grid
consists of 6 × 5 grid points. The coarse and fine grids are mapped to 2 × 2 processors.
Obviously, the geometric regions of the overlap are not uniform. In some parts of the domain
and in the corresponding processes the overlap on the coarse grid corresponds to a larger
geometric region than on the fine grid (simply because H > h). �

Let us now assume that we have performed one (or several) GS-RB smoothing steps on
thefine grid and that the approximations in the overlap regions have been updated afterwards.
Then we can apply the HW restriction. There is no need for any kind of communication since
it coincides with half injection if preceded by GS-RB smoothing (see Remark 2.7.3). All
data required for the computation of defects at coarse grid points is available (see Fig. 6.7).

For the prolongation back to the fine grid, we have a similar situation. After perform-
ing one or several smoothing steps on the coarse grid and updating the overlap regions
afterwards, we can immediately perform bilinear interpolation because all coarse grid data
required for the interpolation is available in the same process (as can be seen from Fig. 6.7).
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Figure 6.6. Distribution of subdomains and grid points to four processes on a fine and a coarse
grid (overlap w = 1).

Figure 6.7. Overlap regions of the four processes: •, coarse grid points; ◦, fine grid points.

It is thus sufficient in this parallel multigrid algorithm to perform communication only
after each smoothing half-step. With an overlap width of w = 2, an update of the overlap
regions after each full smoothing step is sufficient as discussed in Remark 6.2.7.

Remark 6.3.1 (full weighting) If we replace HW in the above parallel multigrid algorithm
by FW, there is an increase of the communication requirements because the defects in the
overlap areas are then needed. They can either be obtained by an additional communication
step or be computed by each process itself by the use of an overlap width w = 2. �
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Remark 6.3.2 (cubic interpolation) Performing cubic interpolation (e.g. in FMG) with
symmetric interpolation formulas near the internal subgrid boundaries is not directly pos-
sible if w = 1. The two possibilities discussed for FW, i.e. to use a larger overlap or
additional communication to provide the data for the cubic interpolation, are also applica-
ble here. Alternatively, one can apply nonsymmetric cubic interpolation formulas in such
points. Usually, the results of FMG are hardly affected by this modification. With such a
modification, the sequential and the parallel algorithms are, however, no longer equivalent.
Moreover, the algorithm is different (not equivalent) for any two different partitionings. �

Remark 6.3.3 (FAS) An additional communication step is needed if we use the FAS
instead of the correction scheme. After the restriction to the coarse grid, we do not have any
current approximations in the overlap regions. We thus need an overlap update before the
smoothing procedure starts on the coarse grid. In the correction scheme, this communication
is not necessary because we usually start with 0 as the initial approximation on the coarse
grid. �

6.3.2 Multigrid and the Very Coarse Grids

If we process coarser and coarser grids during a multigrid cycle, first smaller and smaller
numbers of grid points are mapped to each process. Then more and more processes no
longer have grid points on these very coarse grids, and finally only one or a few processes
have one (or a few) grid points. At the same time, the relative communication overhead on
the grids (as compared to the time for arithmetic computations) increases and may finally
dominate the arithmetic work on the very coarse grids. This can result in a significant loss
of efficiency for the overall parallel application. In particular, in W-cycles these coarse grids
are frequently processed.

Whereas idling processes on very coarse grids seem to be the main problem at first sight,
experience and theoretical considerations show that the large communication overhead on
the very coarse grids is usually more annoying than the idling processes. Algorithmically,
the computations continue as usual in the processes which still have grid points. The other
ones are idle until the multigrid algorithm returns to a level, on which these processes have
grid points again. We summarize the important aspects:

• On coarse grids, the ratio between communication and computation becomes worse than
on fine grids, up to a (possibly) large communication overhead on very coarse grids.

• The time spent on very coarse grids in W-cycles may become unacceptable.
• On very coarse grids we may have (many) idle processes.
• On coarse grids, the communication is no longer local (in the sense offinest grid locality).

Remark 6.3.4 In practice, it depends on the particular application under consideration
to which extent the coarse grids reduce the parallel efficiency. For Poisson’s equation
on a Cartesian grid (a scalar equation with few arithmetic operations per grid point),
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for example, the communication overhead on the coarse grids may have a strong impact
on the parallel efficiency. In that respect Poisson’s equation is a hard test case for
multigrid on a parallel system.

For more complex applications such as nonlinear systems of equations on general
curvilinear grids (applications with many arithmetic operations per grid point), the
effect is much less severe. Really large-scale parallel applications (which are the ones
that need parallel processing) are dominated by computational work on fine grids, at
least in the case of V- or F-cycles. �

There are various approaches to overcome the problem of the communication overhead.

(1) First, if the parallel efficiency on a particular parallel system is not strongly affected
by the communication on coarse grids, we can stay with this approach. This variant
may often be the best one.

(2) A possibility to reduce frequent communication on very coarse grids is known as the
agglomeration technique [192]. The idea of this approach is to “agglomerate” grid
points to new “process units” and to redistribute these new units to a subset of the
active processes. For example, instead of using 64 processors for 64 coarse grid points
and performing communication between them, it can be more efficient to group these
64 grid points to sets of four or 16 points (corresponding to 16 or four process units,
see Fig. 6.8) or even to one group of 64 points (to one process unit). This means
that only some of the processors are responsible for the computations on these very
coarse grids, the majority of processors being idle. Communication is avoided by this
grouping or agglomeration, and the fact that most of the processors become idle turns
out to be acceptable for many computers (although, of course, the agglomeration itself
requires communication).

Agglomeration can also be applied within FMG. On the very coarse grids only a
subset of the available processes is then responsible for the computations, whereas the
full number of processes is employed on finer grids.

(3) A third approach to treating the coarse grid problem is to redefine what the coarsest
grid is, i.e. reduce the number of levels. One way is to define the coarsest grid such that
each process has at least one grid point. Since the coarsest grid then consists ofO(P )
points, the parallel algorithm is, in general, different from the sequential one: the paral-
lel algorithm does not process the coarsest possible grid (truncated cycle, see Fig. 6.9).
The efficiency of this strategy then depends on the solution procedure on the coarsest
grid. One will usually employ an iterative method on the coarsest grid. Then it is impor-
tant to use parallel iteration schemes with good convergence properties. Remember
that, for example, ω-GS-RB (GS-RB with an optimal overrelaxation parameterω) has
much better convergence properties than GS-RB for Model Problem 1.

In the following, we will briefly show that it is often not necessary to solve the coarsest
grid problem exactly, which is particularly interesting for the third approach. Of course,
this is also valid in the sequential case, but a direct solution of the coarsest grid problem is
often not problematic in that case.
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Figure 6.8. Agglomeration of 64 grid points to 16, 4 or 1 processes.
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Figure 6.9. Truncated and nontruncated W-cycle.

In multigrid cycles the coarsest grid may be processed more than once, depending on the
cycle type. For example, while a V-cycle processes the coarsest grid once, a W-cycle over �
levels involves κ = 2�−2 visits of the coarsest grid. This offers an opportunity to reduce the
accuracy criterion for these visits. For each visit of the coarsest grid, one may expect that a
defect reduction of roughly ρ1/κ will be sufficient, where ρ denotes the expected multigrid
convergence factor. In this way, truncated W- or F-cycles become an interesting alternative
in the parallel case [241].

Example 6.3.2 In order to illustrate the feasibility of this approach, Table 6.2 presents
convergence factors for Model Problem 1 with 1282 fine grid cells. Here, grid coarsening is
truncated so that only three or four levels are used. The relaxation method used is GS-LEX.
On the coarsest grid, GS-LEX iterations are performed until a defect reduction by a factor
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Table 6.2. Measured asymptotic convergence factors per multi-
grid cycle (for κ see also Figure 6.9).

V-cycle W-cycle

3 grids 4 grids 3 grids 4 grids
ε (κ = 1) (κ = 1) (κ = 2) (κ = 4)

0.1 0.19 0.19 0.19 0.19
0.18 0.19 0.19 0.19 0.19√

0.18 0.42 0.41 0.19 0.19
4√0.18 0.65 0.62 0.42 0.19

0.8 0.79 0.78 0.62 0.37

of ε is achieved per visit. For the employed two-grid method (ν1 = ν2 = 1), we have ρloc =
0.19. Table 6.2, shows which choices of ε are sufficient to obtain the expected multigrid
convergence factors. Choosing ε ≤ 0.181/κ does indeed give the expected convergence for
this example, whereas a larger value of ε leads to a significant deterioration. �

6.3.3 Boundary-volume Effect and Scalability in the Multigrid Context

As discussed in Section 6.2.5, simple local iterative methods like ω-JAC and GS-RB are
E-scalable, and the boundary-volume effect is trivially fulfilled for them. The situation is
somewhat different for multigrid. The boundary-volume effect is also valid for multigrid
methods, but instead of theE-scalability, only a somewhat weaker property can be achieved.

Result 6.3.1 For Model Problem 1 and the RBMPS, we have

E(P,N) −→ 1 for N −→ ∞, P fixed.

With respect toE-scalability, we obtain the results in Table 6.3 forN → ∞,N/P = const.

Proof: On the fine grids, the ratio between communication and computation tends to 0 if
N → ∞ and P is fixed. For N → ∞, the relative influence of the fine grids will thus
finally dominate the influence of the coarse grids, so that the boundary-volume effect is
maintained.

The statements on E-scalability are obtained by similar arguments to those used in
Section 6.1.2 on parallel multigrid complexity. From

E(P ) = S(P )

P
= T (1)

T (P ) · P ,
N

P
= const ⇒ P ∼ N,
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Table 6.3. Asymptotic parallel efficien-
cies for N → ∞, N/P = const.

Cycle E(P,N)

V O(1/ logP)
F O(1/ log2 P)

W O(1/
√
P)

FMG (V-cycle) O(1/ log2 P)

we find

V-cycle: T (P ) = O(logP log ε) ⇒ E(P ) = O(1/ logP)

F-cycle: T (P ) = O(log2 P log ε) ⇒ E(P ) = O(1/ log2 P)

W-cycle: T (P ) = O(
√
P log ε) ⇒ E(P ) = O(1/

√
P)

FMG (based on V-cycle): T (P ) = O(log2 P) ⇒ E(P ) = O(1/ log2 P)

Compared toE-scalability, we loose a logarithmic term for V-cycles and a square root term
for W-cycles.

Remark 6.3.5 (vector computers) Many of our parallel considerations carry over to
the situation of vector computing. The parallelism of multigrid components can also be
exploited on vector computers, and the complications on coarse grids (lower degree of
parallelism) are also seen there (shorter vectors on coarse grids). �

6.3.4 Programming Parallel Systems

In general, writing programs for parallel computers with distributed memory can still be a
difficult job for a programmer. It is therefore advisable to first check whether or not appro-
priate software packages are available. Several communication libraries (including freely
available ones) exist, which can be used, for example, for all mapping and communica-
tions tasks. These libraries allow a strict separation of computation and communication in a
program, which leads to easier and safer programming and to portability from one parallel
system to another (see [448] for an example). In Section 10.4, we will describe the parallel
multigrid software package LiSS.

A typical parallel multigrid program for solving a PDE on a parallel computer with
distributed memory proceeds as follows.

• First, the input data has to be made available to all processes. This can happen in
two ways: each process reads the input file(s), or only one process (or a subset of the
processes) performs this task and then distributes the information to the others. The
initial phase includes also the identification of the process neighbors, the set up of the
overlap regions and a distribution of parameters for the algorithm.



216 MULTIGRID

• After that, the processes start their calculations. After certain computational steps,
for example, after a relaxation step and after the defect restriction to coarser
grids, data is exchanged between process neighbors in order to update the overlap
areas.

• The grid is coarsened as long as all processes are kept busy, i.e. until the last grid is
reached on which each process contains at least one point (Strategy (3) in Section 6.3.2).
On the coarsest grid, a fast (iterative) parallel solver is used. As alternatives, agglom-
eration techniques (Strategy (2) in Section 6.3.2) can be employed to continue to even
coarser grids or the idling of processes (Strategy (1)) is allowed.

• During the computation, global results (i.e. results whose computation requires data
from all grid points like residual norms) are assembled treewise and written to an output
file. This allows controlling the convergence of the algorithm.

• After the computation, the distributed solution is collected and the results are written to
the result file(s).

6.4 PARALLEL LINE SMOOTHERS

So far, we have discussed parallel multigrid and given some results for multigrid algo-
rithms with point smoothers. In this section we will discuss parallel multigrid strategies for
anisotropic problems.

Remark 6.4.1 (semicoarsening) If the anisotropic operator −εuxx − uyy is treated with
point smoothers and semicoarsening techniques, all the considerations in the previous sec-
tions still apply accordingly. In particular, the grid partitioning does not lead to any additional
complications. �

We restrict our considerations to parallel line and plane smoothers for compact stencils
(nine-point stencils in 2D and 27-point stencils in 3D). In Section 6.4.1, we will present
a particular tridiagonal solver for line relaxation, which provides an additional potential
for parallelization. In Section 6.4.2, we will show how this line solver can be parallelized
in practice. Parallel line solvers are also important for parallel multigrid plane relaxation
if the plane smoother uses line relaxation. Some considerations concerning parallel plane
relaxation are summarized in Section 6.4.3.

In the following remark, we first discuss a straightforward combination of grid parti-
tioning and zebra line and plane relaxations.

Remark 6.4.2 Line and plane smoothers of Gauss–Seidel type with an obvious degree of
parallelism are the zebra line and zebra plane smoothers (see Sections 5.1 and 5.2). These
smoothing schemes have a natural independence between every other line/plane, similar to
the case of GS-RB.

Zebra line smoothing is easily parallelized if the grid partitioning is parallel to the lines
to be solved. A simple example for this situation is shown in the 1 × 16 partitioning in
Fig. 6.2. Since a whole line is located in one process, grid partitioning can be applied
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without modification. After every relaxation half-step, the overlap areas have to be updated.
This holds, of course, for both 2D and 3D applications.

The situation is similar for plane relaxation in 3D applications. If the grid partitioning
is parallel to the plane to be solved, i.e. if a plane always belongs to a single process, the
parallelization is again straightforward. �

In order to exploit this natural parallelism of the zebra smoothers, the grid partitioning
needs to be chosen appropriately. If the grid partitioning is orthogonal to the lines to be
solved, the lines are no longer fully available in one process. Similarly, this approach is
no longer suitable if alternating line or alternating plane relaxation is to be employed, for
example, for a highly anisotropic problem with varying coefficients. In such cases, there
are lines or planes, which do not belong to one process and we need parallel variants of
them. We will discuss a parallel tridiagonal solver in the next section.

6.4.1 1D Reduction (or Cyclic Reduction) Methods

Line smoothing requires efficient solvers for tridiagonal matrices (or more generally, band
matrices). One efficient way to solve these tridiagonal systems is a 1D reduction approach
originally introduced in [340] (better known as cyclic reduction). Here, we present the basic
idea of this algorithm. In the following section, we will describe its parallelization.

Let Au = f be an (n − 1) × (n − 1) linear system (n = 2�) with a tridiagonal
matrix:

A =

⎡⎢⎢⎢⎢⎢⎢⎣
b1 −c1

−a2 b2 −c2 0
. . . . . . . . .

. . . . . . . . .

0 . . . . . . −cn−2
−an−1 bn−1

⎤⎥⎥⎥⎥⎥⎥⎦, bi �= 0 for all i. (6.4.1)

The idea behind the 1D reduction is to eliminate, in a first reduction step, u1 and u3 from
the second equation, u3 and u5 from the fourth and so on, i.e. to decouple the odd and the
even unknowns. The first step of the reduction method thus leads to the following system

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P 0

b1
b3

Q . . .

bn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u2
u4
·

un−2
u1
u3
·

un−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R2
R4
·

Rn−2
f1
f3
·

fn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.4.2)
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Here, the upper part P of this matrix is⎡⎢⎢⎢⎢⎣
B2 −C2

−A4 B4 −C4
. . . . . . . . .

. . . . . . . . .

−An−2 Bn−2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
u2
u4
·
·

un−2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
R2
R4
·
·

Rn−2

⎤⎥⎥⎥⎥⎦ (6.4.3)

where, the values of Ai, Bi, Ci, Ri (i = 2, 4, . . . , n− 2) are obtained from the values of
aj , bj , cj , fj by

αi = ai/bi−1, γi = ci/bi+1,

Ai = αiai−1, Ci = γici+1,

Bi = −αici−1 + bi − γiai+1,

Ri = αifi−1 + fi + γifi+1.

On this remainder matrix P the same procedure can be applied as on the original system
(second reduction step). This can be continued until after �−1 reduction steps a completely
reduced system with a lower triangular matrix is obtained [342]. The computation of the
solution is then trivially achieved by a back substitution.

Remark 6.4.3 In stencil notation, the original equations are written as[−ai bi −ci
]
u = fi (i = 1, 2, . . . , n− 1) (6.4.4)

and the equations of the remainder matrix P are[−Ai Bi −Ci
]
u = Ri (i = 2, 4, . . . , n) (6.4.5)

�

The reduction method for tridiagonal systems can be regarded as a special case of a 1D
multigrid method. Compared to other tridiagonal solvers, the cyclic reduction method is
distinguished by its particular numerical stability [343, 450].

6.4.2 Cyclic Reduction and Grid Partitioning

The method of cyclic reduction is well suited for parallelization. Whereas the sequential
version needsO(n) operations, the parallel complexity (see Section 6.1.2) isO(log n). The
number of reduction steps needed isO(log n) and each reduction step and each substitution
step can be performed in parallel.

Remark 6.4.4 Tridiagonal cyclic reduction needs 17 operations per grid point, the usual
tridiagonal Gaussian elimination needs eight operations. In the parallel case, however, the
operation count of cyclic reduction remains unchanged, whereas the parallel Gaussian algo-
rithm loses its advantage since fill-in (outside of the three diagonals) occurs during the elim-
ination process. If, on the other hand, many lines are solved simultaneously, the parallel
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efficiency of standard Gauss algorithms improves compared to cyclic reduction. A detailed
overview of parallel tridiagonal solvers including comparisons is presented, for example in
[221, 267]. �

In the following, we will describe cyclic reduction in a grid partitioning context. Let us
assume that the grid lines to which the tridiagonal systems correspond, are distributed over
several processes (see Fig. 6.10).

Consequently, we concentrate on the following problem. Given a number J ≥ 1 of
tridiagonal systems with n− 1 unknowns each, find a parallel algorithm for solving these
systems on P processes, assuming that process k (1 ≤ k ≤ P ) knows only a certain number
of the equations of each of the J tridiagonal systems.

Remark 6.4.5 First, one should note that a rearrangement so that each processor can work
with full tridiagonal systems, i.e. a global redistribution of the data (such that each process
receives about J/P complete systems and a standard sequential solver can be applied) is,
in general, rather expensive with respect to communication. �

Thus, we assume that the systems need to remain distributed during the solution pro-
cedure. Concretely, we assume a partitioning as indicated in Fig. 6.10 (where n − 1 = 15
and P = 4).

We now outline how the first reduction step can be carried out in parallel: For
k = 2, . . . , P , the first equation of process k coincides with the last equation of process
k − 1. We call the equations shared by two neighbor processes interface equations and the
remaining ones the inner equations, corresponding to (and being known by) only one par-
ticular process. The inner unknowns of different processes are not directly coupled to each
other. Thus, elimination operations only involving inner equations may be performed fully
in parallel by the different processes. At the end of the reduction step, the interface equations
are handled. The setup of the new equations at the interfaces requires communication.

Each process can apply standard reduction steps recursively until only interface equa-
tions are left. The handling of this remaining system is explained in detail in [153]. For

Figure 6.10. A tridiagonal system distributed over four processors. ◦, elements shared by two
processors.
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sufficiently large n (and P fixed), the size of the interface system is negligible. Assum-
ing that this system has been solved and each processor knows the values of its interface
unknowns, the inner unknowns can be solved for by a parallel back substitution.

Remark 6.4.6 When applying a parallel tridiagonal solver like cyclic reduction in a 2D
or 3D multigrid algorithm, an efficient implementation requires that the data which have
to be communicated between different processes are not sent separately for each line, but
collectively, i.e. in one single message for all lines in a process (see the discussion in
Section 6.2.4). �

6.4.3 Parallel Plane Relaxation

For the implementation of plane relaxation in a 3D multigrid code, it is reasonable to
use parallel 2D-multigrid algorithms. In order to illustrate an efficient incorporation of
2D multigrid into the smoothing components of a 3D multigrid program, we consider the
implementation of (x, y)-plane relaxation.

Grid partitioning with respect to only one direction has already been discussed. If we
now consider a general grid partitioning, the 2D multigrid algorithm also has to be parallel.
Again, data to be exchanged between processes in each of the parallel 2D solvers should
be collected (as for parallel line relaxations in Remark 6.4.6), according to the following
rule.

Keep the number of messages to a minimum. This means that data belonging to dif-
ferent planes are collected and sent as a single message. After each 2D relaxation (or
restriction or interpolation) applied simultaneously to all incorporated planes, the data to
be sent to a specific neighbor process is collected (from all planes) and sent in a single
message.

This leads to a considerably better parallel efficiency of the 3D multigrid method [153],
especially on parallel systems with relatively large start-up times α.

Remark 6.4.7 The degree of parallelism is lower for multigrid plane relaxation than for
point relaxation. Plane relaxation by 2D multigrid requires more coarse grid processing. In
particular, each multigrid plane relaxation step also processes coarser grids, independent of
the grid level one starts on.

Correspondingly, the parallel complexity of FMG incorporating alternating plane relax-
ation is O(log4N) as has been shown in [388] (factors of logN for the V-cycle, the plane
smoother, the line solver within a plane and for FMG). �

Remark 6.4.8 (parallel 3D semicoarsening) Also in 3D, methods based on pointwise
smoothing and semicoarsening can easily be parallelized with grid partitioning. More robust
variants, like multiple semicoarsening methods (see Remark 5.2.5) use many coarse grids.
Parallelization with grid partitioning for these methods has larger communication require-
ments, since communication takes place on all coarse grids. A parallel variant of multiple
semicoarsening based on line smoothing has been presented in [411]. �
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6.5 MODIFICATIONS OF MULTIGRID AND RELATED APPROACHES

Most of the parallel approaches described so far were oriented to, and essentially equiv-
alent to, sequential multigrid. In the parallel context, however, other variants exist, where
the equivalence to sequential multigrid is no longer maintained.

For example, in our description of parallel multigrid with grid partitioning, we have
assumed that the data needed by neighbor processes is communicated on all levels. For
parallel computers with low communication bandwith and/or high latency (like loosely
coupled PC clusters), one may try to avoid communication on some grid levels and thus
make the calculations on the subgrids (subdomains) more independent. Careful analysis on
the algorithm is necessary if the communication on certain grid levels is completely removed.
Some variants have been discussed in [73, 192]. If one tries to reduce communication in
standard parallel multigrid, the resulting algorithms are more similar to versions of the
domain decomposition (DD) methods.

6.5.1 Domain Decomposition Methods: a Brief Survey

Since there are two books [306, 362] on DD methods available, we will only make some
remarks on connections to multigrid. Algorithmic relations between DD and multigrid
have also been discussed in [362]. From a theoretical point of view, connections between
multigrid and DD are also summarized in Appendix B.

One root of the domain decomposition development is the classical alternating Schwarz
method. For simplicity, we consider the problem

−�u = f�(x, y) (�)

u = f �(x, y) (� = ∂�)
(6.5.1)

in the rectangular domain � = (0, 2)× (0, 1). In order to illustrate the DD idea, we use a
decomposition of � into two overlapping domains

�1 = (0, 1 + δ)× (0, 1)
�2 = (1 − δ, 2)× (0, 1)

(see Figure 6.11). The parameter δ controls the overlap�1 ∩�2. By �1 and �2, we denote
the interior boundary lines

�1 = {(1 + δ, y): 0 ≤ y ≤ 1}, �2 = {(1 − δ, y): 0 ≤ y ≤ 1}.

In the classical alternating Schwarz method, the subproblems in �1 and in �2 are solved
alternatingly, according to the iteration

−�um+1/2
1 = f� (�1) −�um+1

2 = f� (�2)

u
m+1/2
1 = f � (∂�1 \ �1) um+1

2 = f � (∂�2 \ �2)

u
m+1/2
1 = um2 (�1) um+1

2 = u
m+1/2
1 (�2)

(6.5.2)
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Figure 6.11. A domain � divided into two overlapping parts �1 and �2.

with, for example, u0 = 0. The convergence speed of the above iteration depends on the
overlap parameter δ. For the above example, the convergence factor ρ behaves like

ρ ≈ 1 − αδ +O(δ2)

with some constant α: the smaller δ, the slower the convergence; for δ → 0 the convergence
factor tends to 1.

From a practical point of view, a solver for each of the subproblems has to be applied in
each iteration step. For that purpose, we consider discrete analogs of the above subproblems
and thus obtain a discrete version of the alternating Schwarz method on �1,h and �2,h. A
trivial combination of DD and multigrid is to use multigrid for the solution of the subprob-
lems. Of course, the fact that multigrid allows a fast solution of the subproblem does not
help with respect to the limited overall convergence which is determined by the size of the
overlap.

Many extensions and modifications of the classical method have been proposed: exten-
sion to many subdomains, so-called additive versions, DD with one or several coarse
levels etc. For a rough survey on DD methods, we will use matrix terminology to avoid
formalizing the discrete versions of different DD approaches and specifying the corre-
sponding grids and spaces, which is not needed for our purposes. In this formulation,
A is the matrix corresponding to the discrete version of the original problem (6.5.1) and
um, um+1/2, dm, dm+1/2 (m = 0, 1, . . . ) are “full” vectors corresponding to �h.

We start with the alternating Schwarz method. We denote by A1 and A2 the matrices
belonging to the discrete analogs of the problems on�1 and�2 respectively. Using a defect
formulation for both half-steps, one complete step of the Schwarz iteration reads

um+1/2 = um + P1A
−1
1 R1d

m, where dm = f − Aum
um+1 = um+1/2 + P2A

−1
2 R2d

m+1/2, where dm+1/2 = f − Aum+1/2.

Here R1, R2 denote matrices which restrict the full �h vectors to �h,1 and �h,2, respec-
tively, whereasP1, P2 extend the vectors defined on�h,1, �h,2 to full�h vectors (extension
by 0). That only the �1,h and the�2,h parts of um+1/2 and um+1 are updated at each half-
step of the iteration is reflected by the terms P1A

−1
1 R1 and P2A

−1
2 R2. From the above
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representation we find that the iteration matrix for a complete iteration of the Schwarz
method is given by

M = I − P1A
−1
1 R1A− P2A

−1
2 R2A+ P2A

−1
2 R2AP1A

−1
1 R1A. (6.5.3)

Here the last term is characteristic for the alternating character of the Schwarz method, in
which the �1 problem is solved in the first half-step and the result is used (on �2) to solve
the�2 problem. If we neglect this term, we obtain the additive variant of Schwarz’s method
characterized by

Madd = I − P1A
−1
1 R1A− P2A

−1
2 R2A. (6.5.4)

In this setting, the �1 and the �2 problem can be solved simultaneously. In that respect,
the additive variant is the natural parallel version of the Schwarz method. For distinction,
the original alternating approach (6.5.3) is called multiplicative (M = Mmult). The additive
variant corresponds to a block Jacobi-type method and the multiplicative variant to a block
Gauss–Seidel-type method where the�1 and the�2 problems characterize the blocks. If we
generalize the additive and the multiplicative version of Schwarz’s method to p domains,
the corresponding iteration matrices become

Madd = I −
p∑
j=1

PjA
−1
j RjA (6.5.5)

and

Mmult =
p∏
j=1

(I − PjA−1
j RjA). (6.5.6)

The fact that the pure Schwarz methods, whether multiplicative or additive, are only slowly
convergent for small overlap is worse for the many domains case. Therefore acceleration
techniques have been introduced. We mention three of them.

Remark 6.5.1 (DD as a preconditioner) In the first approach, the Schwarz methods
are not used as iterative solvers, but as preconditioners. The use of Schwarz methods as
preconditioners is included in the above formalism by writingM in the formM = I −CA
where

Cadd =
p∑
j=1

PjA
−1
j Rj

in the additive case and

Cmult =
[
I −

p∏
j=1

(I − PjA−1
j RjA)

]
A−1

in the multiplicative case. (The original additive and multiplicative Schwarz methods are
preconditioned Richardson iterations, with τ = 1, (1.6.2), in this interpretation.) In practice,
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the above preconditioners are used with Krylov subspace methods (see Section 7.8). Under
certain assumptions, the additive preconditioner Cadd can be arranged in a symmetric way
(for example, by choosing Pj = RTj ) so that the conjugate gradient method can be used for
acceleration. In the multiplicative case, GMRES (see Section 7.8.3) is usually chosen for
acceleration. �

Remark 6.5.2 (DD with a coarse grid) The second acceleration possibility which is
usually combined with the first one, is characterized by a coarse grid �H (in addition to
�h). This turns out to be necessary for satisfactory convergence, in particular if p is large.

Formally, this “two-level approach” can be included in the above formalism by replacing

p∑
j=1

by
p∑
j=0

and
p∏
j=1

by
p∏
j=0

.

Here, the term corresponding to index j = 0 characterizes the coarse grid part; it has the
same form as the other summands (or factors).

Let us denote the typical diameter of a subdomain by H . It has been shown [132] that
in this case the condition number κ(CaddA) fulfills

κ(CaddA) ≤ const
(

1 + H

δ

)
.

So, the condition number of the preconditioned system for the two-level overlapping
Schwarz method (with exact solution of the subdomain problems) is bounded indepen-
dently of h and H , if the overlap is uniformly of width O(H). Similar bounds also hold
for the convergence factors of the multiplicative version (see the discussion in [132] and
Chapter 5 of [362]). The proof for this statement is outlined in Appendix B. �

Remark 6.5.3 (DD as a smoother for multigrid) The third idea to improve the efficiency
of Schwarz’s method is not to use multigrid as a solver in an overall DD context, but to
use the DD idea for smoothing in an overall multigrid context. In this sense, the roles of
DD and MG are exchanged and the efficiency of multigrid is maintained. The convergence
factors of multigrid with DD-type smoothing turn out to be small and independent of the
overlap width δ, under general assumptions. This approach has been studied for model prob-
lems [176, 339, 378]. Whereas in [378] the idea of the alternating Schwarz method (more
precisely, of one Gauss–Seidel type iteration for each subdomain) is used for DD-smoothing,
a DD-smoother based on a Jacobi-type iteration for each subdomain, which can thus be
executed in parallel, is presented in [176]. Some results are shown there, which compare
the influence of these two DD-smoothers on the multigrid convergence for the above exam-
ple. The multigrid convergence factors are approximately the same for both approaches
(ρ ≈ 0.06 for h = 1/128). These methods are very close to grid partitioning. �

Finally, we would like to mention that a lot of theoretical and practical work is devoted
to nonoverlapping DD approaches (also known as iterative substructuring methods). In
the nonoverlapping approaches, the idea of parallel treatment of the subproblems is more
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strongly addressed than in the overlapping case. For a general description and survey articles,
see, e.g., [131, 133, 138, 237, 306, 362, 418] and the references therein.

Among the best known and most tested nonoverlapping domain decomposition methods
for elliptic PDEs are the FETI and Neumann–Neumann families of iterative substructuring
algorithms. The former is a domain decomposition method with Lagrange multipliers which
are introduced to enforce the “intersubdomain continuity”. The algorithm iterates on the
Lagrange multipliers (the dual variables) and is often called a dual domain decomposition
method (see [138, 217, 255, 324] and the references therein). The Neumann–Neumann
method is a “primal” domain decomposition algorithm which iterates on the original set of
unknowns (the primal variables). For an introduction to the Neumann–Neumann algorithm
and references to earlier work on it and its predecessors, see [237]. Some further references
are [131, 133, 254]. A unified analysis for both, FETI and Neumann–Neumann algorithms,
has been given [217].

Remark 6.5.4 In our view, DD is the more natural, the more weakly the respective sub-
problems are coupled. In particular, multidisciplinary applications, with different PDEs on
different parts of a domain, for which “coupling algorithms” are needed, may benefit from
DD theory and practice. �

6.5.2 Multigrid Related Parallel Approaches

In this section, we will list some multigrid related approaches, which are of interest in the
context of parallel computing, in the form of remarks.

Remark 6.5.5 (additive multigrid) In the additive multigrid approach [55, 161, 425],
smoothing is performed on all levels simultaneously, i.e. the grids are not processed
sequentially.

The additive multigrid V-cycle on level k, um+1
k = ADMG(k, umk , Lk, fk, ν) consists

of the following steps:

– Compute the defect on level k (if k > 1) and restrict it: dm
k−1 = I k−1

k (fk − Lkumk ).
– Perform ν smoothing steps on level k: umk = SMOOTHν(umk , Lk, fk).
– If k = 1, use a direct or fast iterative solver for Lk−1v̂

m
k−1 = dm

k−1.
If k > 1, perform one (k − 1)-grid additive cycle to Lk−1v̂

m
k−1 = dm

k−1 using the zero
grid function as the first approximation

v̂mk−1 = ADMG(k − 1, 0, Lk−1, d
m
k−1, ν).

– Interpolate the correction: um+1
k = umk + ωI Ikk−1v̂

m
k−1.

Here, ωI is an interpolation weight. In the additive multigrid V-cycle, the smoothing steps
on different grid levels are independent of each other and can be performed in parallel.
Restriction and interpolation are performed sequentially.



226 MULTIGRID

An additive multigrid method is usually employed as a preconditioner (see Section 7.8)
rather than as an iterative solver. (The convergence is, in general, not guaranteed if used
as a solver.) A well-known example of an additive multigrid preconditioner is the BPX
method [55].

Standard multigrid is also called multiplicative multigrid if the difference to the addi-
tive version is to be emphasized. A detailed study of additive multigrid versus standard
(multiplicative) multigrid has been made, for example, in [32]. Additive multigrid has some
interesting theoretical features (see Appendix B), but does not compete with standard multi-
grid in most practical applications. �

Remark 6.5.6 (parallel superconvergent multigrid method) The parallel superconver-
gent multigrid method (PSMG) [143, 144] and related ideas essentially refer to massively
parallel computing. To keep all processors of a massively parallel system busy especially on
coarse grids, PSMG works simultaneously on many different grids, instead of working only
on the standard coarse grid hierarchy. In this way, one can try to accelerate the multigrid
convergence (see [144] for a detailed discussion and for results on Poisson’s equation). �

Remark 6.5.7 (sparse grids, combinationmethod) In the context of the so-called sparse
grid discretizations [443], the “combination method” [165] is a variant, that is naturally par-
allel. Mathematically, the combination method can be interpreted as a specific extrapolation
technique, in which the sparse grid solution can be computed directly from the solutions
of several small problems. A particular feature of this method is that no communication is
needed during long phases of the computation, i.e. the small problems are fully independent
of each other, so that this method may be interesting for clusters of workstations or PCs.
After the computation, the different parts must be collected to obtain the approximation of
the complete solution.

In [152], for example, it has been demonstrated for Model Problem 2 how the combi-
nation method can be combined with 3D anisotropic multigrid. The sparse grid approach
itself already leads to anisotropic grid structures. �



7
MORE ADVANCED MULTIGRID

In this chapter, we will introduce more advanced multigrid methods. Such methods are
needed for important classes of more involved problems like the convection–diffusion equa-
tion and problems characterized by mixed derivatives uxy . Such problems can lead to bad
h-ellipticity measures, as we have seen in Section 4.7.

As we have discussed already for anisotropic diffusion problems, there are
basically two strategies to deal with problems that cannot be solved efficiently
with the basic multigrid components. One strategy is to adapt the smoother to the
problem at hand but to keep the “standard” coarse grid correction components. In
most parts of this chapter, we will apply this strategy to deal with more difficult
problems and thus consider standard coarsening.

In Appendix A, in the context of algebraic multigrid, the second strategy, i.e. to
maintain pointwise smoothing and to change the coarse grid correction, is applied
to some of the problem classes discussed in this chapter.

In Sections 7.1 and 7.3, we discuss first- and higher order accurate upwind-type discretiza-
tions of the convection–diffusion equation in detail. In Sections 7.2 and 7.4, we focus on
the corresponding multigrid treatment. We consider various smoothers and point out certain
problems arising from the coarse grid correction.

In Section 7.5, incomplete factorization (ILU type) smoothers are introduced. They are
an interesting alternative to line smoothers. These smoothers can handle problems with
mixed derivatives as discussed in Section 7.6.

In Section 7.7, we will introduce a proper multigrid treatment for problems characterized
by jumping coefficients in front of derivatives. Here, the standard coarse grid correction is
modified.

Section 7.8 discusses the use of multigrid as a preconditioner, which can also be inter-
preted as a recombination of multigrid iterants. With this approach the convergence of
difficult problems can often be improved by an outer iteration (“accelerated”) while stan-
dard multigrid components are maintained.

227
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7.1 THE CONVECTION–DIFFUSION EQUATION: DISCRETIZATION I

In studying anisotropic problems, we have discussed the multigrid treatment of an important
class of problems with “vanishing ellipticity” for ε → 0. By using line/plane relaxations
and/or semicoarsening techniques, we are able to solve these problems with similar multigrid
efficiency as observed for Poisson’s equation.

Another, equally important, class of problems is the class of convection–diffusion prob-
lems. We again consider a 2D model problem.

Model Problem 6

Lu = −ε�u+ aux + buy = f�(x, y) (� = (0, 1)2) (7.1.1)

with, for example, Dirichlet boundary conditions u = f �(x, y). Here, the parameter ε > 0
is constant, and a, b are constants ∈ R or (smooth) functions a(x, y), b(x, y).

The convection–diffusion equation (7.1.1) is an important problem in computational
fluid dynamics. The combination of diffusion, modeled by�u, and convection, modeled by
aux+buy , is often found in nature. The parameter ε determines the ratio between diffusion
and convection. Obviously, the convection–diffusion equation is a singularly perturbated
equation: in the limit case ε → 0 it is no longer elliptic, but hyperbolic (with the convection
direction (a, b)T ). Furthermore, the convection–diffusion equation is a linear model for any
of the momentum equations of the incompressible Navier–Stokes equations (to be discussed
in Sections 8.6–8.8). This is another reason for our detailed considerations.

Specific complications already arise with the discretization of convection–diffusion
equations. Whereas the Laplace operator in (7.1.1) can be discretized by the standard five-
point approximation, the convective terms aux and buy have to be discretized with care.

In the following, we will discuss several discretization schemes for the convective terms
and the corresponding multigrid approaches. We will describe the difficulties in terms of
finite differences on the Cartesian grid Gh; the description also applies, however, to finite
volume discretizations. We start with some simple considerations in 1D.

7.1.1 The 1D Case

Some of the discretization issues that occur in the context of convection–diffusion equations
can be illustrated by the simple 1D problem

− εuxx(x)+ aux(x) = f�(x) (0 < x < 1)
(7.1.2)

u(0) = f �0 , u(1) = f �1 .

The standard second-order discretization operator with central differences is

Lh = 1

h2
[−ah/2 − ε 2ε ah/2 − ε]h. (7.1.3)

We first notice that this operator and the corresponding matrix Ah are not symmetric.
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Example 7.1.1 In this example we will see that central differencing leads to difficulties
for small ε > 0.

For a = 1 and f� = 0, we obtain

−εuxx + ux = 0 (0 < x < 1).

If we prescribe the boundary conditions

u(0) = 0, u(1) = 1,

the solution of this problem, u(x) = (1 − ex/ε)/(1 − e1/ε), has a sharp gradient (boundary
layer) near the boundary x = 1. The width of the layer depends on the parameter ε. For
ε = 1/100, this solution is presented graphically in Fig. 7.1.

The discrete solution of this problem discretized by central differencing is

uh(xk) = 1 − qk
1 − qn with q = 2ε + h

2ε − h,
where h = 1/n is the mesh size and xk = kh (k = 0, . . . , n). This discrete solution is highly
oscillating for q < −1, or, equivalently for h > 2ε. Such oscillations do not correspond
to the solution of the differential problem. The central difference solution does, however,
approximate the differential solution reasonably if h ≤ 2ε. �

For (7.1.3), the condition for the suitability of central discretization is

h

ε
|a| ≤ 2, (7.1.4)

which is also called the Péclet condition.
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Figure 7.1. Analytical solution (1 − ex/ε)/(1 − e1/ε) of the 1D convection–diffusion problem for
ε = 1/100.
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If the Péclet condition is not fulfilled, central differencing of the convective terms is not
appropriate.

A discretization that overcomes the instability complications for small ε, is an upwind
discretization. In a first-order upwind scheme, first derivatives are approximated by one-
sided differences such that only upstream grid points are used in the discretization of the
convection term. Depending on the sign of a, ux is discretized by

ux,h,upwind =
{

1/h[0 − 1 1]huh if a < 0

1/h[−1 1 0]huh if a > 0.
(7.1.5)

For a > 0, the first-order upwind discretization for ux leads to

Lh = − ε

h2
[1 − 2 1]h + a

h
[−1 1 0]h. (7.1.6)

A major drawback of this discretization is that it is onlyO(h) accurate. For Example 7.1.1
this results in a “smearing” of the boundary layer in the discrete solution.

An important observation can, however, immediately be made here.

From (7.1.6), one can see that the stencil degenerates to

a

h
[−1 1 0]h

for ε → 0. In that case, the discrete solution uh at xk = kh can be calculated
immediately from uh(xk−1). Therefore, a pointwise Gauss–Seidel relaxation with
“downsteam” numbering becomes an exact solver for ε → 0. For small ε, only a
few iterations are needed for convergence. This holds also in higher dimensions if
first-order upwind discretization is used.
Such an iteration is called downstream relaxation or also downstream marching.

7.1.2 Central Differencing

We now consider standard central differences for the discretization of the convective terms
in the 2D case. In stencil notation, the resulting (nonsymmetric) discrete operator for
(7.1.1) reads

Lh = ε

h2

⎡⎣ −1
−1 4 −1

−1

⎤⎦
h

+ a

2h
[−1 0 1]h + b

2h

⎡⎣ 1
0

−1

⎤⎦
h

= 1

h2

⎡⎣ bh/2 − ε
−ah/2 − ε 4ε ah/2 − ε

−bh/2 − ε

⎤⎦
h

. (7.1.7)

As in the 1D case, difficulties with central differences arise for small ε > 0.
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Example 7.1.2 Choosing a = b = 1 and f� = 0, the 2D convection–diffusion model
problem corresponds to

−ε�u+ ux + uy = 0 (� = (0, 1)2). (7.1.8)

We prescribe Dirichlet boundary conditions

u = 0 for x = 0, 0 ≤ y < 1, and y = 0, 0 ≤ x < 1,

u = 1 for x = 1, 0 ≤ y < 1, and y = 1, 0 ≤ x ≤ 1.

Using the central discretization (7.1.7), the discrete solution uh is presented in Fig. 7.2(a)
along the line y = 1/2 for ε = 10−2 and h = 1/16. As in the 1D case, the solution
has wiggles, i.e. nonphysical oscillations, near the boundary layer. Even more oscillations
appear for smaller ε/h as is seen in Fig. 7.2(b) with ε = 10−5 and h = 1/64. Obviously,
Lh obtained from central differencing becomes unstable for both cases. �

In 2D the Péclet condition is

Pe := h

ε
max(|a|, |b|) ≤ 2. (7.1.9)

The left-hand side of (7.1.9) is called the mesh-Péclet number Pe.

If the Péclet condition is fulfilled, Lh based on central differencing gives a reason-
able and stable O(h2)-approximation for L. If it is not fulfilled, we have to expect
stability complications (oscillations).

Already in Fig. 7.2(a) (ε = 1/100, h = 1/16), we have Pe = 6.25 and the Péclet condi-
tion (7.1.9) is not satisfied.

With respect to the matrix corresponding to Lh from (7.1.7), we see that some off-
diagonal elements of the matrix become positive, if the Péclet condition is not satisfied. As
a consequence, the matrix is no longer an M-matrix [403].

0 1 0

1

1

0

u

(a) (b)

0

1

x

Figure 7.2. Wiggles in the discrete solutions obtained by the central discretization. (a) ε = 10−2,

h = 1/16; (b) ε = 10−5, h = 1/64.
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Another indication for the instability of the discrete operator Lh is its h-ellipticity mea-
sure, for example,

Ēh(Lh) := min

{ |L̃h(θ)|
|Lh| : θ ∈ T high

}
(7.1.10)

(see the discussion in Section 4.7). Here,

L̃h(θ, h) = ε

h2
(4 − 2 cos θ1 − 2 cos θ2)+ i

h
(a sin θ1 + b sin θ2)

represents the symbol of Lh and

|Lh| = 4ε

h2
+
∣∣∣ a
2h

− ε

h2

∣∣∣+
∣∣∣− a

2h
− ε

h2

∣∣∣+
∣∣∣ b
2h

− ε

h2

∣∣∣+
∣∣∣− b

2h
− ε

h2

∣∣∣
is the sum of the absolute values of the coefficients in the stencil. (For nonsymmetric
operators Ēh is easier to compute than Eh.) For small ε and h fixed, we find

Ēh(Lh) ≤ 4ε

4ε + h(|a| + |b|) ,

the upper bound being obtained for θ = (0, π). For ε → 0 and h and (a, b) (�= (0, 0))
fixed, this leads to

Ēh(Lh) −→ 0.

Remark 7.1.1 For ε = 0, we have a checkerboard-type instability ofLh (see Section 4.7):
Any grid function which has constant values at the red (odd) grid points and constant values
of a different size at the black (even) points lies in the kernel of the discrete operator. �

Remark 7.1.2 (multigrid behavior on coarse grids) Even if the h-ellipticity measure of
central differencing is satisfactory on afine grid, it decreases on coarse grids, which indicates
corresponding problems for smoothers on coarse grids. If we use central differencing on all
grids, stability problems may occur on a grid �H if

H

ε
max(|a|, |b|) ≥ 2.

If, on the other hand, the Péclet condition is fulfilled on all grids occurring in the multigrid
hierarchy, i.e. if

h0

ε
max(|a|, |b|) < 2,

where h0 denotes the coarsest mesh size, standard multigrid algorithms will solve (7.1.1)
without complications with a very high efficiency, since we have a “Poisson-like
situation”. �
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7.1.3 First-order Upwind Discretizations and Artificial Viscosity

Many flow phenomena are characterized by very small values of ε, realistic values being
ε = 10−5 or even smaller for typical flow problems (in water or air). For such problems,
central differencing is only reasonable on extremely fine grids. However, this would require
too much CPU time and memory and, hence, is not a realistic possibility even with state-
of-the-art (parallel) supercomputers.

The instability complications for small ε can be avoided by the use of first-order upwind
discretizations. With ux discretized as in (7.1.5) and uy discretized correspondingly, we
obtain the following first-order upwind stencil for (7.1.1) and general a and b:

Lh = ε

h2

⎡⎣ −1
−1 4 −1

−1

⎤⎦
h

+ 1

2h

⎡⎣ b − |b|
−a − |a| 2(|a| + |b|) a − |a|

−b − |b|

⎤⎦
h

= 1

h2

⎡⎢⎣
1
2h(b − |b|)− ε

− 1
2h(a + |a|)− ε h(|a| + |b|)+ 4ε 1

2h(a − |a|)− ε
− 1

2h(b + |b|)− ε

⎤⎥⎦
h

. (7.1.11)

This discretization does not lead to stability problems. The corresponding matrix is an
M-matrix. Also the h-ellipticity measure Eh is good. We find, for example, Eh ≈ 0.3, for
a = b = 1, h = 1/64 and ε = 10−5. However, as mentioned in the 1D case, the O(h)
accuracy is often not sufficient for engineering applications.

Example 7.1.3 Here, we consider the width of the boundary layer for the problem from
Example 7.1.2 with ε = 1/100 and h = 1/64. In this case, the Péclet condition is satisfied,
so that we can compare the first-order upwind solution with the one obtained by central
differencing. Figure 7.3 indicates that the width of the “discrete boundary layer” from the
first-order upwind discretization is too “thick” (it is O(h) instead of O(ε)). �

A discretization similar to first-order upwind is obtained by the introduction of artificial
viscosity in central difference discretizations. This means that ε is replaced by some εh ≥ ε

in (7.1.7). Here, εh is chosen such that the Péclet condition (7.1.9) is fulfilled, for instance,

εh = max
(
ε,
h

2
max(|a|, |b|)

)
.

This approach also leads to a stable discretization, but the drawback of only an O(h)
approximation remains (for ε < h/2 max(|a|, |b|)).

In fact, the upwind discretization can be regarded as a special case of the artificial
viscosity approach since, e.g. for a > 0,

aux,h,upwind = a

h
[−1 1 0]huh = a

2h
[−1 0 1]huh + a

2h
[−1 2 − 1]huh

(7.1.12)
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Figure 7.3. The boundary layer width for the central discretization (•) and first-order upwind
discretization (◦); ε = 1/100, h = 1/64.

(correspondingly for the y-direction). That is, the first-order upwind discretization of
aux is equivalent to a combination of the central difference term and an extra viscous
(or “dissipative”) term

−ah
2
uxx,h = a

2h
[−1 2 − 1]huh.

Implicitly, this latter term is added to the diffusion term of the discrete convection–diffusion
equation, so that the factor εh := ah/2 can be interpreted as “artificial viscosity”.

7.2 THE CONVECTION–DIFFUSION EQUATION: MULTIGRID I

In this section, we will discuss multigrid features for the first-order upwind discretization
of the convection–diffusion equation.

We first recall that downstream GS-LEX is close to an exact solver in the 1D case
if ε is small (see Section 7.1.1). The same is true in 2D and 3D for first-order upwind
discretizations of convection-dominated problems. The convection equation, obtained for
ε = 0, is hyperbolic. In that case, information propagates from the boundary along the
characteristics governed by (a, b).

Anyway, we will discuss the multigrid treatment of the convection–diffusion equation
with afirst-order upwind discretization in detail in the following subsections. This is because
usually the convection–diffusion operator is part of more complicated operators in systems
of equations, for which the specific behavior mentioned above cannot be easily exploited.
Furthermore, moderate values of ε are also of interest. The basic insights are also useful for
other discretizations of first derivatives (see Section 7.3).
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7.2.1 Smoothers for First-order Upwind Discretizations

To find a proper smoother, we use the LFA as introduced in Section 4.3. We consider Model
Problem 6 with the first-order upwind discretization (7.1.11). If we applyω-JAC and assume
that a ≥ 0 and b ≥ 0 , the smoothing analysis gives

S̃h(θ1, θ2) = 1 − ω + ω2ε cos θ1 + 2ε cos θ2 + ahe−iθ1 + bhe−iθ2

4ε + ah+ bh . (7.2.1)

For the special high frequency (θ1, θ2) = (π, 0), for example, we find

S̃h(π, 0) = 1 − ω + ω (−ah+ bh)
4ε + ah+ bh, (7.2.2)

which tends to 1 for ε → 0 and a = 0, independent of the parameter ω. Obviously, ω-JAC
is not a reasonable smoother in this situation.

Remark 7.2.1 This result is interesting in the context of Theorem 4.7.1. Statement (3) of
that theorem says that a pointwise ω-JAC smoother exists with a smoothing factor μloc ≤
const < 1 if the h-ellipticity measure Eh is good and if the stencil of Lh is symmetric.
Since Eh ≈ 0.3 (see Section 7.1.3) the above result shows that the symmetry of the stencil
is indeed a necessary condition here. �

Now, we consider the smoothing properties of other Gauss–Seidel- and Jacobi-type
smoothers. Table 7.1 presents smoothing factors μloc of several smoothers for three dif-
ferent combinations of (a, b) and two values of ε, 10−2 and 10−6. Here, we have used
underrelaxation (ω < 1) for the Jacobi-type smoothers and, in the case of ε = 10−6, also
for GS-RB and zebra-type relaxations. According to the LFA, ω = 0.8 is suitable in all
these cases and has therefore been used.

Several conclusions can be drawn from this table. The smoothing factor of most
smoothers depends sensitively on the parameters (a, b) and ε. For ε = 10−2, all smoothers
are acceptable. For ε = 10−6, however, one has to be careful with the choice of the smoother.
The Jacobi-type smoothers considered are not competitive in many of the cases listed.

Smoothing analysis for GS-LEX (with the standard lexicographical ordering) results
in satisfactory smoothing factors for positive constants a and b. For a < 0 and b ≤ 0,
however, the smoothing factor tends to 1 as ε → 0. This can easily be seen from the symbol
of GS-LEX

S̃h(θ1, θ2) = eiθ1(ε − ah)+ εeiθ2

4ε − ah+ bh− εe−iθ1 − (ε + bh)e−iθ2
. (7.2.3)

For example, for b = 0, inserting the high frequency (θ1, θ2) = (0, π) results in

S̃h(0, π) = −ah
4ε − ah, (7.2.4)

which tends to 1 for ε → 0.
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On the other hand, GS-BackLEX, point Gauss–Seidel relaxation with backward lexi-
cographical ordering (see Fig. 7.4), results in good smoothing for this case.

More generally, it can be shown that pointwise Gauss–Seidel relaxation is a good
smoother if the ordering of the grid points is according to the direction of the con-
vection vector (a, b). We speak of downstream relaxation in that case. As mentioned
above, the downstream relaxation is even a good solver if ε is very small.

Examples for the efficiency of downstream relaxation are presented, for example, in [41,
86, 430].

Table 7.1 shows a similar behavior for line relaxations. Line Gauss–Seidel relaxation
against the convection direction has bad smoothing properties. The alternating line Gauss–
Seidel relaxation shows good smoothing factors for all the cases considered in Table 7.1.

Remark 7.2.2 From Table 7.1 one might think that a combination of forward and backward
lexicographical point Gauss–Seidel relaxations would be satisfactory smoothers for any

4 3 2 1

8 7 6 5

12 11 10 9

16 15 14 13

Figure 7.4. Backward (lexicographical) ordering of grid points.

Table 7.1. Smoothing factors μloc = μloc(ε, h) of different smoothers for the con-
vection–diffusion equation with h = 1/256.

ε 10−2 10−6

Smoother (a, b) (1, 0) (−1, 0) (1, 1) (1, 0) (−1, 0) (1, 1)

ω-JAC 0.64 0.64 0.60 1.0 1.0 0.85
ω x-line JAC 0.60 0.60 0.60 0.60 0.60 0.84
ω y-line JAC 0.64 0.64 0.60 1.0 1.0 0.84
ω alt. line JAC 0.30 0.30 0.28 0.60 0.60 0.46

ω GS-RB 0.30 0.30 0.26 1.0 1.0 0.52
ω x-zebra line GS 0.21 0.21 0.25 0.20 0.20 0.57
ω y-zebra line GS 0.30 0.30 0.25 1.0 1.0 0.57
ω alt. zebra line GS 0.05 0.05 0.05 0.20 0.20 0.27

GS-LEX 0.48 0.55 0.42 0.45 1.0 10−4

GS-BackLEX 0.55 0.48 0.58 1.0 0.45 1.0
x-line GS 0.45 0.45 0.36 0.45 0.45 10−4

y-line GS 0.36 0.54 0.36 0.33 1.0 10−4

Alt. line GS 0.15 0.18 0.11 0.15 0.45 10−8



MORE ADVANCED MULTIGRID 237

16 15 14 13 1 2 3 4

12 11 10 9 5 6 7 8

8 7 6 5 9 10 11 12

4 3 2 1 13 14 15 16

Figure 7.5. Point Gauss–Seidel ordering starting in two different corners of the grid.

1 1 1 1 4 3 2 1

2 2 2 2 4 3 2 1

3 3 3 3 4 3 2 1

4 4 4 4 4 3 2 1

Figure 7.6. Backward x- and y-line Gauss–Seidel ordering of grid points.

values a and b. This is, however, not true. For certain combinations of a and b, point
Gauss–Seidel smoothers that correspond to the orderings in Fig. 7.5 are needed. For similar
reasons, one may need backward line Gauss–Seidel relaxations (see Fig. 7.6). Smoothing
analysis, but also the heuristics to adapt the marching direction to the direction of convection,
shows which ordering is appropriate. For example, if a < 0, b > 0, the grid point ordering
in the left picture of Fig. 7.5 corresponds to the convection direction; for a > 0, b < 0, it
is the ordering in the right picture. �

Example 7.2.1 We consider Example 7.1.2 with a = b = 1 and Dirichlet boundary
conditions. Standard multigrid works well for first-order upwind discretizations of this
particular example with ε = 10−2 and ε = 10−6 if a suitable smoother is employed.

We compare the F(1,1)-cycle multigrid convergence history with GS-RB and GS-LEX
on two grids with h = 1/64 and h = 1/256. Only for ε = 10−6, do we choose underre-
laxation ω = 0.8 in GS-RB as in Table 7.1. The other multigrid components are FW and
bilinear interpolation. Figure 7.7 shows that the convergence for ε = 10−2 is very good in
all cases.

For ε = 10−6, the convergence with GS-LEX is extremely fast. GS-LEX itself is a
fast solver in this case. The convergence with GS-RB is satisfactory, as predicted by the
smoothing analysis. �

7.2.2 Variable Coefficients

In the following, we consider the general case a = a(x, y) and b = b(x, y). From the
above results and considerations, one can conclude that the ordering of the grid points is
important for the smoothing properties in the context of convection-dominated problems.
In particular, downstream-type relaxation schemes with an ordering that corresponds to
the characteristic direction (a, b) can be regarded as candidates for good smoothing in the
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number of iterations
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GS-RB, h=1/64

106420
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1
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1
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GS-RB, h=1/256GS-LEX, h=1/256
GS-LEX, h=1/64

–6

Figure 7.7. Measured F(1,1) multigrid convergence with GS-LEX and GS-RB on grids with h = 1/64
and h = 1/256. (a) ε = 10−2; (b) ε = 10−6.

general case. However, downstream relaxation may become complicated and difficult to
implement in general situations, e.g. in cases with variable coefficients or for nonlinear
applications with a and b depending on u or derivatives of u. This is true in 2D, but even
more in 3D.

In addition, the implementation of parallel downstream-type relaxations is even more
difficult. The concept of a static grid partitioning does not match well with such relaxations.
A sophisticated smoothing variant based on downstream relaxation, which partly avoids
some of the complications is based on the segment relaxation mentioned in Remark 5.1.8.

An approach to become more independent of a specific convection direction is to use
four-direction GS-LEX point smoothing. This smoother consists of four relaxation sweeps,
each of which starts in a different corner of the domain so that all grid points are pro-
cessed four times per smoothing step. The parallelization may be performed as discussed
in Remark 6.2.5.

Smoothers that also show very satisfactory smoothing factors for all values of a and b are
alternating symmetric line smoothers. In particular, the alternating symmetric line Gauss–
Seidel relaxation should be mentioned. This relaxation consists of four steps: a forward and
a backward line relaxation step in each direction. Alternating symmetric line smoothers are
robust, but quite expensive.

Furthermore, the ω alternating line Jacobi and the ω alternating zebra Gauss–Seidel
relaxation are satisfactory smoothers in 2D for all a and b. Contrary to the lexicographical
smoothers, these smoothers are “direction-free”, which makes them less expensive in the
general case. The parallelization of line smoothers has already been discussed in Section 6.4.

Remark 7.2.3 An important advantage of the line smoothers is that excellent smoothing
factors can also be obtained for anisotropic diffusion problems, so that flow problems
involving a combination of anisotropy and dominating convection are handled well by
these smoothers. �
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Finally, it should be noted that variants of incomplete factorization smoothers such as
ILU (discussed in Section 7.5) are also good smoothers for the 2D convection–diffusion
problem. An overview of smoothing analysis results for different smoothers for (7.1.1) with
a = cosβ and b = sin β with β varying can be found in [415].

We can summarize: a variety of reasonable smoothing procedures exists
for convection–diffusion problems and first-order upwind discretization. Pure
downstream-type relaxations are preferable, but tend to be complicated in general
situations and are limited with respect to parallelism.

7.2.3 The Coarse Grid Correction

Although the multigrid convergence in Example 7.2.1 is convincing, we will see in this sec-
tion that difficulties may arise for certain convection–diffusion problems with very small ε
(i.e. “dominating convection”). The main problem in constructing robust and efficient multi-
grid solvers for convection-dominated problems is not the choice of a good smoother, but the
coarse grid correction. With standard coarsening and the first-order upwind discretization,
we face a fundamental problem.

From a two-grid LFA, we find that the two-grid convergence factor is limited by
0.5 for ε → 0, independent of the number of smoothing steps [43, 63, 87].

This factor can already be seen by the simplified two-grid analysis as introduced in
Remark 4.6.1. Applying this analysis, we find for the first-order upwind discretization
L2h of Model Problem 6:

1 − L̃h(θ)

L̃2h(2θ)
= 1 − 4

εh(4 − 2 cos θ1 − 2 cos θ2)+ ih(a sin θ1 + b sin θ2)

ε2h(4 − 2 cos 2θ1 − 2 cos 2θ2)+ i2h(a sin 2θ1 + b sin 2θ2)
.

(7.2.5)

In order to understand the two-grid convergence for the lowest frequencies, we consider
θ2 = cθ1 and obtain

lim
θ1→0

(
1 − L̃h(θ1, θ2)

L̃2h(2θ1, 2θ2)

)
=
{

0 if c �= −a/b (b �= 0)

1 − (εh/ε2h) if c = −a/b

from (7.2.5). Here, c = −a/bmeans that aθ1 +bθ2 = 0. These θ1 and θ2 correspond to the
so-called characteristic Fourier components, which are constant along the characteristics of
the convection operator. The reason for the two-grid factor of 0.5 is that first-order upwind
differencing for L2h produces an artificial viscosity on the coarse grid �2h, which is twice
as large as on the fine grid �h. Thus, we find ε2h ≈ 2εh for ε � 1, resulting in an error



240 MULTIGRID

–1.5
–1

–0.5
0

0.5
1

1.5 –1.5

–1
–0.5

0
0.5

1
1.5

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

0.5

Figure 7.8. A discrete representation of the spectrum of the two-grid operator obtained by
two-grid LFA.

reduction factor 1 − εh/ε2h ≈ 0.5. In other words, the low frequency characteristic Fourier
components of the error are not “correctly” approximated on the coarse grid: “They lose a
factor of two in amplitude.”

Example 7.2.2 Figure 7.8 shows the result of a two-grid LFA for a symmetric alternating
GS line smoother, a = b = 1, ε = 10−6. Indeed, the components, which are responsible
for the problematic factor of 0.5, are the characteristic Fourier components. �

Remark 7.2.4 A two-level factor of 0.5 caused by the coarse grid correction leads to even
worse multigrid convergence. The convergence factor of a multigrid cycle can be roughly
estimated from the two-grid factor ρloc. If we assume that we have a good smoothing of
the high frequencies, that the low frequencies remain unchanged under smoothing, and
that the two-level factor ρloc is determined by the coarse grid approximation of (some)
low frequencies, we can give a rough prediction for the convergence factor of multigrid
cycles [346].

ρ̂2 = ρloc, ρ̂� = 1 − (1 − ρloc)(1 − (ρ̂�−1)
γ ), � = 3, 4, 5, . . . (7.2.6)

Here, γ is the cycle index and ρ̂� is the predicted multigrid convergence factor when using
� grids. Table 7.2 presents results obtained by the recursion (7.2.6) for ρloc = 0.5.

Obviously, the estimates ρ̂� increase towards 1 for V- and W-cycles (γ = 1 and γ = 2)
if the number of grids � grows. However, for γ = 3, convergence factors independent of
h and the number of levels may be expected. In 2D the choice γ ≥ 4 does not result in an
O(N) method; the computational complexity for γ = 4 is O(N logN). �
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Table 7.2. Asymptotic estimates ρ̂� for the convergence factors
of different multigrid cycles if the two-level convergence factor
ρloc = 0.5.

ρ̂�

� γ = 1 γ = 2 γ = 3 γ = 4

2 0.5 0.5 0.5 0.5
3 0.75 0.63 0.56 0.53
4 0.88 0.70 0.59 0.54
5 0.94 0.74 0.60 0.54
⇓ ⇓ ⇓ ⇓ ⇓
∞ 1.0 1.0 0.62 0.54

Table 7.3. Measured W(0,1)-cycle convergence factors for the
recirculating convection–diffusion equation with ε = 10−6.

1/h 32 64 128 256

4 dir. point GS 0.49 0.58 0.66 0.71
Alt. symmetric line GS 0.40 0.51 0.59 0.66
Zebra line GS 0.59 0.66 0.73 0.76

In principle, one has to be aware of the above reduction factor of 0.5, when dealing with
singularly perturbed problems with upwind or artificial viscosity schemes. An example,
for which the 0.5 convergence factor is observed, is the following convection-dominated
recirculating flow problem.

Example 7.2.3 (the recirculating convection–diffusion problem) We consider the
problem

−ε�u+ a(x, y) ∂u
∂x

+ b(x, y) ∂u
∂y

= 0 (� = (0, 1)2) (7.2.7)

with ε = 10−6, a(x, y) = − sin(πx) · cos(πy), b(x, y) = sin(πy) · cos(πx) (recirculating
convection) and Dirichlet boundary conditions

u|� = sin(πx)+ sin(13πx)+ sin(πy)+ sin(13πy).

For the first-order upwind discretization from Section 7.1.3, we obtain the measured multi-
grid convergence factors in Table 7.3. Here, the four direction point GS smoother, the
alternating symmetric line Gauss–Seidel and the zebra line Gauss–Seidel smoother are com-
pared. Furthermore, the transfer operators FW and bilinear interpolation have been used.

The multigrid convergence factors increase due to the coarse grid problem described
above. The increase in the convergence factors is not as drastic as predicted in Table 7.2,
since the smoothers also reduce low frequency errors to some extent. �
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In many practical applications, however, the bad two-grid convergence is not observed
(see Example 7.2.1). We clarify this behavior in the following remark.

Remark 7.2.5 (two-grid factor 0.5—what is observed in practice?)
• The LFA does not take into account any special kind of boundary conditions. For

convection-dominated problems, however, convergence often depends on the type of
boundary conditions (Dirichlet, Neumann, periodic etc.). Of course, this cannot be
observed by LFA. In this sense, the LFA smoothing and two-grid factors can be consid-
ered as pessimistic values for which positive influences of boundary conditions are not
taken into account.

• In particular, downstream relaxations have good convergence properties for problems
with Dirichlet boundary conditions at the upstream (inflow) boundary (they become
direct solvers for ε → 0). The two-grid factor of 0.5 is thus not observed in such cases.
Concrete flow situations with this property are so-called entering flows, i.e. flows that
enter the domain � through a boundary. If the characteristic component responsible
for the bad two-grid factor meets upstream Dirichlet boundaries (with zero errors at
these boundaries), such error components are automatically reduced by the downstream
smoothers.

• If boundary conditions influence the convergence properties, the half-space mode anal-
ysis [64] (an extension of the LFA) can be used to obtain a quantitative prediction of
the dependence of the multigrid convergence on the distance from the boundary and its
relation to the discretization error. �

If the 0.5 difficulty occurs, there are different remedies to overcome it. We will mention
some of them in the following remark.

Remark 7.2.6 (remedies)
Coarsening and discretization The choice of the coarse grid and the definition of
the coarse grid operator have significant influence on the multigrid convergence for
convection–diffusion problems. In the discussion above, we have assumed standard coars-
ening and the first-order upwind discretization on coarse grids. In AMG the factor 0.5 is
not observed (see Appendix A). AMG defines the coarse grid in a problem-dependent
way and Galerkin operators (see Sections 7.7.4 and 7.7.5) are used on the coarse
grids.

Defect overweighting Another remedy is defect overweighting [87, 445]. Here, the
defects that are transferred to the coarse grid are multiplied by some constant factor η
between 1 and 2. Thus, the approximation of the crucial low frequency error components
on the coarse grid is improved. On the other hand, η should not be too large because those
components which normally would receive a good correction are now overcorrected. By
choosing an optimal η, the two-grid convergence factor can be improved to 1/3, but this fac-
tor is, in general, not maintained for multigrid. In advanced approaches, the overweighting
should be chosen in a level-dependent way.
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Krylov subspace acceleration It is possible to use multigrid as a preconditioner in con-
nection with other solution methods such as the Krylov subspace acceleration to improve
the convergence. We will discuss these approaches in some detail in Section 7.8. �

In summary, multigrid methods can be applied to convection–diffusion problems with
first-order upwind differencing, even for small ε. The coarse grid correction, if based on
standard coarsening and the first-order upwind discretization LH , leads to the LFA two-
grid factor of 0.5. For typical inflow–outflow problems, the factor of 0.5 can be avoided,
for instance, by downstream-type relaxation. For harder problems (like recirculating flows)
more sophisticated approaches may have to be used, as described in Remark 7.2.3, since
the implementation of downstream relaxation may be too complicated.

7.3 THE CONVECTION–DIFFUSION EQUATION:
DISCRETIZATION II

We have seen that central differencing is ofO(h2) consistency, but leads to unstable schemes
for fixed h and ε → 0. The stability problems can be overcome by introducing artificial
viscosity or by using first-order upwind schemes. However, we then achieve only O(h)
accuracy which is insufficient in practice.

What one really wants to achieve in practice is (at least)O(h2) accuracy and sufficiently
stable behavior of the discretization.

7.3.1 Combining Central and Upwind Differencing

Here, we mention three ideas on how to combine the stable O(h) approximation with the
unstable central O(h2) approximation. These ideas are historically interesting, but have
been superseded by the higher order upwind discretizations that we will discuss together
with their multigrid treatment in the next subsections.

Remark 7.3.1 (hybrid upwind schemes) An idea, which is particularly useful if the
advection direction depends on the grid coordinates (a, b) = (a(x, y), b(x, y)) is to use
first-order upwind discretizations only at those grid points where the Péclet condition is
not satisfied. At all other grid points, it is possible and useful to use central differenc-
ing. For satisfactory multigrid convergence it is important (based on experience) to choose
a “smooth” switch between both discretizations. For example, for the mesh-Péclet num-
ber (7.1.9) Pe < 1.8, one chooses the central discretization; for Pe ≥ 2 thefirst-order upwind
discretization, whereas for 1.8 ≤ Pe < 2 a linear combination of both discretizations is
used.

Although the resulting discretization is still usually O(h)-accurate globally, hybrid
upwind schemes may be beneficial, for example, for the convergence of defect correction
as described in the next remark. �

Remark 7.3.2 (defect correction) The second idea is to use the defect correction principle
for a combination of a first-order stable discretization L̂h (e.g. first-order upwind) with a
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second-order, unstable, Lh (central discretization). Of course, if one allows the number of
defect correction steps to tend to infinity, this would not help as the limit (if it exists) would
be the unstable solution corresponding to Lh. The idea is therefore to apply only very few
defect correction steps assuming thatO(h2) accuracy is approximately obtained after a few
steps while the instability is not yet relevant. �

Remark 7.3.3 (double discretization) Another idea of combining L̂h (first-order upwind)
with Lh (central) in a more sophisticated way in the multigrid context is to use L̂h in all
smoothing processes and Lh in calculating the defects (residuals). This means that two
different discrete operators are used simultaneously and therefore this approach is called
“double discretization” [66]. One disadvantage of this approach is that the respective defects
will not tend to 0 in multigrid cycling, i.e. we will not observe algebraic convergence. �

7.3.2 Higher Order Upwind Discretizations

In this section, we address the problem of achieving both O(h2) consistency and stabil-
ity of the discretization by using higher order upwind-biased schemes. For such schemes
the stability concept becomes somewhat more involved. Such upwind techniques are also
important in the context of compressible and incompressible flow equations (discussed
in Sections 8.8 and 8.9). Many of these discretizations have been studied, for example
in [183, 196, 233, 287].

Here, we will discuss only one important class of upwind-biased higher order schemes,
the so-called κ-schemes proposed by van Leer [233]. For the convective term aux , the
κ-scheme is defined as

(aux)h :={
(a/2h)[−1 0 1]huh − (a/h)(1 − κ)/4[−1 3 − 3 1]huh for a > 0

(a/2h)[−1 0 1]huh − (a/h)(1 − κ)/4[−1 3 − 3 1]huh for a < 0.

(7.3.1)

The central elements in the stencils are underlined. The discretization of buy is analogous.
The right-hand side of (7.3.1) is the sum of the central difference scheme and a

second-order dissipation term, which can be interpreted as an (upwind) approximation of
ah2(κ − 1) uxxx/4. From a Taylor expansion, we see that (7.3.1) is at leastO(h2) consistent
for −1 ≤ κ ≤ 1. For specific values of κ , we obtain well-known schemes:

• for κ = 1 the central differencing scheme,
• for κ = 0 Fromm’s scheme [146],
• for κ = 1/2 the QUICK scheme (“quadratic upwind interpolation for convective

kinematics”, see [236]),
• for κ = 1/3 the CUI (“cubic upwind interpolation”) scheme, which is even O(h3)

consistent,
• for κ = −1 the “usual” second-order upwind scheme.
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Figure 7.9. Zooming in on the solution along the line y = 1/2 of Example 7.1.2: •, discretization
by Fromm’s scheme; ◦, with van Leer limiter.

With respect to stability, a discretization based on κ-schemes can handle a wider range
of problems than the central discretization schemes. Nevertheless, a problem remains. If
we evaluate Example 7.1.2, we observe that the κ-schemes still produce (local) unphysical
oscillations near sharp gradients or discontinuities in a solution, shown in Fig. 7.9 for the
example of κ = 0. In some sense, the dissipation term mentioned above is too small to
avoid the wiggles completely.

In order to suppress such spurious oscillations in the solution, so-called limiters have
been introduced in the κ-schemes. The background for these limiters are total variation
diminishing (TVD) [183] concepts. We here present only some basic ideas, for a detailed
discussion we refer to overviews [196, 444].

TVD schemes are constructed in such a way that the coefficients, which multiply dif-
ferences of unknowns at neighbor grid points, e.g. ui,j − ui−1,j and ui−1,j − ui−2,j , are
guaranteed to have the same sign. We explain this in some more detail for the usual second-
order upwind scheme, i.e. (7.3.1) with κ = −1. For a > 0, the TVD scheme can be written
as

(aux)h = L1 + L̂α + L̂β (7.3.2)

where

L1 = a

h
(ui,j − ui−1,j )

is the first-order upwind scheme. The terms L̂α and L̂β are obtained by multiplying

Lα := a

2h
(ui,j − ui−1,j ), Lβ := − a

2h
(ui−1,j − ui−2,j )

by functions � = �(R) called limiters:

L̂α = �(Ri−1/2)Lα, L̂β = �(Ri−3/2)Lβ.
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Here, the arguments R are ratios of differences (variations) of u in neighbor points,

Ri−1/2 = (ui+1,j − ui,j )/(ui,j − ui−1,j ),

Ri−3/2 = (ui,j − ui−1,j )/(ui−1,j − ui−2,j ).

Some well-known limiters are

�(R) = R2 + R
R2 + 1

(van Albada limiter) (7.3.3)

�(R) = |R| + R
R + 1

(van Leer limiter) (7.3.4)

�(R) = (|R| + R)(3R + 1)

2(R + 1)2
(ISNAS limiter [444]). (7.3.5)

The goal behind these limiters is to guarantee both stability (the “TVD stability”) and the
O(h2) accuracy, at least in most parts of the computational domain (locally, at extrema,
the schemes reduce to first-order accuracy). All of the above limiters are nonlinear and the
resulting discretizations become nonlinear, even for linear problems. However, this cannot
be avoided: any linear TVD scheme can be shown to be only first-order accurate, as stated
in Godunov’s order barrier theorem [158].

The above limiters lie in the so-called TVD region:

R ≤ �(R) ≤ 2R (0 ≤ R ≤ 1)

(see Fig. 7.10 where the TVD region is indicated and the limiters are shown). With limiters
in this region, unphysical oscillations near strong gradients are avoided. If R = 1 (see
(7.3.3)–(7.3.5)), the κ = −1 upwind scheme is obtained for all the limiters presented
(which ensures O(h2) accuracy in regions without sharp gradients).

Many more limiters have been proposed for model problems and real applications, each
of which has certain advantages for specific problems under consideration.

Example 7.3.1 (the Smith–Hutton problem; discretization) We illustrate the above
considerations on discretizations of the convection–diffusion equation for a problem with
discontinuous boundary conditions. For such a so-called contact discontinuity that often

0

0.5

1

10.5 R

(R) =2R

= R

van Albada

van Leer

ISNAS

Figure 7.10. Three limiters and the monotonicity region (indicated by the white area) in an
(R,�(R))-diagram.
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results in a strong gradient in the solution, similar problems as for boundary layer solutions
can be observed. We compare different discrete solutions of the Smith–Hutton problem [361]

−ε�u+ aux + buy = f�(x, y) on � = (−1, 1)× (0, 1),
with

a = 2y(1 − x2), b = −2x(1 − y2), ε = 10−5 and f� = 0

and discontinuous boundary conditions:

u = 2 on − 1
2 ≤ x ≤ 0, y = 0

∂u

∂y
= 0 on 0 < x ≤ 1, y = 0

u = 0 elsewhere.

The solution contains a step-like discontinuity that is convected along the characteristics of
the convection operator. Figure 7.11 presents the problem geometry and also the curve C
along which the discontinuity is convected.

We discretize this problem on a 1282 Cartesian grid by: (a) central differencing; (b) first-
order upwind discretization; (c) Fromm’s (κ = 0) discretization; and (d) the limited κ = 0
upwind-biased discretization with the van Albada limiter (7.3.3). Figure 7.12 presents the
corresponding discrete solutions. The left pictures show isolines of the solution on the whole
domain, whereas the right pictures zoom in on the solution along the line y = 1/4. By central
differencing, an unstable solution is obtained (see Fig. 7.12(a)). With first-order upwind the
solution smears out; too much numerical diffusion leads to an unphysical first-order upwind
solution (see Fig. 7.12(b)). Some unphysical oscillations are still visible for the second-order
(κ = 0) upwind-biased discretization at the discontinuity (see Fig. 7.12(c)). The solution
with the limiter is the most reasonable one: sharp gradients are obtained without oscillations
(see Fig. 7.12(d)).

This is a general observation. Especially for the Euler equations, discussed in
Section 8.9, with shock discontinuities in transonic and supersonic flow examples,

C

u= 0

u= 0

x

y 0

1

–1 –0.5 0 1

y = 0uu= 2

Figure 7.11. Smith–Hutton problem with discontinuous boundary conditions.
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Figure 7.12. The solution of the Smith–Hutton problem with discontinuous boundary conditions.
(a) central differencing; (b) first-order upwind; (c) Fromm’s (κ = 0) upwind; (d) κ = 0 upwind with
van Albada limiter.

limited upwind discretizations are commonly used to obtain sharp shocks without
wiggles.

The multigrid convergence for the upwind discretizations with limiter will be discussed
in Example 7.4.3 below. �
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7.4 THE CONVECTION–DIFFUSION EQUATION: MULTIGRID II

In this section, we will discuss multigrid related issues for the higher order discretization
schemes introduced in the previous section. Whereas the discretization question (based on
the TVD stability) is answered satisfactorily by the schemes, the efficient solution of the
corresponding discrete problems is not easy.

Complications arise from the following facts.

• If limiters are used, the discrete problems are nonlinear.
• In defining efficient smoothing procedures, we have similar phenomena as discussed

in the first-order upwind case (directional dependence etc.). In addition, the difference
stencils are more complicated, with large coefficients of different signs.

• Finally, a coarse grid correction problem (an even more severe analog of the 0.5 two-grid
factor difficulty as discussed in Section 7.2.3) occurs.

These difficulties have been discussed in detail in [293]. We are not going to repeat all
results, but rather summarize how the difficulties can be mastered and what can be achieved
with appropriate multigrid components.

Before, however, we return to the defect correction approach in the following remark.

Remark 7.4.1 (defect correction) Because of the complications listed above, one may
prefer not to construct multigrid components for the second-order upwind-type discretiza-
tions directly, but use the defect correction approach instead: Proceed according to the
general description in Section 5.4.1, where L̂h now corresponds to the (stable) first-order
upwind discretization and where Lh corresponds to the (stable) higher order upwind-type
discretization. Note that, in general, Lh is a nonlinear operator (due to the nonlinear lim-
iters). However, Lh is used only for calculating the right-hand side in the outer defect
correction iteration, whereas the multigrid solver itself is based only on the linear L̂h.

The defect correction approach is simple and works satisfactorily in many cases [186,
220]. However, the algebraic convergence of the defect correction iteration is often quite
slow (see, for example, Example 7.4.3 or [293]), although the “differential” error typically
behaves better. �

Nevertheless, if efficient smoothers and coarse grid correction components are designed
appropriately, the multigrid method, applied directly to the higher order discretizations, will
usually be faster than the defect correction approach. Furthermore, fast algebraic conver-
gence can often be obtained, which is regarded as an important criterion for many engineers.

7.4.1 Line Smoothers for Higher Order Upwind Discretizations

The straightforward application of smoothers discussed so far is not suitable for the κ-
schemes (and their nonlinear modifications). For instance, the smoothing factors μloc of
standard relaxation methods such as GS point or line smoothers for the κ-schemes of a
convection-dominated problem often turn out to be larger than 1, which can be shown by
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LFA. The corresponding multigrid method will then diverge. Consequently, one has to look
for more sophisticated smoothing processes. One possibility is to use smoothers, which are
motivated by the defect correction approach.

LetLh be a κ-scheme-based discrete operator (or its nonlinear analog). For lexicograph-
ical x-line relaxation, for instance, we consider the following splitting of Lh:

Lh = L+
h + L−

h (7.4.1)

with

L+
h =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0 a
(1)
−10 a

(1)
00 a

(1)
10 0

a
(2)
0−1

a
(2)
0−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.4.2)

Here, the coefficients a(1)∗∗ correspond to the first-order upwind operator L̂h, the coefficients
a
(2)∗∗ to the second-order upwind-type scheme. The line relaxation step is written as in (5.1.9),

with a tridiagonal solver for [a(1)−10 a
(1)
00 a

(1)
10 ]. The approximation after one smoothing

step, w̄h, is then obtained by

L+
h w̄h = fh − L−

h wh.

Example 7.4.1 For an x-line solver, the above splitting for Fromm’s scheme (κ = 0)
without limiters is given by

L+
h =

⎡⎢⎢⎢⎢⎢⎣
0
0

0 −a/h− ε/h2 a/h+ 4ε/h2 + b/h −ε/h2 0

−5b/4h− ε/h2

b/4h

⎤⎥⎥⎥⎥⎥⎦,

L−
h =

⎡⎢⎢⎢⎢⎣
0

b/4h− ε/h2

a/4h −a/4h −(a + b)/4h a/4h 0

0
0

⎤⎥⎥⎥⎥⎦,

for a, b > 0. �

In addition, an underrelaxation parameter ω can be introduced in the usual way. Of
course, we can use similar splittings for y-line relaxation and for the backward line relax-
ations. In this way, we can form an alternating symmetric line smoother, which is called the
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KAPPA smoother in [293]. This smoother consists of four line relaxation steps, two x-line
and two y-line partial steps with forward and backward numbering of lines. Note that a
robust smoother for convection-dominated problems has to process all directions in order
to handle convection in all directions. For special problems it may, of course, be possible
to choose the direction of line smoothing downstream (“with the flow”).

In the pure diffusion case, i.e. a = b = 0, the KAPPA smoother, is the symmetric
alternating ω line GS smoother.

Example 7.4.2 We consider Model Problem 6 with constant coefficients a = cosβ, b =
sin β and varying parameters β and ε, discretized by Fromm’s scheme. Table 7.4 compares
LFA smoothing factors with numerical measurements for W(0,1)-cycles for the KAPPA
smoother with ω = 1 for three representative values of β and for two values of ε. Other
angles, β = 120◦ or β = 135◦ for example, lead to identical results as for β = 60◦
and β = 45◦, respectively, with the symmetric smoother. In the numerical calculations,
Dirichlet boundary conditions have been set.

According to Table 7.4, μloc gives a good indication of the actual asymptotic multigrid
convergence.

Furthermore, LFA indicates that the splitting (7.4.1), (7.4.2) is robust for the κ-range
−0.3 ≤ κ ≤ 0.5. There are also other splittings, which can handle a larger κ-range (see
Remark 7.4.4 at the end of this section). The smoother presented above, however, is easier
to implement for complicated systems of equations. �

Example 7.4.3 (the Smith–Hutton problem; multigrid treatment) The Smith–Hutton
problem with discontinuous boundary conditions, discussed in Example 7.3.1 is recon-
sidered and the multigrid convergence is checked for this problem. We have seen in
Example 7.3.1 that limiters are necessary to assure an accurate solution without oscilla-
tions. The van Albada limiter (7.3.3) is employed here for κ = 0 leading to a nonlinear
discrete problem.

The problem is solved by the FAS multigrid method with FW and bilinear interpolation.
We employ the alternating symmetric KAPPA smoother and choose ω = 0.7 for fast
convergence. (The choice ω = 1 leads to convergence difficulties here.) Figure 7.13 shows

Table 7.4. A comparison of LFA smoothing factors with mea-
sured multigrid convergence factors for the convection–diffusion
equation for ε = 10−3 and ε = 10−6, h = 1/256 and κ = 0.

β ε = 10−3 ε = 10−6

0 μloc 0.048 0.079
W(0, 1) 0.041 0.080

45 μloc 0.043 0.177
W(0, 1) 0.093 0.180

60 μloc 0.046 0.220
W(0, 1) 0.094 0.140
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Figure 7.13. The (algebraic) convergence for the Smith–Hutton problem with defect correction
and with the symmetric alternating KAPPA smoother on a 256 × 128 grid.

that the multigrid convergence on the 1282 grid obtained by V(1,1)-cycles is satisfactory.
The algebraic convergence of the defect correction iteration is much worse. (The differential
convergence, i.e. the convergence of the discrete solution is, however, better than indicated
by the algebraic convergence of the defect correction.) �

In the above examples, we do not observe any problems with the coarse grid correction.
The measured multigrid convergence factors are about 0.2, even for the strongly convection-
dominated situation (ε = 10−6). In this specific case, even a single grid KAPPA iteration
already performs well [293].

Remark 7.4.2 More generally, for the convection-dominated problems with enteringflow,
the KAPPA smoother also converges satisfactorily, i.e. it can be used as a solver. �

Nevertheless, the coarse grid problem that we have described for the first-order upwind
discretization (reflected by the LFA two-grid factor of 0.5) is, in principle, also present for
second-order upwind-type discretizations.

Remark 7.4.3 Based on two-grid LFA, we observe, as in the first-order upwind case
considered in Section 7.2.1, that with Fromm’s discretization characteristic components,
which are constant along the characteristics of the convection operator, are not correctly
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Figure 7.14. A representation of the spectrum of the two-grid operator obtained by two-grid LFA if
Fromm’s scheme is employed for the convection-dominated operator (with (a, b) = (1/

√
2, 1/

√
2),

ε = 10−6, h = 1/64).

reduced by the coarse grid correction operator. This phenomenon can be seen from the
representation of the eigenvalues from the two-grid LFA. For β = 45◦ and ε = 10−6 these
eigenvalues are shown in Fig. 7.14, where a maximum of about 0.9 (≈ ρloc) is observed
along the characteristic direction.

Such unsatisfactory multigrid convergence, in fact, occurs in the context of convection-
dominated recirculating flow problems. One way to overcome this problem to some
extent is described in Section 7.8, where Krylov subspace acceleration of the multigrid is
discussed. �

Remark 7.4.4 (a modification of the KAPPA smoother) As mentioned above, it is
possible to enlarge the κ-range for which the KAPPA smoother is effective by modifying
the smoother, more precisely, by modifying the coefficients a(1)∗∗ in the splitting (7.4.1),
(7.4.2) in such a way that appropriate (“positive”) parts of the higher order operator are
included (see [293] for details and examples). �

7.4.2 Multistage Smoothers

The KAPPA smoothers described in the previous section lead to fast convergence for var-
ious higher order upwind discretizations of the convection–diffusion equation. They are,
however, somewhat involved and expensive per iteration. Therefore, the KAPPA smoothers
are not in general use. Other smoothing methods that are simpler to program and that
also work for the type of equations and the discretizations discussed above are the so-
called “multiparameter” or “multistage” smoothers. Typically, they are of point Jacobi-type,
which already indicates some of their advantages and disadvantages as summarized in the
following remark.
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Remark 7.4.5 We have seen that Jacobi-type point relaxations are not very efficient
smoothers for Model Problem 1 (compare the smoothing properties of ω-JAC with GS-RB,
for example). For anisotropic equations or discrete problems on severely stretched grids,
pointwise relaxations are not at all suitable if combined with standard coarsening (without
additional modifications).

The advantages of Jacobi-type smoothers are, however, that they are simple and that
they have at least some smoothing properties for a relatively large class of problems, as we
will discuss below. They can easily be generalized to nonlinear equations and to systems of
equations, like the Euler equations. Furthermore, they are intrinsically parallel. �

In the following, we will consider the multistage smoothers and the connection with
multiparameter Jacobi relaxation. There are several variants of such smoothers in use,
which differ, in particular, for systems of PDEs. For scalar PDEs, they coincide or differ
only slightly.

Considering a discrete scalar problem, Lhuh = fh, a multistage (more precisely,
p-stage) smoother is defined by

u
(0)
h = umh

u
(j)
h = u

(0)
h + βj

(
fh − Lhu(j−1)

h

)
(j = 1, 2, . . . , p) (7.4.3)

ūmh = u
(p)
h ,

with parametersβj to be determined. (These smoothers are also sometimes called multistage
“Runge–Kutta” smoothers [202]. The connection of these schemes with the Runge–Kutta
time stepping schemes for ODEs will be explained in Section 8.9.4.)

A generalization is obtained if (7.4.3) is replaced by

u
(j)
h = u

(0)
h + αj (Dh)−1(fh − Lhu(j−1)

h ) (j = 1, 2, . . . , p). (7.4.4)

(usually called multistage Jacobi smoothers [126, 318]). Here,Dh denotes the diagonal part
of Lh. It is possible to represent ūmh in the polynomial form

ūmh = Pp((Dh)
−1Lh)u

m
h +Qp−1((Dh)

−1Lh)fh (j = 1, . . . , p), (7.4.5)

with polynomials Pp andQp−1 of degree p and p− 1, respectively. The so-called amplifi-
cation polynomial Pp represents the smoothing operator Sh, which, of course, depends on
α1, . . . , αp:

Sh = Sh(α1, . . . , αp) = Pp((Dh)
−1Lh).

Using LFA, optimal multistage parameters αj (or βj ) can be determined by minimizing the
smoothing factors:

μ
opt
loc = min

αj
{μloc(α1, . . . , αp)}.



MORE ADVANCED MULTIGRID 255

Remark 7.4.6 The above multistage smoother is closely related to the multiparameter
Jacobi relaxation

u
(0)
h = umh

u
(j)
h = u

(j−1)
h + ωjDh−1(fh − Lhu(j−1)

h ) (j = 1, 2, . . . , p) (7.4.6)

ūmh = u
(p)
h .

Here, we perform p steps of standard ωj -JAC relaxation, using different parameters
ω1, . . . , ωp in each step. The relation between the two formulas (7.4.4) and (7.4.6) is
given by the theorem of Vieta. In particular, the two-stage and two-parameter methods can
be identified via

α2 = ω1 + ω2, α1α2 = ω1ω2.

Similarly, the three-stage and three-parameter methods coincide if

α3 = ω1 + ω2 + ω3

α2α3 = ω1ω2 + ω2ω3 + ω3ω1

α1α2α3 = ω1ω2ω3. �

Example 7.4.4 For Model Problem 1 (Poisson’s equation), a straightforward extension of
the definition of the smoothing factorμ∗ to the multiparameter Jacobi relaxation is obtained
from the corresponding definition in Section 2.1:

μ(h;ωi) := max{|χk,�h (ω1)| · . . . · |χk,�h (ωp)|: n/2 ≤ max(k, �) ≤ n− 1},
μ∗(ω) = max{|(1 − ω1t)| · . . . · |(1 − ωpt)|: 1/2 ≤ t ≤ 2}. (7.4.7)

Minimizing μ∗ with respect to ω1, . . . , ωp gives the optimal parameters

ωj =
(5

4
+ 3

4
cos
(2j − 1

2p
π
))−1

(j = 1, . . . , p). (7.4.8)

(The cosine terms in (7.4.8) are the zeros of the Chebychev polynomials.)
The corresponding optimal parameters αj for the two-stage Jacobi relaxation (7.4.4) are

α1 = 0.400 and α2 = 1.95, leading to the smoothing factorμopt
loc = 0.22. The optimal three-

stage Jacobi method is obtained for α1 = 0.27, α2 = 0.88, α3 = 2.99 with μopt
loc = 0.074.

Using the underrelaxation parameters (7.4.8), Table 7.5 presents some values for μ∗
and ρ∗ obtained by the rigorous Fourier analysis. The use of different relaxation parameters
improves smoothing for the case considered to some extent (compared top steps of standard
ω-JAC). �

As mentioned in the beginning of this subsection, multistage Jacobi smoothers can also
be applied to more general problems, for example, to the convection–diffusion equation
discretized by higher order upwind-type schemes discussed in Section 7.3.2.
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Table 7.5. Smoothing factors of multistage Jacobi
relaxation with optimal parameters (7.4.8).

p 1 2 3 4

μ∗ 0.60 0.22 0.074 0.025
ρ∗ 0.60 0.22 0.13 0.11

Table 7.6. Three-stage Jacobi smoothing with optimal parameters
for standard upwind and Fromm’s discretizations of the convection
terms with (a, b) = (1, 1), h = 1/128.

Discretization ε α1 α2 α3 μloc

O(h) upwind 10−2 0.25 0.85 2.82 0.16
O(h2) κ = 0 10−2 0.27 0.85 2.66 0.25

O(h) upwind 10−3 0.28 0.82 2.16 0.31
O(h2) κ = 0 10−3 0.22 0.62 1.31 0.58

O(h) upwind 10−4 0.27 0.77 1.93 0.35
O(h2) κ = 0 10−4 0.22 0.54 1.03 0.67

Example 7.4.5 For Problem 7.1.1 with fixed coefficients (a, b) = (1, 1), the optimal
parameters for a three-stage Jacobi smoother are given in Table 7.6 together with some LFA
smoothing factors (for h = 1/128). It can be seen that the multistage Jacobi smoother gives
reasonable smoothing factors for this convection–diffusion example. They are, however,
much worse than the smoothing factors of the KAPPA smoother found in Table 7.4 for the
same problem. �

For other values of a and b, for instance for (a, b) = (1, 0) and ε = 10−4 or smaller, the
best smoothing factor obtained with a three-stage Jacobi smoother and standard coarsening
is μloc = 0.96. This indicates that it is not easy to obtain a satisfactory smoothing factor
with a three-stage Jacobi method for Fromm’s upwind-type discretization if the convection
direction is aligned with the grid. A remedy is to use semicoarsening in the appropriate
direction or to employ multistage linewise smoothing methods.

The coarse grid correction problem, however, remains. It will be further discussed in
Section 7.8.1.

7.5 ILU SMOOTHING METHODS

In this section, we leave the convection–diffusion equation behind and discuss a different
relaxation approach, the “ILU-type” (incomplete LU matrix decomposition) smoothers.
ILU smoothers represent a class of smoothing procedures all of which are based on an
incomplete LU-type factorization of the matrixAh corresponding toLh. Actually, a variety
of such smoothing procedures has been proposed [211, 212, 414, 442] and investigated [415,
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420–422, 439, 440]. Certain versions of ILU type smoothing, for example the one discussed
in Section 7.5.4, are regarded as particularly robust for anisotropic 2D problems with the
anisotropy not necessarily aligned with the grid. For 3D problems, however, robust ILU
smoothers for general anisotropic equations are more complicated and expensive.

Remark 7.5.1 We will not give a detailed formal description of an ILU algorithm here
(see, for example, [9] for algorithmic details). Furthermore, we assume here that an ILU
decomposition exists. Existence is proved, for example, forM-matrices in [264]. �

7.5.1 Idea of ILU Smoothing

Since ILU has originally been developed in the framework of matrices, we first describe the
ILU decomposition in this form. Later, we will also use a corresponding stencil notation.

We consider a problem Ahuh = fh with a structured sparse N × N matrix Ah. For
simplicity, we assume here a regular structure consisting of 2+3+2 diagonals, as sketched
in Fig. 7.15. This structure corresponds to a seven-point discretization (in 2D) which is
somewhat more general than the five-point stencils considered before. Two examples of
seven-point discretizations will be given in Section 7.6.1.

If the usual (complete) LU decomposition is applied to Ah, i.e. Ah = LhUh, then the
matrices Lh and Uh are also band matrices, but the bands are filled with nonzero elements
(see Fig. 7.16). The number of interior “zero diagonals” will increase like h−1 if h → 0.
After the decomposition, the triangular systems Lhvh = fh and Uhuh = vh are solved
successively to compute uh.

N × N

Ah =

Figure 7.15. A structured sparse matrix.

Ah= h    h =

Figure 7.16. An LU-decomposition of a structured sparse matrix with fill-in (indicated in grey).
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Ah= h    h – h

Figure 7.17. An ILU-decomposition of a banded matrix Ah.

In an incomplete LU (ILU) decomposition, Ah = L̂hÛh − Rh, one forces the matrices
L̂h and Ûh to be sparse also: a nonzero sparsity pattern is prescribed for the matrices L̂h
and Ûh. In the simplest case, L̂h and Ûh have the same sparsity pattern as Ah restricted to
the respective triangular parts.

Roughly speaking, the ILU decomposition (with the same sparsity pattern as the original
matrix Ah) is computed as follows: for the calculation of the coefficients l̂ij (of L̂h) and
of the coefficients ûij (of Ûh) proceed as for the complete LU decomposition, but replace
in the algorithm (step by step) those l̂ρσ and ûρσ by 0 for which (ρ, σ ) corresponds to one
of the zero diagonals of Ah.

Note that ILU depends on the ordering of the grid points. In particular, the entries in
ILU are different for row and column ordering. This allows the definition of alternating ILU
decompositions used later in this section, where two ILU decompositions, corresponding
to different orderings (e.g. row and column) are combined.

Since the ILU decomposition is not exact, an error matrix Rh remains. In the case of
a matrix Ah according to Fig. 7.15, the error matrix Rh contains two additional diagonals
as indicated in Fig. 7.17. (The dashed lines in Rh are zeros and correspond to the nonzero
entries in Ah. They are shown here to illustrate the location of the additional diagonals of
Rh.)

Remark 7.5.2 ILU was introduced in [264] in its incomplete Cholesky (IC) variant and
proposed as a preconditioner for the conjugate gradient method (ICCG). Various modi-
fications have been proposed since then. In the incomplete Cholesky decomposition of a
symmetric positive definite matrix Ah, we have

Ah = LhLTh − Rh with Rh = RT
h

(see [264] for details). �

In principle, the ILU decomposition can be used iteratively (see also (1.6.7)) to solve
Ahuh = fh:

u0
h = 0, um+1

h = umh + v̂mh (m = 0, 1, 2, . . . ),

where

L̂hÛhv̂mh = dmh = fh − Ahumh . (7.5.1)
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This iteration can also be written in the form

L̂hÛhum+1
h = Rhu

m
h + fh, m = 0, 1, . . . . (7.5.2)

�

However, the ILU iteration has, in general, poor convergence properties. Never-
theless, its smoothing properties are good for a wide range of problems. ILU can
therefore be used as a smoother in multigrid methods.

7.5.2 Stencil Notation

In order to investigate the smoothing properties of the above ILU iteration by LFA, we now
switch to the stencil notation and extend all occurring operators to the infinite grid Gh.

For a given discrete seven-point difference operator Lh,

Lh =
⎡⎣� �

� � �

� �

⎤⎦
h

,

a seven-point ILU decomposition can be represented in stencil notation by

Lh = L̂hÛh − Rh, (7.5.3)

where the stencils L̂h, Ûh and Rh correspond to the matrices L̂h, Ûh and Rh, respectively.
The multiplication of stencils corresponds directly to the multiplication of operators (for the
formulas, see [342]). Depending on the ordering of grid points, in principle, eight different
ILU decompositions can be defined. If the ordering of grid points is first in east direction
(E), and then in north direction (N), this EN decomposition is of the form

L̂h :

⎡⎣0 0
� � 0

� �

⎤⎦
h

, Ûh :

⎡⎣� �

0 � �

0 0

⎤⎦
h

, Rh :

⎡⎣� 0 0
0 0 0

0 0 �

⎤⎦
h

.

(7.5.4)

Here, � stands for possible nonzero elements. This decomposition corresponds to the one in
Fig. 7.17. In the following, however, we will analyze the “NE decomposition” with ordering
first in the north direction then eastwards. The corresponding stencils read

L̂h :

⎡⎣� 0
� � 0

� 0

⎤⎦
h

, Ûh :

⎡⎣0 �

0 � �

0 �

⎤⎦
h

, Rh :

⎡⎢⎢⎢⎢⎣
�

0 0
0 0 0

0 0
�

⎤⎥⎥⎥⎥⎦
h

. (7.5.5)
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Remark 7.5.3 Another decomposition is obtained by a north-west ordering (NW),

L̂h :

⎡⎣0 0
0 � �

� �

⎤⎦
h

, Ûh :

⎡⎣� �

� � 0
0 0

⎤⎦
h

, Rh :

⎡⎣0 0 �

0 0 0
� 0 0

⎤⎦
h

. (7.5.6)

�

Remark 7.5.4 Other ILU decompositions can be obtained by using larger stencils for
L̂h and Ûh. Such decompositions do no longer reflect the sparsity pattern of Lh (and are
somewhat more expensive). For example, nine-point ILU decompositions have been used
in [415] with good smoothing properties. �

In stencil notation, the ILU iteration (7.5.2) reads

L̂hÛhu
m+1
h = Rhu

m
h + fh or (Lh + Rh)um+1

h = Rhu
m
h + fh. (7.5.7)

We denote the symbols of Lh, L̂h, Ûh and Rh here by

λh(θ), λLh (θ), λUh (θ), λRh (θ) (−π ≤ θ < π),

respectively. Correspondingly, the smoothing operator Sh, defined by (7.5.7), is represented
by

Shϕ(θ, x) = S̃h(θ)ϕ(θ, x) (−π ≤ θ < π) (7.5.8)

with

S̃h(θ) := λLh (θ)λ
U
h (θ)− λh(θ)

λLh (θ)λ
U
h (θ)

= λRh (θ)

λh(θ)+ λRh (θ)
,

(assuming that the denominator �= 0).
LFA smoothing results for Model Problem 1 (Poisson’s equation) are given in the next

subsection together with results for anisotropic operators (see also [285, 378, 415] for further
results and details). Before we discuss smoothing properties, we point out in the following
two remarks that the LFA results for ILU smoothing must be interpreted with some care.

Remark 7.5.5 For similar reasons as explained for GS-LEX, ILU smoothing cannot be
analyzed by the rigorous Fourier analysis. However, LFA can be used.

In this context, note that: for an operator Lh with constant coefficients on an infinite
grid, the coefficients of L̂h, Ûh and Rh are also constant. Due to boundary conditions, for
example, the nonzero entries in the matrices corresponding to a finite grid problem are
generally not constant. �

Remark 7.5.6 As also discussed for linewise relaxation in Remark 5.1.6, ILU is “less
local” than typical pointwise relaxation methods; often, long range effects can only be
neglected asymptotically (for h → 0). We will see in the following section that the ILU
decomposition may even closely resemble an LU decomposition for certain problems. The
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Table 7.7. LFA results (μloc, ρloc) and measured V(1,0) convergence factors
ρh(h = 1/128) for the anisotropic model operator using seven-point ILU (7.5.5)
for smoothing.

ε 10−4 10−3 10−2 0.1 1 10 102 103 104

μloc 0.17 0.17 0.17 0.17 0.13 0.27 0.61 0.84 0.95
ρloc 0.17 0.17 0.17 0.17 0.13 0.27 0.61 0.84 0.94

ρh 0.011 0.10 0.16 0.16 0.12 0.27 0.58 0.65 0.23

error operator Rh then contains very small elements. This is the reason why the measured
multigrid convergence factors can differ considerably for different values of h and are often
much better than predicted by LFA. �

7.5.3 ILU Smoothing for the Anisotropic Diffusion Equation

ILU smoothers can be used for 2D anisotropic problems. We consider (5.1.1) with the
five-point stencil Lh(ε) (5.1.3).

Remark 7.5.7 For five-point stencils, in principle, a five-point ILU decomposition can be
used. However, already for the anisotropic diffusion equation L(ε)u = −εuxx − uyy , the
five-point ILU decomposition turns out to be a bad smoother for (very) small and for (very)
large values of ε [415]. The seven-point “north-east” ILU iteration (7.5.5), for example,
has much better smoothing properties for small values of ε. The seven-point north-west
ILU decomposition (7.5.6), on the other hand, is identical to the five-point decomposition,
because of zero entries in L̂h and Ûh. We therefore consider the seven-point north-east
ILU (7.5.5) for five-point stencils in the following. In this case, the sparsity pattern of the
decomposition is not identical to that of Lh. �

Table 7.7 shows LFA smoothing and two-grid factorsμloc andρloc for the 2D anisotropic
model problem together with measured numerical V(1,0)-cycle convergence obtained on a
1282 grid. On the coarse grids, the direct discretization of the PDE is used to define LH .
Furthermore, FW and bilinear interpolation are employed as the transfer operators.

Obviously, the convergence properties of the above method are not symmetric with
respect to ε. We have good convergence for ε ≤ 1 but μloc and ρloc tend to 1 for ε → ∞.
This behavior is similar to that observed in connection with y-line ZEBRA relaxation in
Table 5.2. For large ε the measured convergence is nevertheless satisfactory for h not very
small. The prediction of LFA is too pessimistic for a certain range of ε (ε = 10±4 in
Table 7.7). This is due to the fact that, for a fixed mesh size h and ε → ∞ or ε → 0,
ILU becomes almost a direct solver (see Remark 7.5.6). Consequently, the resulting fast
ILU-convergence “supersedes” the multigrid convergence expected (see also [211, 285]).
This is not reflected by the LFA because this effect vanishes for fixed ε and h → 0: LFA
predicts the asymptotic case h → 0.
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7.5.4 A Particularly Robust ILU Smoother

The numerical results discussed above show that multigrid methods with the seven-point
ILU smoother (7.5.5) do not always lead to good convergence. The asymmetric behavior
of ILU smoothing has to be overcome in order to obtain a robust 2D solution method. This
can be achieved by two modifications of the original decomposition.

• Alternating ILU As discussed above, the ILU decomposition can be used for smooth-
ing in an alternating manner (like the alternating zebra-line relaxation method in
Section 5.1.4), giving a fast method for 2D anisotropic equations, independent of ε.
That is, a standard row-ordered ILU is followed by a standard column-ordered ILU or
vice versa. In this way, the above nonsymmetric behavior disappears. The smoothing
properties are good for both small and large ε (see [285]). Here, we combine the north-
east (NE) ILU (7.5.5) with the west-south (WS) ILU. The alternating ILU decomposition
is, however, not yet an efficient smoother for more general problems which involve, for
example, mixed derivatives (see Section 7.6). For that purpose, the following additional
modification is also important [210].

• Modified ILU In the case of the usual ILU decomposition, the matrix Rh contains
zeros at all positions which correspond to the nonzero structure of L̂h and Ûh, especially
along the main diagonal, i.e. rii = 0 (as in Fig. 7.17). With a parameter δ a modified
ILU decomposition

Ah = L̂δhÛδh − Rδ
h (7.5.9)

can be defined, for which the diagonal of Rδ
h is no longer zero. Assuming, for example,

that the incomplete factorization of Ah is computed row by row, the main diagonal of
Rh and the uii of Ûh can be modified in such a way that

rii ← δ
∑
j �=i

|rij |, uii ← uii + rii

immediately before the coefficients of row number i + 1 are computed. Reasonable
choices for δ are in the range 0 < δ ≤ 1, where δ = 0 corresponds to the nonmod-
ified ILU decomposition. The modified ILU decomposition can also be analyzed by
LFA. Based on the LFA and confirmed by measured convergence factors, it has been
shown [285] that the modification of ILU with δ = 1 results in better convergence and
in improved robustness. This modification is useful, for instance, in the case that a main
diagonal element in the Ûh-part of the decomposition becomes zero or less than zero
numerically. It keeps this main diagonal at a certain positive value and adapts the error
matrix Rh accordingly.

The combination of both modifications presented above leads to alternating modified ILU
as a smoother, which makes 2D multigrid impressively robust. Here, we show that it handles
the anisotropic model problem very well for the whole ε-range. More results will follow
in the next section. Table 7.8 gives numerical V(1, 0)multigrid convergence results for the
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Table 7.8. Measured V(1, 0) multigrid convergence factors ρh for the anisotropic model
operator Lh(ε) using seven-point modified (δ = 1) alternating NE–WS ILU for smoothing.

ε 10−4 10−3 10−2 0.1 1 10 102 103 104

ρh 0.001 0.027 0.048 0.048 0.040 0.047 0.049 0.027 0.001

anisotropic Model Problem 3 discretized on a grid with h = 1/128. Alternating modified
ILU with δ = 1 is the smoother.

Remark 7.5.8 The alternating modified ILU decomposition (and also block ILU decom-
positions) also have good smoothing properties for the convection–diffusion model prob-
lem [211, 415]. �

Remark 7.5.9 (ILU and parallelism) It is not at all easy to efficiently parallelize an ILU
decomposition and maintain exactly the same method as in the sequential situation. In prin-
ciple, parallel variants of ILU can be obtained by employing a “parallel ordering” of grid
points (like red–black ordering). However, this approach can reduce the smoothing prop-
erties of ILU and the corresponding multigrid convergence significantly (for sophisticated
modifications leading to satisfactory parallel behavior, see [153]).

�

Remark 7.5.10 (3D ILU smoothers) For general 3D problems, it is not straightforward to
define a robust ILU-based smoother in combination with standard coarsening as is indicated
by LFA, for example, in [212]. Only expensive ILU-based smoothers have been proposed so
far. An efficient 3D ILU smoother can, however, be developed in the case of one dominant
direction or in the case of two dominant directions [212, 213]. �

7.6 PROBLEMS WITH MIXED DERIVATIVES

We will now consider a 2D differential operator Lτu with a mixed derivative uxy . In
particular, we will treat the model equation

Lτu = −�u− τuxy = f (�). (7.6.1)

For this equation, any reasonable discretization leads to at least seven- or nine-point stencils
with diagonal entries. Mixed derivatives are no longer aligned with the x- and the y-axes,
but can lead to diagonal anisotropies.

Equation (7.6.1) is interesting for two reasons. First, it is a very simple equation, where
we can study the multigrid treatment of mixed derivatives systematically. In principle,
we have already dealt with mixed derivatives in the context of the full potential equation
in Section 5.3.6. From the good convergence results there, we may conclude that their
occurrence presents no major problems.
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The second interesting feature of this equation is that it becomes hyperbolic for |τ | > 2.
Therefore, we may expect difficulties for |τ | → 2. Indeed, we will see that the combi-
nation of standard coarsening and Gauss–Seidel-type smoothers will become problematic.
In principle, there are (again) two possible ways to overcome this problem. One is to use
more robust smoothers, like modified ILU, which also reduces certain low frequency error
components on the fine grid. We will present this approach here. The second possibility is
to change the grid coarsening and adapt it to the problem at hand, while keeping a (cheap)
point smoother. The latter approach is presented in Appendix A, where this test problem
is also solved by AMG. Efficient solution methods based on semicoarsening for similar
problems are also presented in [74, 75].

Remark 7.6.1 Equation (7.6.1) is a special case of a more general problem which occurs,
for example, if the anisotropic operatorL(ε)u = −εuxx − uyy is transformed by a rotation.
The rotated operator then has the form

L(ε;β)u = −(s2 + εc2)uxx + 2(1 − ε)csuxy − (c2 + εs2)uyy, (7.6.2)

where s = sin β, c = cosβ, ε > 0 and β is the angle of rotation.
This is a common test problem to study the quality of smoothers [415] and of coarse

grid correction. The direction of strong coupling in (7.6.2) depends on β, which means
that it is not aligned with the coordinate axes, except for β = 0◦, 90◦ and 180◦. This
causes unsatisfactory multigrid convergence for many smoothers if combined with standard
coarsening.

For β = 45◦, we obtain the operator in (7.6.1) with τ = 2(1 − ε)/(1 + ε), on which
we will concentrate here. �

7.6.1 Standard Smoothing and Coarse Grid Correction

Basically, three different second-order discretizations are used for (7.6.1), represented by a
nine-point and two seven-point stencils:

L
τ,9
h

∧= 1

h2

⎡⎣ τ/4 −1 −τ/4
−1 4 −1

−τ/4 −1 τ/4

⎤⎦
h

, (7.6.3)

L
τ,7
h

∧= 1

h2

⎡⎣ τ/2 −1 − (τ/2) 0
−1 − (τ/2) 4 + τ −1 − (τ/2)

0 −1 − (τ/2) τ/2

⎤⎦
h

, (7.6.4)

L
τ,7∗
h

∧= 1

h2

⎡⎣ 0 −1 + (τ/2) −τ/2
−1 + (τ/2) 4 − τ −1 + (τ/2)

−τ/2 −1 + (τ/2) 0

⎤⎦
h

. (7.6.5)

For τ = 0, we have the discrete five-point Laplace operator in all cases. Note that the
description of ILU in the previous section was based on a seven-point discretization with
the same structure as (7.6.4).



MORE ADVANCED MULTIGRID 265

Table 7.9. Smoothing and two-grid LFA results for the nine-point
operator (7.6.3) using GS-RB and GS-LEX relaxation, ν = 2, I 2h

h :
FW restriction; I h2h: linear interpolation.

GS-RB GS-LEX

τ μloc ρloc μloc ρloc

−2.0 0.41 0.76 0.52 0.76
−1.9 0.38 0.66 0.50 0.66
−1.7 0.32 0.54 0.46 0.54
−1.5 0.27 0.44 0.42 0.46
−1.0 0.16 0.27 0.35 0.33

0.0 0.063 0.074 0.25 0.19

1.0 0.16 0.27 0.29 0.26
1.5 0.27 0.44 0.34 0.42
1.7 0.32 0.54 0.37 0.52
1.9 0.38 0.66 0.41 0.65
2.0 0.41 0.76 0.43 0.76

Since these stencils are not (axially) symmetric for τ �= 0, the rigorous Fourier analysis
of Chapter 3 cannot be applied in a straightforward way. We will apply LFA to analyze the
behavior of various smoothers and transfer operators in order to develop efficient multigrid
algorithms for (7.6.1).

In the case of the nine-point stencil (7.6.3), Table 7.9 presents LFA results for |τ | ≤ 2
with GS-LEX and GS-RB as the smoothers, FW and bilinear interpolation as the transfer
operators. We observe that GS-RB and GS-LEX behave qualitatively similarly. The smooth-
ing and two-grid convergence factors of both methods increase for |τ | → 2. This is not so
much a problem of smoothing but of the coarse grid correction (see Table 7.9).

Remark 7.6.2 (simplified two-grid analysis) The situation can also be analyzed by the
simplified two-grid analysis introduced in Remark 4.6.1, where we assume that the transfer
operators act as identities and neglect the coupling of harmonics. We consider again

1 − L̃h(θ)

L̃2h(2θ)
.

Applying a Taylor expansion to

L̃h(θ) = 1

h2
(4 − 2 cos θ1 − 2 cos θ2 + τ

2
cos(θ1 − θ2)− τ

2
cos(θ1 + θ2))

and to the corresponding L̃2h(θ), we obtain

1 − L̃h(θ)

L̃2h(2θ)
→ 0.75

for the frequencies given by θ2 = ∓θ1 for τ → ±2 and |θ| → 0.
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Table 7.10. Analog to Table 7.9 with the seven-point discretiza-
tion (7.6.4) and FW and bilinear interpolation as transfer operators.

GS-RB GS-LEX

τ μloc ρloc μloc ρloc

−2.0 1.0 > 1 1.0 > 1
−1.95 0.91 > 1 0.82 > 1
−1.9 0.82 > 1 0.69 0.68
−1.7 0.56 0.70 0.44 0.41
−1.5 0.38 0.53 0.36 0.32
−1.0 0.15 0.25 0.29 0.23

0.0 0.063 0.074 0.25 0.19

1.0 0.20 0.30 0.38 0.33
1.5 0.29 0.47 0.46 0.50
1.7 0.33 0.56 0.49 0.58
1.9 0.37 0.67 0.52 0.68
2.0 0.39 0.76 0.53 0.76

Obviously the bad two-grid convergence is caused by a bad coarse grid approximation
of these low frequencies. �

Similar observations can be made if the seven-point stencil (7.6.4) is used for the dis-
cretization of (7.6.1). Again, we use the transfer operators FW and bilinear interpolation.
Table 7.10 shows that the corresponding multigrid algorithm results in similar convergence,
if τ is not too close to −2. For τ → −2, the stencil becomes diagonal. The h-ellipticity mea-
sure Eh(Lh) becomes 0. Consequently, the smoothing factors μloc of the point smoothers
GS-LEX and GS-RB tend to 1. For τ = 2, however, this stencil is not diagonal and the
h-ellipticity measure is satisfactory. (For the seven-point stencil (7.6.5) it is the other way
around.) In Table 7.10, we observe that the corresponding two-grid factors for τ → −2
are even larger than 1. Divergence of the corresponding multigrid algorithm has to be
expected.

Remark 7.6.3 (seven-point transfer operators) For seven-point discretization stencils, it
is an option to choose seven-point transfer operators. (They can, of course, also be employed
for five-point or other discretizations). For standard coarsening H = 2h, a seven-point
restriction operator is

I 2h
h := 1

8

⎡⎣1 1 0
1 2 1
0 1 1

⎤⎦2h

h

(7.6.6)

and a corresponding scaled prolongation operator, with scaling s = 2d , is

Ih2h = s(I2h
h )

T . �
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Table 7.11. Two-grid factors ρloc for GS-RB and GS-LEX,
ν = 2, with the seven-point discretization (7.6.4) and the
seven-point transfer operators.

GS-RB GS-LEX
τ ρloc ρloc

−2.0 1.0 1.0
−1.95 0.90 0.82
−1.9 0.82 0.68
−1.7 0.55 0.36
−1.5 0.36 0.20
−1.0 0.12 0.12

0.0 0.15 0.18

1.0 0.38 0.40
1.5 0.54 0.56
1.7 0.61 0.63
1.9 0.71 0.72
2.0 0.78 0.78

Table 7.11 presents the LFA two-grid factors, ρloc, for GS-RB and GS-LEX and the
seven-point transfer operators in the case of the seven-point discretization (7.6.4). For τ not
too close to −2, they are somewhat better for the seven-point transfer operators compared
to FW and bilinear interpolation (see Table 7.10). We see from Table 7.11, of course, that
the two-grid factors still deteriorate for |τ | → 2 for both smoothers.

The same problematic convergence behavior is found with linewise smoothers. In order
to overcome the coarse grid problem, we look for smoothers which have good smoothing
properties and additionally reduce the low frequency error components that are responsible
for the bad two-grid convergence. Certain versions of ILU smoothing (Section 7.5), like the
modified alternating ILU smoother discussed in Section 7.5.4, have this property for the
problem under consideration. In the following, we discuss the seven-point discretization
and seven-point ILU smoothers.

7.6.2 ILU Smoothing

In this section, we will concentrate on the seven-point stencil (7.6.4), first for −2 ≤ τ ≤ 0.
Table 7.12 shows LFA results for (7.6.1) discretized by (7.6.4) with one smoothing

iteration of the seven-point NE ILU smoothing method (7.5.5). Furthermore, the seven-
point transfer operators are employed.

Obviously, the seven-point NE ILU smoother behaves somewhat better than the point
smoothers above. Here, only one smoothing iteration is applied compared to two in the case
of GS-RB and GS-LEX. The measured convergence factors in Table 7.12 show that multigrid
methods with a seven-point NE ILU smoother do not lead to good convergence for τ → −2.

We also mention that this ILU smoother is not a good smoother for τ → 2 using the
stencil (7.6.4). In that case even divergence is observed.
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Table 7.12. μloc, ρloc and measured V(1,0) multigrid conver-
gence factors ρh(h = 1/256) for (7.6.4) using seven-point
NE ILU smoothing and seven-point transfer operators.

τ μloc ρloc ρh

−1.99 0.68 0.68 0.67
−1.95 0.46 0.46 0.45
−1.9 0.36 0.36 0.35
−1.7 0.22 0.21 0.20
−1.5 0.21 0.15 0.15
−1.0 0.19 0.17 0.17

0.0 0.13 0.13 0.13

Table 7.13. μloc, ρloc and measured V(1, 0) multigrid convergence factors ρh(h = 1/128)
for Lτh from (7.6.4) with seven-point modified (δ = 1) alternating ILU for smoothing (and
seven-point restriction and interpolation).

τ −1.99 −1.9 −1.7 −1.0 0 1.0 1.7 1.9 1.99

μloc 0.19 0.11 0.059 0.017 0.004 < 10−3 < 10−5 < 10−6 < 10−8

ρloc 0.19 0.10 0.062 0.028 0.044 0.067 0.089 0.099 0.10
ρh 0.19 0.13 0.090 0.040 0.058 0.086 0.092 0.047 0.091

The alternating modified ILU smoother (Section 7.5.4) with δ = 1, however, improves
the multigrid convergence considerably for the whole range −2 ≤ τ ≤ 2. This is confirmed
by LFA results. Table 7.13 presents measured multigrid convergence factors for (7.6.4) on
a 1282 grid using this smoother.

Similar convergence is obtained if the transfer operators FW and bilinear interpolation
are employed.

For the nine-point discretization (7.6.3), discussed in Table 7.9, an appropriate nine-
point ILU relaxation method can be defined that handles this case well [285, 378].

7.7 PROBLEMS WITH JUMPING COEFFICIENTS AND
GALERKIN COARSE GRID OPERATORS

Here, we will discuss the proper multigrid treatment of problems with “jumping” coeffi-
cients. We will use a finite volume discretization which provides an accurate discretization
for such applications in a natural way.

We also have to modify the multigrid components for such problems. First, we need
“operator-dependent” transfer operators. In addition, we will make use of the Galerkin
coarse grid operator. Although problems with jumping coefficients are important in practice,
the methodological significance of the Galerkin coarse grid discretization is more general
than this class of problems indicates.
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The Galerkin coarse grid operator approach is also employed in the finite element
context, where these operators naturally arise, and in algebraic multigrid.

7.7.1 Jumping Coefficients

Let us reconsider problem (5.7.1),

−∇ · (a∇u) = f� (� = (0, 1)2)

u = f � (∂�),
(7.7.1)

but now with a discontinuous (jumping) coefficient a(x, y). Problems with jumping coef-
ficients often occur in nature. When modeling diffusion in some inhomogeneous medium,
it might happen that certain parts in the medium are so dense, that there is very little dif-
fusion possible through this region (an impermeable region). A typical occurrence of such
a phenomenon is oil reservoir simulation. Another example is the modeling of diffusive
groundwater flow, where the main medium is sand and where rock (with very low perme-
ability) is present in certain parts of the domain. In such a case, one has to deal with a
coefficient a that is discontinuous and strongly varying by several orders of magnitude in
the domain of interest.

In the following considerations we assume, for simplicity, that a jumps at an interface�.
It is well known that the function ∇u will not be continuous at the interface � if

the coefficient a is discontinuous. However, the flux can be assumed to be continuous at
the interface. For problem (7.7.1) the flux is given by a∇u. In our example, the jumping
condition is

lim
x↑�

a
∂u

∂x
(�l) = lim

x↓�
a
∂u

∂x
(�r) on �. (7.7.2)

Remark 7.7.1 (conservation of fluxes) Conservation of fluxes is naturally achieved in
finite volume discretizations if theflux between adjacent volumes is independent of thefinite
volume in which it is calculated. For example, the flux through the west face of a volume
has to equal the flux through the east face of the west neighbor volume. If a discretization
is not conservative, the flux-balance per finite volume is not equal to zero. Physically, this
nonzero term can be interpreted as an artificial source term (in the right-hand side of the
PDE).

In many fluid dynamics problems and in other applications, a conservative discretization
of a PDE or a PDE system is important. Under general assumptions, Lax and Wendroff [230]
have shown that, if a discretization is conservative and if the discrete solution is convergent
for h → 0, then the limit is a “weak” solution of the equations under consideration. �

The idea of the finite volume discretization discussed in Section 5.7 is based on Gauss’s
theorem (5.7.4) and on the approximation of the integrals over the boundaries of control
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Figure 7.18. An example of a grid with an interface � at which the coefficient a jumps; two
subdomains �l and �r and a finite volume �i,j .

volumes. These approximations of the boundary integrals now have to take into account the
possible discontinuities in the coefficient a. As in Section 5.7, we need a discrete approx-
imation of the right-hand side (5.7.6) (see Fig. 7.18 for the indices ABCD).

We assume a vertex-centered location of unknowns and consider here explicitly the
case that the diffusion coefficient a is continuous in �i,j , but may be discontinuous at the
interface �, corresponding to ∂�i,j (see Fig. 7.18). For other cases, see the remarks at the
end of this section. The crucial integral is thus that over BC. We approximate this integral
by

∫ C

B

a
∂u

∂x
dy ≈ hya(x, y)

u(x + hx/2, y)− u(x, y)
hx/2

. (7.7.3)

Here, the derivative is approximated using one-sided differences such that only grid function
values at one side of the discontinuity are used. At (x + hx/2, y), however, there is no
function value available. An interpolation between the unknowns at the neighbor grid points
is needed to define an approximation. In order to substitute the unknown u(x+ hx/2, y) in
(7.7.3), we use the discrete analog of the jumping condition (7.7.2)

2a(x, y)

hx
(u(x + hx/2, y)− u(x, y))

= 2a(x + hx, y)
hx

(u(x + hx, y)− u(x + hx/2, y)), (7.7.4)

We obtain

u(x + hx/2, y) = a(x, y)u(x, y)+ a(x + hx, y)u(x + hx, y)
a(x, y)+ a(x + hx, y) .
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We can thus approximate

a
∂u

∂x

∣∣∣∣
(x+hx/2,y)

≈ 2a(x, y)a(x + hx, y)
a(x, y)+ a(x + hx, y) (u(x + hx, y)− u(x, y))/hx.

Obviously, a harmonic averaging of the coefficients a results from the finite volume
discretization at an interface �, if the interface is not on a grid line but on the
boundary of the finite volume. It can be shown that this discretization is of O(h2)

consistency [415].

Summarizing, the resulting discrete equations in the case h = hx = hy are⎡⎣ sn
sw sc se

ss

⎤⎦
h

uh = h2fh

with

sw = −2a(x − h, y)a(x, y)/(a(x − h, y)+ a(x, y)),
se = −2a(x + h, y)a(x, y)/(a(x + h, y)+ a(x, y)),
sn = −2a(x, y + h)a(x, y)/(a(x, y + h)+ a(x, y)),
ss = −2a(x, y − h)a(x, y)/(a(x, y − h)+ a(x, y)),
sc = −(sn + ss + se + sw).

Remark 7.7.2 If the discontinuity occurs at a grid line, e.g. at a constantxi = ih, a different
discretization has to be used. The finite volume discretization must take into account that the
discontinuity is within a volume [403]. In this case, the arithmetic average of coefficients
replaces the above harmonic average. For the integral along BC, for example, this leads to
the stencil entry se,

se = − 1
2 (a(x + hx/2, y + hy/2)+ a(x + hx/2, y − hy/2)). �

Remark 7.7.3 In the case that a discontinuity interface is neither a grid line nor coincides
with the boundary of a control volume, the distance from the interface to grid lines and
control volume boundaries must be taken into account for an accurate discretization. The
combination of weighted harmonic averaging and weighted arithmetic averaging, with the
weighting according to these distances, leads to a general stencil that combines all the cases
discussed above [311]. �

7.7.2 Multigrid for Problems with Jumping Coefficients

Based on this finite volume discretization, we will now discuss the multigrid treatment
of (7.7.1) with jumping coefficients. The convergence, for example, of the analog of the



272 MULTIGRID

Red–Black Multigrid Poisson Solver from Section 2.5 is very different for strongly jumping
and for smoothly varying coefficients. For strongly jumping coefficients, the convergence
depends on the size of the jump and on its location relative to grid lines. Even divergence
may occur.

These multigrid convergence problems arise from the fact that ∇u is not continuous
(although u and a∇u are). If the coefficient a jumps by several orders of magnitude, then
so does ∇u. With respect to multigrid, this means that, close to the location of a jump, the
error in (a∇)huh can be smoothed by a smoothing procedure, not, however the error in uh
or ∇huh. As we have discussed in Chapter 2, only smooth functions are well approximated
on coarse grids. Therefore, the quantity that is approximated on the coarse grid and should
be transferred back to the fine grid is a correction for (a∇)huh. Standard multigrid methods
and, in particular, the bilinear interpolation operator implicitly rely on the continuity of ∇u.

If a jumps significantly (e.g., by several orders of magnitude), a more appropriate
prolongation operator is an interpolation which exploits the continuity of a∇u.

7.7.3 Operator-dependent Interpolation

So, for the improvement of the interpolation in the case of jumping coefficients, one makes
use of the “continuity” of the error in a∇u in the definition of the prolongation operator. We
start with a 1D example, where (a∇)h is represented by a stencilLh = [sw sc se]h, (sc =
−se − sw). The assumption (a∇)hvh = 0 for a correction vh leads to

sw(vh(x)− vh(x − h)) = se(vh(x + h)− vh(x)) or

vh(x) = swvh(x − h)+ sevh(x + h)
sw + se .

The corresponding interpolation for the corrections, v̂2h, reads (see Fig. 7.19)

Ih2hv̂2h(x) =
⎧⎨⎩v̂2h(x) for •

−(1/sc)[sev̂2h(x + h)+ swv̂2h(x − h)] for �
(7.7.5)

and is characterized by the “operator-dependent” stencil

Ih2h =
]

− se

sc
1 − sw

sc

[
h
.

Figure 7.19. A 1D fine grid with symbols indicating the operator-dependent interpolation (7.7.5)
used for the transfer from the coarse grid (•).



MORE ADVANCED MULTIGRID 273

In 2D, the definition of operator-dependent interpolation weights is somewhat more
involved. We will consider the general nine-point stencil, which includes five-point stencils.
In contrast to the 1D case, it is no longer possible to fulfil the condition (a∇)hvh = 0 at
every interpolation point for standard coarsening. There are various possibilities to define
the interpolation weights in the 2D case [3, 120, 439].

One common approach is to use sums of off-diagonal stencil elements and to work with
these sums in the definition of the operator-dependent interpolation Ih2h [3, 120], yielding

Ih2hv̂2h(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

v̂2h(x, y) for •
(1/s̃cy)[s̃ev̂2h(x + h, y)+ s̃wv̂2h(x − h, y)] for �

(1/s̃cx)[s̃nv̂2h(x, y + h)+ s̃s v̂2h(x, y − h)] for �

choose Ih2h such that: LhIh2hv̂2h(x, y) = 0 for ◦

(7.7.6)

where

s̃w = ssw + sw + snw s̃e = sse + se + sne
s̃cy = −sn − ss − sc s̃s = ssw + ss + sse (7.7.7)

s̃n = snw + sn + sne s̃cx = −se − sw − sc.

(see Fig. 2.6 for the symbols used above). These interpolation weights coincide with
(bi)linear interpolation if the coefficient a is constant.

Often, the restriction operator is chosen as the transpose of the (operator-dependent)
interpolation. This is especially useful in the context of the Galerkin coarse grid operator.

7.7.4 The Galerkin Coarse Grid Operator

The introduction of operator-dependent interpolation is not the only modification of stan-
dard multigrid components that is necessary in order to achieve a convergence which is
comparable to the case of smoothly varying coefficients and independent of the size of the
jumps in a. It is also important that the coarse grid problem represents the fine grid problem
well enough. This property can get lost if the lines on which the coefficients jump are no
longer coarse grid lines. Then, the direct discretization L2h on the coarse grid is not nec-
essarily a good approximation of the fine grid problem. This is reflected by unsatisfactory
multigrid convergence [3].

The most common approach to obtain a satisfactory coarse grid discretization is to use
Galerkin operators on the coarse grids (mentioned already in Section 2.3.2).
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For a given fine grid operator L�, the Galerkin coarse grid operators Lk are recur-
sively defined by

Lk := I kk+1Lk+1I
k+1
k (k = �− 1, . . . , 0). (7.7.8)

Here, I k+1
k and I k

k+1 are the intergrid transfer operators. In this context, the restric-
tion operator is usually chosen as the transpose of the interpolation operator. In
that case, many important properties of L�, for example, symmetry and positive
definiteness, are transmitted automatically to Lk .

The Galerkin operator has several interesting theoretical properties. We refer here to
Section A.2.4 of Appendix A, where these properties are discussed in more detail.

From the recursion (7.7.8), it is clear that all Lk depend on the finest grid operator L�.
The general description of multigrid given in Chapter 2 is also immediately applicable to
these Lk . The main practical difference is that the Lk are, in general, no longer known in
advance but have to be calculated from the recursion formula (7.7.8).

Example 7.7.1 If I k−1
k and I k

k−1(k = 1, 2, . . . ) are FW and bilinear interpolation, respec-
tively, we obtain the following coarse grid Galerkin discretization for the standard five-point
discrete Laplace operator L�:

L�−1 = I �−1
� L�I

�
�−1 = 1

h2
�−1

⎡⎣−1/4 −1/2 −1/4
−1/2 3 −1/2
−1/4 −1/2 −1/4

⎤⎦
h�−1

. (7.7.9)

For � → ∞, Lk (k fixed) converges to a difference operator which is characterized by the
stencil

1

h2
k

⎡⎣−1/3 −1/3 −1/3
−1/3 8/3 −1/3
−1/3 −1/3 −1/3

⎤⎦
hk

. (7.7.10)

�

This is a well-known approximation for the Laplace operator, which occurs in connection
with bilinear finite elements. If (7.7.10) with k = � is used as the difference operator L� on
the finest grid�� (and the transfer operators are chosen as above), then thisL� is reproduced
by the Galerkin recursion.

Remark 7.7.4 Thefive-point Laplace operator�h is reproduced by the Galerkin recursion,
if we employ the seven-point transfer operators (see Remark 7.6.3). �

For the problem with jumping coefficients, it is important to choose the operator-
dependent interpolation discussed in Section 7.7.2 (and the corresponding transpose as
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restriction) in the definition of the Galerkin coarse grid operators and in the multigrid
algorithm.

Example 7.7.2 Consider a 1D diffusion equation

− d

dx

(
a
du

dx

)
= f,

where the coefficient a jumps at an interior fine grid point xi∗ , which is not a coarse grid
point. Following the discussion in Remark 7.7.2, the fine grid discretization reads at the
grid point xi∗ :

Lh = [−ai∗−1 ai∗−1 + ai∗+1 − ai∗+1]h.

The 1D Galerkin operator with IhH as defined in (7.7.5) and its transpose IHh leads to a
coarse grid operator LH with the following properties. The east stencil element se of the
operator LH at the coarse grid point xi∗−1 and the west element sw at the grid point xi∗+1
are given by

ai∗−1ai∗+1

ai∗−1 + ai∗+1
.

These are the same entries as one would find by a direct finite volume discretization with
harmonic averaging on the coarse grid, if the jump occurs between two grid points (lines).
In this sense, the coarse grid discretization is automatically “physically correct”. �

There are two further possibilities to find a satisfactory coarse grid discretization which
are not based on the Galerkin approach.

Remark 7.7.5 For applications with jumping coefficients the direct discretization of the
PDE on coarse grids is an option. Note that the relative position of the interface with respect
to grid lines can change, for example, if the interface corresponds to a fine grid line that is
not in the coarse grid anymore. On the finest grid, one can then use the arithmetic averaging
of coefficients a, as outlined in Remark 7.7.2, whereas on the coarse grids a (weighted)
harmonic averaging should be used (see Remark 7.7.3). Without such adaptations, the
quality of the coarse grid discretizationLH and the coarse grid correction is not satisfactory
and the corresponding multigrid convergence will be slow, even divergence may occur.

In combination with the use of a direct discretization, it is advisable to choose a “pow-
erful” smoother, like ILU type smoothing. �

Remark 7.7.6 For PDEs with irregularly localized strongly varying coefficients, “hom-
ogenization techniques” are sometimes used in the definition of a grid discretization. These
techniques are particularly interesting if, instead of the detailed fine scale behavior of a
solution, a global (averaged) solution is of interest. The ideas of these techniques can also
be used to define the coarse grid discretizations in multigrid. We will not discuss this in
detail here. Examples are presented, for instance, in [3, 218, 273]. �
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l

l

r

ara

Figure 7.20. An example of a domain with an interface � at which the coefficient a jumps and two
subdomains �l and �r .

Example 7.7.3 We consider the diffusion problem (7.7.1) with a jumping coefficient
and Neumann boundary conditions. We assume that the discontinuity of a is at the line
x = 1/2 + h, as shown in Fig. 7.20. This grid line exists only on the finest grid. We choose
al = 1 in �l and ar = 10p in �r . The parameter p is varied between 0 and 5. Due to the
constant coefficients, al and ar , a direct finite volume discretization (as in Remark 7.7.3) can
easily be applied on all grids. Concretely, on the finest grid a straightforward discretization
can be applied, whereas on the coarse grids the position of the interface relative to coarse grid
lines is taken into account. We also have to employ the techniques described in Section 5.6.3
to properly deal with the singular system (due to the Neumann boundary conditions) and
to obtain a unique solution.

Table 7.14 compares the direct coarse grid discretization (according to Remark 7.7.5)
with the Galerkin coarse grid discretization on a 642 grid. A multigrid V(1, 1) cycle is
employed with GS-RB as the smoother. The interpolation operator used is as defined
in (7.7.6), (7.7.7), and the restriction operator is its transpose. For this simple example,
both coarse grid discretizations lead to efficient multigrid algorithms, almost independent
of the size of the jump 10p. �

Example 7.7.4 As an additional example, amongst many others in the literature, we
consider problem (7.7.1), discretized with h = 1/64. The discontinuous coefficient a is
defined as follows:

a = 1 if 0 < x < 1
2 , 0 < y < 1

2

a = 1000 if 1
2 ≤ x < 1, 0 < y < 1

2

a = 10 if 0 < x < 1
2 ,

1
2 ≤ y < 1

a = 100 if 1
2 ≤ x < 1, 1

2 ≤ y < 1.

The measured asymptotic convergence factor for the multigrid V(1, 1)-cycle based on
operator-dependent transfer operators, the Galerkin coarse grid operator and alternating
lexocigraphic line relaxation is ρh = 0.044. �
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Table 7.14. Measured V(1, 1) multigrid convergence factors for
a problem with a jumping coefficient of the order 10p .

p 0 1 2 3 4 5

LH : Galerkin 0.12 0.14 0.17 0.18 0.19 0.19
LH : direct 0.09 0.13 0.19 0.20 0.20 0.21

7.7.5 Further Remarks on Galerkin-based Coarsening

We conclude this section with some more remarks on Galerkin coarse grid operators. It
is, for example, also possible to use the Galerkin coarse grid approach for nonsymmetric
problems like the convection–diffusion equation. Here, we discuss the use of a first-order
upwind discretization on the finest grid.

If we define the Galerkin operators by FW as the restriction and by bilinear interpola-
tion, the coarse grid operators will lead to unstable coarse grid discretizations [176, 438].
In fact, the resulting discretization on coarse grids converges towards a central differencing
discretization (see Remark 7.1.2). An appropriate Galerkin approach takes the nonsymmet-
ric “upwind” character of the discretization into account.

Remark 7.7.7 (Galerkin for the convection–diffusion equation) It has been shown [439]
that the Galerkin coarse grid discretization can indeed lead to efficient multigrid algorithms
for the first-order upwind discretization if operator-dependent interpolation and restriction
are employed, in which the symmetric and nonsymmetric parts of the discrete operator
Lh are considered separately. The corresponding software code, MGD9V, developed by de
Zeeuw, solves scalar PDEs discretized on structured grids and is available, for example,
from the MGNET web page (http://www.mgnet.org).

In principle, the stencil elements of the Galerkin coarse grid discretizations for nonsym-
metric problems can have large positive off-diagonal elements. It is even possible that they
are not well suited for (point) smoothing. In MGD9V, for example, a linewise ILU-based
smoother (ILLU [439]) is employed, which is more robust with respect to unpleasant stencil
elements.

Another coarse grid discretization for nonsymmetric problems has been presented by
Dendy [121]. Here, the prolongation operator is the same as in (7.7.7) and the restriction
is its transpose. However, in the definition of the Galerkin operator a different restriction
operator is used, namely an operator that is based on the transpose operator (Lh)T of Lh.
The typical two-grid factor 0.5 which arises from the upwind discretization of the PDE on
coarse grids (see Section 7.2.3) is not observed, with this operator. This is confirmed by
LFA. This feature is also discussed in [429], where another coarse grid discretization with
the same feature is introduced.

In order to deal with positive coarse grid stencil elements, a Kaczmarz line relaxation
method has been proposed [121]. �
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On the other hand, the Galerkin coarse grid operator also has the following general
disadvantages.

• The resulting coarse grid stencils enlarge in general. In 2D, nine-point coarse grid
stencils are commonly obtained from five-point stencils by the Galerkin approach. Even
worse, in 3D 27-point coarse grid stencils are usually obtained from standard seven-point
discretizations on the fine grid.

• The Galerkin coarse grid discretization can only be applied directly to linear discrete
operators. This means, that it is not easily possible to combine it with the nonlinear
FAS version of the multigrid method. If a global (Newton) linearization is applied, the
Galerkin coarse grid discretizations may need to be redefined after every linearization
step.

• Furthermore, it is not so easy to implement the Galerkin discretization. A point-by-point
multiplication of the restriction operator “times” the discretization operator “times” the
prolongation operator is, in general, more complicated than a direct discretization on
�H . Finally, it is time and memory consuming to set up these coarse grid difference
stencils.

7.8 MULTIGRID AS A PRECONDITIONER (ACCELERATION OF
MULTIGRID BY ITERANT RECOMBINATION)

In this section, we discuss the acceleration of multigrid by Krylov subspace approaches
like the conjugate gradient (CG) method [194] or the generalized minimal residual method
(GMRES) [335]. This combination, which means that multigrid is used as a precondi-
tioner, is particularly interesting with respect to robustness and efficiency in complex
applications.

Remark 7.8.1 With respect to terminology, we point out that “using multigrid as a precon-
ditioner in connection with Krylov subspace methods” is identical to “accelerating multigrid
by a Krylov subspace method” (briefly: Krylov subspace acceleration of multigrid). �

We will motivate the use of multigrid as a preconditioner in Section 7.8.1 by revisit-
ing the recirculating convection–diffusion problem (discussed in Section 7.2.3). From the
multigrid point of view, multigrid as a preconditioner can also be interpreted as an acceler-
ation of multigrid by iterant recombination. This interpretation, which will be described in
Section 7.8.2, allows certain important generalizations, for example, to nonlinear problems
and additional acceleration options on coarse grids. Details of Krylov subspace acceleration
of multigrid will be discussed in Section 7.8.3. In Section 7.8.4, we will summarize our
view of multigrid as a preconditioner.

7.8.1 The Recirculating Convection–Diffusion Problem Revisited

As discussed in Section 7.2.3, convection–diffusion problems with a dominating recircu-
lating convection term are not easy to handle with multigrid based on standard coarsening.
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Figure 7.21. The spectrum of the multigrid iteration operator Mh for the recirculating
convection–diffusion problem with first-order upwind discretization (h = 1/32).

We have seen that the multigrid convergence factors increase for the first-order upwind
discretization due to the coarse grid problem described in Section 7.2.3.

For the recirculating convection–diffusion problem (7.2.7), discretized on a grid with
h = 1/32, the spectrum of the corresponding W(1,1) multigrid operator, Mh, with a sym-
metric alternating line Gauss–Seidel smoother is presented in Fig. 7.21. Most of the eigen-
values ofMh are clustered around 0. There are only some isolated eigenvalues away from the
cluster. The (isolated) largest eigenvalue (the spectral radius) near 0.4 limits the multigrid
convergence on this relatively coarse grid (as seen in Table 7.15).

As is known from theory and experience [98, 292], such a situation is well-suited for
Krylov subspace acceleration. The eigenvectors belonging to the few isolated eigenvalues
can be expected to be “captured” after only a few Krylov subspace iterations. Indeed,
Table 7.15 shows that multigrid can be substantially accelerated in this way (the results
from Table 7.3 are included for convenience). Although we do not observe h-independent
convergence in this example, the convergence is much better than the convergence without
the acceleration technique. The multigrid preconditioned GMRES(15) [335] method used
here will be presented in Section 7.8.3.

Qualitatively similar results are obtained if we use, for example, Fromm’s second-
order upwind discretization scheme for the convective terms. In that case, multigrid
(with the KAPPA smoother) gives convergence factors of about 0.9 for this prob-
lem and the multigrid preconditioned GMRES(15) method reduces these factors to
about 0.7.
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Table 7.15. Measured convergence factors of multigrid and multigrid
preconditioned GMRES(15) for the recirculating convection–diffusion
equation with ε = 10−5.

1/h 32 64 128 256

MG 0.40 0.51 0.59 0.66
MG with GMRES(15) 0.0001 0.007 0.05 0.18

Remark 7.8.2 (how to compute the spectrum of the multigrid operator) In applying
multigrid algorithms, it is, of course, not necessary to determine the multigrid iteration
operator explicitly. If one needs it, for instance to determine its spectrum using a numerical
software package, one straightforward possibility is to perform one multigrid cycle for
each unit vector ei as initial approximation (with zero right-hand side and zero boundary
conditions). Using e1 = (1, 0, . . . , 0) as u0

h, one obtains the approximation u1
h which

is the first column m1 of the iteration matrix. Then, one iteration with the unit vector
e2 = (0, 1, . . . , 0) is performed to obtain m2 and so on. In this way, the whole multigrid
iteration matrix is found. �

7.8.2 Multigrid Acceleration by Iterant Recombination

Multigrid acceleration by iterant recombination and multigrid preconditioning can be iden-
tified and lead to similar algorithms in practice. The iterant recombination fits naturally into
the multigrid philosophy and can easily be described. Therefore, we discuss this approach
first.

The acceleration of multigrid by iterant recombination starts from successive approx-
imations u1

h, u
2
h, . . . , u

m
h , from previous multigrid cycles. In order to find an improved

approximation uh,acc, we consider a linear combination of the m̃+ 1 latest approximations
um−i
h , i = 0, . . . , m̃,

uh,acc = umh +
m̃∑
i=1

αi(u
m−i
h − umh ), (7.8.1)

(assumingm ≥ m̃). For linear equations, the corresponding defect, dh,acc = fh−Lhuh,acc,
is given by

dh,acc = dmh +
m̃∑
i=1

αi(d
m−i
h − dmh ), (7.8.2)

where dm−i
h = fh − Lhu

m−i
h . In order to obtain an improved approximation uh,acc, the

parameters αi are determined in such a way that the defect dh,acc is minimized. We will
minimize dh,acc, i.e. ∣∣∣∣∣∣dmh +

m̃∑
i=1

αi(d
m−i
h − dmh )

∣∣∣∣∣∣, (7.8.3)

with respect to the L2-norm || · ||2.
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: smoothing

: coarsest grid treatment

Figure 7.22. Recombination of multigrid iterants.

This is a classical defect minimization problem. In principle, the optimal coefficients αi
can be determined by a (Gram–Schmidt) orthonormalization process. Here, however, we
solve the system of linear (normal) equations

H

⎛⎜⎜⎝
α1
α2
...
αm̃

⎞⎟⎟⎠ =

⎛⎜⎜⎝
β1
β2
...
βm̃

⎞⎟⎟⎠, (7.8.4)

where the matrix H = (hik) is defined by

hik = 〈dm−i
h , dm−k

h 〉 − 〈dmh , dm−i
h 〉 − 〈dmh , dm−k

h 〉 + 〈dmh , dmh 〉
i = 1, . . . , m̃, k = 1, . . . , m̃,

(7.8.5)

with the standard Euclidean inner product 〈. , .〉 and

βi = 〈dmh , dmh 〉 − 〈dmh , dm−i
h 〉. (7.8.6)

Now, the current approximation umh is replaced by uh,acc. With this replaced approxima-
tion, the next multigrid cycle is performed leading to a new iterant um+1

h . The recombina-
tion (7.8.1) is again carried out with the latest iterants um+1−i

h , i = 0, . . . , m̃ and so on.
In practice, the iterant recombination is already carried out with the very first multigrid

iterants. Here, one can perform a recombination with the iterants already available. The
resulting iterative method is sketched in Fig. 7.22.

Remark 7.8.3 In general, for the minimization problem (7.8.3), it may happen that H
is an ill-conditioned matrix. In practice, however, m̃ is chosen small, for example 5 or 10.
Such small matricesH are usually still satisfactorily conditioned, so that the system (7.8.4)
can be solved directly. For cases in which H is a singular matrix, more details are given
in [410].

A heuristic explanation of why small values of m̃ are sufficient is as follows. Often when
multigrid is applied to complicated problems, there are only a few isolated large eigenvalues
in the multigrid iteration matrix. The number m̃ of iterants that are to be recombined to
obtain a considerable convergence improvement is related to the number of large (isolated)
eigenvalues of the iteration matrix. �
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Table 7.16. Measured convergence factors with additional recom-
binations on coarse grids for the recirculating convection–diffusion
equation with ε = 10−5.

1/h 32 64 128 256

First-order upwind 0.10 0.14 0.18 0.23

Remark 7.8.4 (recombination and nonlinear multigrid) It is possible to generalize the
idea of iterant recombination to nonlinear situations, where a nonlinear multigrid method is
used. In this case, the defect relation (7.8.2) does not hold exactly, due to the nonlinearity.
The substitution of umh by uh,acc is only carried out if the defect dh,acc of uh,acc is not much
larger than the defect dmh . For details on the nonlinear variant, see [294, 410]. �

Remark 7.8.5 (recombination on coarse grids) Typically, m̃ = 10 is often sufficient
for a considerable convergence acceleration. However, for “real life” problems, it may still
be a problem to store these additional grid functions. If the reason for multigrid conver-
gence difficulties lies in an insufficient coarse grid correction, m̃ can often be significantly
reduced by applying iterant recombinations on coarse grids. In [294], one way to apply
the acceleration on the coarse grids is presented using the FAS version of multigrid. Here,
we only present one convergence result with this additional coarse grid acceleration for
the recirculating convection–diffusion equation. Table 7.16 presents convergence factors,
using this strategy with m̃ = 2 on the finest grid and m̃c = 5 on coarse grids, for the same
recirculating convection–diffusion problem as in Table 7.15.

Compared to the convergence in Table 7.15 (second row), the convergence is somewhat
worse (mainly because m̃ is now much smaller on the finest grid). The storage is, however,
significantly reduced. For Fromm’s discretization, the coarse grid iterant recombination
(m̃ = 2, m̃c = 5) improves the convergence. In that case the convergence factors are about
0.65 [294]. �

7.8.3 Krylov Subspace Iteration and Multigrid Preconditioning

Here, we will briefly discuss the preconditioned Krylov subspace iteration methods. Since
these methods are usually introduced in the framework of matrices, we adopt the matrix
notation Au = f in this section.

We will start with a Krylov subspace iteration and improve its convergence properties
by multigrid preconditioning. In a certain sense, this description represents the Krylov
subspace view of the approach. We make use of the following relations.

Let u0 be an initial approximation and d0 = f − Au0 its defect. The Krylov subspace
Km is then defined by

Km := span[d0, Ad0, . . . , Am−1d0]. (7.8.7)
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This subspace can also be represented by

Km = span[u1 − u0, u2 − u1, . . . , um − um−1]

= span[u0 − um, u1 − um, . . . , um−1 − um],

where
ui = (I − A)ui−1 + f

are the iterants from Richardson’s iteration (with τ = 1, see Section 1.6).
These representations are easily obtained by induction using

u1 − u0 = d0, ui+1 − ui = (I − A)(ui − ui−1).

The Krylov subspace approximation

umacc ∈ u0 +Km = u0 + span[d0, Ad0, . . . , Am−1d0]

is then characterized as the approximation with minimal defect in a suitable norm (for
m = 1, 2, . . .).

The different Krylov subspace methods differ in the way, the minimization is carried
out. The classical conjugate gradient (CG) method for s.p.d. matricesA is characterized by
minimizing the defect in the norm

||d|| = 〈d,A−1d〉,
where 〈. , .〉 is the Euclidean inner product. Krylov subspace methods that are not restricted
to s.p.d. matrices are, for example, the GMRES method [335] and the BiCGSTAB
method [397]. GMRES is obtained by using the || · ||2 norm for minimization. There are
many different Krylov subspace iteration methods, which we will not discuss here in detail.
Books giving an overview of these methods include [26, 159, 162, 337].

Remark 7.8.6 (GMRES(m̄)) In GMRES, all m vectors are kept in the Krylov subspace
for the calculation of the next iterant in order to guarantee the minimal norm of the defect.
This leads to storage complications for large problems. A remedy for this disadvantage
is given by the restarted GMRES(m̄) method [335], that uses m̄ previous vectors after
which the iteration is restarted with a new Krylov subspace. Other approaches are based
on truncation, where the Krylov subspace is spanned by the latest m̄ approximations. That
is, the oldest iterant is removed from the subspace when a new iterant is added, whereas in
GMRES(m̄) the subspace is completely removed and restarted after m̄ iterants. �

In general, stand-alone Krylov subspace iterations are slow. Their effectiveness depends
strongly on the condition number of the matrix A and on the distribution of its eigenval-
ues. If the original system Au = f is preconditioned with a suitable left or a right pre-
conditioner, the condition number can often be significantly reduced (see the remarks in
Section 1.6). Correspondingly, the performance of these solution methods is substantially
improved [264].

In the case of a right preconditioner C, we solve ACz = f , where z = C−1u.
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Remark 7.8.7 (preconditionedGMRES(m̄)) In a C-type metalanguage, the GMRES(m̄)
algorithm with a right preconditioner C is given by:

GMRES (m̄,A,C, f, u0){
Set the matrix H̃ = 0 with dim: (m̄+ 1)× m̄
d0 = f − Au0;β = ||d0||2; b1 = d0/β;
for j = 1, . . . , m̄ {
rj := C−1bj ;
w := Arj ;
for i = 1, . . . , j{
hi,j := 〈w, bi〉;
w := w − hi,j bj ;
hj+1,j := ||w||2, bj+1 = w/hj+1,j ;

}
}
Define Bm̄ := [b1, . . . , bm̄];
um̄ := u0 + C−1Bm̄ym̄; with ym̄ = miny ||βe1 − H̃y||2, (e1 = [1, 0, . . . , 0]T );
Compute dm̄ = f − Aum̄;
If satisfied stop, else restart u0 ← um̄;

}

The preconditioning step is formally denoted by C−1. This means that rj is obtained from
the right-hand side bj by one iteration with a preconditioner C. For GMRES(m̄) without
preconditioning, set C = I . �

Many basic one-level iterative methods, like ω-JAC, GS-LEX and ILU methods have
been used as preconditioners. Although the resulting solvers became very popular in the
1980s, an O(N) solver was not obtained for the Poisson equation. For example, with
the incomplete Cholesky factorization (see Section 7.5.2) as a preconditioner, the overall
complexity of preconditioned conjugate gradients (called ICCG [264]) for solving Poisson’s
equation is O(N5/4) in 2D and O(N9/8) in 3D.

Remark 7.8.8 (multigrid as a preconditioner) In the same way as the classical
single grid iterative methods can be used as preconditioners, it is also possible to
use multigrid as a preconditioner. We choose C = (I −M)A−1 where M is the
multigrid iteration operator. �

For s.p.d. problems, the robustness of multigrid as a preconditioner for CG has
been demonstrated in [211]. By using multigrid as a preconditioner for GMRES or
BiCGSTAB [397], nonsymmetric problems like the convection–diffusion equation can also
be handled. This has been demonstrated, for example, in [292].
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Our description of Krylov subspace iteration with multigrid preconditioning already
indicates the close connection between the recombination of multigrid iterants and multi-
grid as a preconditioner. In particular, the multigrid acceleration by iterant recombina-
tion with the minimization of (7.8.3) in the || · ||2-norm and restarting after m̄ iter-
ants is equivalent to the preconditioned GMRES(m̄) method with C = (I −M)A−1,
where M denotes the multigrid iteration matrix. The multigrid iterant recombination as
described in Section 7.8.2 corresponds to a truncated Krylov subspace variant as mentioned
in Remark 7.8.6.

In spite of this theoretical equivalence, in practice the recombination and preconditioning
differ algorithmically. A typical difference is the following.

Remark 7.8.9 Whereas in the recombination of multigrid iterants, the system (7.8.4)
is used for minimization, in the GMRES method the vectors used in the subspace are
orthogonalized by a Gram–Schmidt process. The basis used in the Krylov subspace methods
is thus numerically of a better condition. �

Remark 7.8.10 With a varying preconditioner, like multigrid with a different cycle in
each iteration, a Krylov subspace method in which the preconditioner can change from
iteration to iteration is needed. The flexible GMRES method (FGMRES) [336] allows such
a varying preconditioner. FGMRES stores defects and approximations of the solution. In
this sense, it corresponds to the method of iterant recombination. �

Example 7.8.1 (rotated anisotropic diffusion revisited) Consider again the rotated
anisotropic diffusion equation (7.6.2) with Dirichlet boundary conditions. The mixed
derivative is approximated by the four-point stencil (4.7.5). A nine-point stencil results
from the standard second-order discretization of all terms in (7.6.2). As we have discussed
in Section 7.6, the multigrid convergence with point and line smoothers and standard coars-
ening is slow, for example, for parameters ε = 10−5 and β = 135◦. For these parameters,
we compute the spectra of the F(0,2)-cycle multigrid iteration operator with an alternating
GS line smoother on a 322 and a 642 grid. The spectra for the F(0,2)-cycle are shown in
Fig. 7.23. One observes the mesh dependence of the multigrid convergence: the spectral
radius increases as the grid gets finer. It is already larger than 0.6 for these coarse grid
problems. However, many eigenvalues are clustered around 0 and only a limited number of
eigenvalues are larger than 0.4 for both grid sizes. This indicates that Krylov methods will
improve the convergence considerably.

The convergence of multigrid as a solver and as a preconditioner for GMRES is pre-
sented for the 322 grid in Fig. 7.24. On finer grids the multigrid convergence factors further
increase, whereas the convergence with the W-cycle as a preconditioner is hardly level
dependent. Table 7.17 presents the number of iterations after which the initial defect is
reduced by eight orders of magnitude with BiCGSTAB and GMRES(20) preconditioned
by F(0,2) and W(0,2) multigrid cycles on three very fine grid sizes. Note that BiCGSTAB
is twice as expensive per iteration as GMRES. The fastest method in CPU time is here the
F-cycle as the preconditioner (for all three grid sizes). �
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Figure 7.23. The eigenvalue spectra of the F(0,2)-cycle for the rotated anisotropic diffusion prob-
lem, ε = 10−5, β = 135◦ on a 322 (upper picture) and a 642 (lower picture) grid.
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Figure 7.24. The convergence of multigrid as a solver (•) and as a preconditioner, with GMRES
acceleration (◦), for the rotated anisotropic diffusion equation (h = 1/32).

Table 7.17. Number of BiCGSTAB and GMRES iterations for a defect reduction
of 10−8 for the rotated anisotropic diffusion equation (ε = 10−5, β = 135◦).

Grid

2562 5122 7682

Cycle BiCGSTAB GMRES BiCGSTAB GMRES BiCGSTAB GMRES

F(0,2) 17 31 21 43 25 48
W(0,2) 10 19 12 20 13 22

Remark 7.8.11 (parallelism in multigrid preconditioned Krylov methods) As dis-
cussed in Chapter 6, it is natural to use the grid partitioning technique for an efficient
parallelization of multigrid. If we use multigrid as a preconditioner, it is also necessary
that the Krylov acceleration method can be parallelized efficiently in the framework of
grid partitioning. Krylov subspace methods, however, consist mainly of the computation of
inner products and matrix–vector multiplications and do not introduce particular difficul-
ties in parallelization. Matrix–vector and inner products need only simple communication
strategies among the processors. �

7.8.4 Multigrid: Solver versus Preconditioner

We return to the question of whether multigrid should be used as a solver or as a pre-
conditioner. In particular, the question to be answered is which approach should be
used when.

First, it is not useful to accelerate a highly efficient multigrid algorithm (with an ideal
convergence factor) by Krylov subspace acceleration. The extra effort does not pay off.
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From our point of view, multigrid as a preconditioner is particularly interesting with
respect to robustness. An argument for combining multigrid with an acceleration technique
is that problems become more and more complex if we treat real-life applications. For
such complicated applications, it is far from trivial to choose optimal multigrid components
uniformly for a large class of problems. Often different complications such as convection
dominance, anisotropies, nonlinearities or large positive off-diagonal stencil elements occur
simultaneously.

Therefore, the fundamental idea of multigrid, to reduce the high frequency components
of the error by smoothing procedures and to take care of the low frequency error components
by coarse grid corrections, does not work optimally in all cases if straightforward multi-
grid approaches are used. Certain error components may remain large since they cannot be
reduced by standard smoothing procedures combined with standard coarse grid approxima-
tions. These specific error components (and the corresponding eigenvectors/eigenvalues)
are then responsible for the poor multigrid convergence. In such situations, the combination
with Krylov subspace methods may have the potential of a substantial acceleration.

The recirculating convection–diffusion problem can be regarded as a simple example
of this type of problem. In this case, more sophisticated multigrid components (e.g., flow-
oriented downstream relaxation or Galerkin-type coarse grid correction, see Section 7.7.4)
will also lead to very satisfactory convergence factors. But they are more involved to realize
and implement. In other cases, the efficiency of the multigrid components may strongly
depend on problem parameters. Then, the combination of multigrid with Krylov subspace
may have advantages.

Multigrid as a preconditioner is also interesting for several other problems, for example,
on unstructured grids, for problems with small geometric details, which are not visible on
coarse grids [82], and for the problems with geometric singularities discussed in Section 5.5.

Remark 7.8.12 In Appendix A, we will see examples, for which AMG is used as a
preconditioner. AMG is particularly suited as a preconditioner for sparse matrices and
unstructured grids. �



8
MULTIGRID FOR SYSTEMS OF

EQUATIONS

In describing the basic multigrid techniques, we have, so far, confined ourselves to scalar
PDEs. Systems of PDEs can also be treated by multigrid, usually with efficiency similar to
that of scalar equations.

The main messages we want to give in this chapter are:

• In principle, the extension of multigrid methods from scalar PDEs to systems of PDEs
is straightforward.

• There are various ways to generalize scalar smoothing schemes to systems. A natural
extension of smoothing by relaxation (in the scalar case) is smoothing by collective
relaxation (in the systems case). That is, all unknowns at each single grid point are relaxed
simultaneously. Sometimes, however, collective point or even collective versions of line
smoothing are not sufficient and more complex relaxation schemes have to be employed.
On the other hand, in simple cases, even decoupled relaxation already works fine.

• Special care has to be taken with the multigrid treatment of boundary conditions.
• For more involved problems, e.g. from fluid dynamics, we have to take care of several

complications in the multigrid treatment: questions of stable discretization, singular
perturbation behavior, nonellipticity etc. have to be considered.

We will treat all these topics in some detail.
The basic multigrid idea is the same as in the scalar case. Based on a suitable discretiza-

tion of the PDE system, appropriate relaxation schemes are used to smooth the errors of the
unknown grid functions. All other multigrid components can immediately be extended to
systems of PDEs. Again, smoothing turns out to be the most crucial multigrid component.

In Section 8.2 we describe these multigrid components for systems of equations.
Section 8.3 discusses the generalization of the scalar LFA smoothing analysis to systems,
including the generalization of the h-ellipticity measure.

In the remaining sections of this chapter, we treat several specific systems of particular
relevance, each of which is representative for a class of systems. The biharmonic system,

289
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discussed in Section 8.4, is a reformulation of the biharmonic equation. As a system, it is
very simple and consists of two Poisson-type equations. Nevertheless, it is a first example
of the rather common problem that the boundary conditions and the unknown functions do
not necessarily match, e.g. that one has two boundary conditions for one function and none
for another.

The linear shell problem in Section 8.5 is an example for which the difference of
collective and of decoupled smoothing becomes clear. In the Stokes and incompressible
Navier–Stokes equations, discussed in Sections 8.6–8.8 the natural equation for the pressure
p does not contain p at all. The development of stable discretizations, stable smoothing
schemes and other multigrid components is more involved then and will be discussed in
detail. We treat both staggered and nonstaggered discretizations.

Compressible flow equations, which will be considered in Section 8.9, contain even
more difficulties. Formally, they are no longer elliptic. Their solutions may have shocks.

Most of our presentation in this chapter is oriented to the 2D case for convenience.
Typically, the generalization to 3D is straightforward. Throughout this chapter, we also
assume standard coarsening unless we explicitly state otherwise.

8.1 NOTATION AND INTRODUCTORY REMARKS

In this section, we first consider a (linear) elliptic q×q system of PDEs in two dimensions,

L�u(x, y) = Lu(x, y) = f�(x, y) (8.1.1)

with

u = (u1, . . . , uq)T , f = (f 1, . . . , f q)T

on a domain � ⊂ R
2, together with a set of appropriate boundary conditions

L�u(x, y) = Bu(x, y) = f�(x, y) (8.1.2)

at the boundary � = ∂�. In the following we will use the notation L and B instead of L�

and L� for convenience. The system (8.1.1) can also be written in the form

⎛⎜⎜⎜⎜⎝
L1,1 · · · · · · L1,q

...
...

...
...

Lq,1 · · · · · · Lq,q

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

L

⎛⎜⎜⎜⎜⎝
u1

...

...

uq

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
f�,1

...

...

f �,q

⎞⎟⎟⎟⎟⎠, (8.1.3)
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where the Lk,l are scalar differential operators. Of course, the boundary conditions can be
written correspondingly:⎛⎜⎜⎜⎜⎝

B1,1 · · · · · · B1,q

...
...

...
...

Bq̃,1 · · · · · · Bq̃,q

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

B

⎛⎜⎜⎜⎜⎝
u1

...

...

uq

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
f �,1

...

...

f �,q̃

⎞⎟⎟⎟⎟⎠. (8.1.4)

Note that in general q �= q̃, i.e. the number of boundary conditions does not necessarily
coincide with the number of equations. Moreover, in general, there exists neither a natural
relationship between an unknown function us and a specific equation in the system nor a
natural relationship between us and one of the boundary conditions.

The number q̃ of required boundary conditions can be seen by considering the principal
part, i.e. the terms including the highest derivative, of the operator determinant

detL =

∣∣∣∣∣∣∣∣∣∣
L1,1 · · · · · · L1,q

...
...

...
...

Lq,1 · · · · · · Lq,q

∣∣∣∣∣∣∣∣∣∣
. (8.1.5)

The number of boundary conditions is typically determined by the order of the highest
derivative, which is present in this determinant. For example, if the principal part of detL
is of the form (�)q̃ , q̃ boundary conditions are required.

Two examples of linear PDE systems are the biharmonic system and the Stokes equa-
tions, discussed in more detail in Sections 8.4 and 8.6, respectively. Each of these systems
is a model problem representing a large and important class of PDEs (elasticity, CFD).

Example 8.1.1 The biharmonic system is a reformulation of the biharmonic equation
��u = f . Introducing the function

v = �u,

the biharmonic equation can be written as the 2 × 2 system

�v(x, y) = f (x, y) (8.1.6)

�u(x, y)− v(x, y) = 0 (8.1.7)

or in the form (
� 0
−I �

)(
v

u

)
=
(
f

0

)
,
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where the scalar differential operators Lk,l are

L1,1 = �, L1,2 = 0, L2,1 = −I and L2,2 = �.

Obviously, we have detL = �2, which means that two boundary conditions are appropriate.
�

Example 8.1.2 The Stokes equations describe incompressible flow situations governed
by viscosity. We consider the stationary 2D Stokes equations⎡⎣−� 0 ∂x

0 −� ∂y
∂x ∂y 0

⎤⎦⎡⎣uv
p

⎤⎦ =
⎡⎣0

0
0

⎤⎦ in a domain � ∈ R
2. (8.1.8)

Here, the unknown functions u = u(x, y), v = v(x, y), p = p(x, y) denote the velocity
components in x- and y-directions and the pressure, respectively. The first two equations
(i.e. the momentum equations) correspond to conservation of momentum and the third one
(the continuity equation) to conservation of mass. The momentum equations are diffusion-
based transport equations. In contrast to the incompressible Navier–Stokes equations (see
Section 8.6), convection does not occur.

As in the previous example, the operator determinant is detL = �2. Hence, only two
boundary conditions are required for this 3 × 3 system of PDEs. The actual choice of the
boundary conditions in an application is usually motivated physically. At solid walls, for
example, u = v = 0 is a natural choice.

The first equation of this system is naturally related to the velocity u, the second one
to v. The third unknown function, p, however, does not appear in the third equation. �

The discrete system

Lhuh = f�h

Bhuh = f�h
(8.1.9)

denotes the discrete analog of the PDE system (8.1.1) with boundary conditions (8.1.2).
Analogously to (8.1.3), this system can be written as

⎛⎜⎜⎜⎜⎝
L

1,1
h · · · · · · L

1,q
h

...
...

...
...

L
q,1
h · · · · · · L

q,q
h

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Lh

⎛⎜⎜⎜⎝
u1
h
...
...

u
q
h

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

uh

=

⎛⎜⎜⎜⎜⎝
f
�,1
h
...
...

f
�,q
h

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

f�h

(8.1.10)
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⎛⎜⎜⎜⎜⎝
B

1,1
h · · · · · · B

1,q
h

...
...

...
...

B
q̃,1
h · · · · · · B

q̃,q
h

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Bh

⎛⎜⎜⎜⎝
u1
h
...
...

u
q
h

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

uh

=

⎛⎜⎜⎜⎜⎝
f
�,1
h
...
...

f
�,q̃
h

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

f�h

. (8.1.11)

Correspondingly, we also consider nonlinear PDE systems of the form

Nu = f , (8.1.12)

consisting of q nonlinear scalar PDEs⎛⎜⎜⎜⎝
N1(u1, u2, · · · , uq)

...

...

Nq(u1, u2, · · · , uq)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f 1

...

...

f q

⎞⎟⎟⎟⎠, (8.1.13)

and their discrete analogs

Nhuh = f h (8.1.14)

or ⎛⎜⎜⎜⎜⎝
N1
h(u

1
h, u

2
h, · · · , uqh)
...
...

N
q
h (u

1
h, u

2
h, · · · , uqh)

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f 1
h
...
...

f
q
h

⎞⎟⎟⎟⎠, (8.1.15)

together with an appropriate set of boundary conditions as in the linear case. The boundary
conditions may also be nonlinear.

8.2 MULTIGRID COMPONENTS

As for scalar applications, any multigrid algorithm for PDE systems is characterized by the
components smoothing, restriction, interpolation, solution on the coarsest grid and cycle
type. In the following subsections, we will discuss how these components are generalized
to systems of equations.

We will first concentrate on the treatment of the interior equations. Some remarks
regarding boundary conditions are contained in Section 8.2.6.

8.2.1 Restriction

Let us assume that we have found a suitable smoothing scheme for the discrete system (8.1.9)
and that we have performed one or several smoothing steps giving a current approximation
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ūh. The next step in multigrid is to perform the restriction to the next coarser grid with
mesh size H . Remember that the discrete system at each interior point consists of q linear
equations of the form

Lkhuh = f kh with Lkh = (L
k,1
h , . . . , L

k,q
h ) (8.2.1)

for k = 1, . . . , q. The restriction for each of these equations is done separately, in a straight-
forward generalization of the scalar case (see Section 2.2.2). For the correction scheme (CS),
this means that the q coarse grid equations

LkH v̂H = dkH (8.2.2)

are obtained by restricting the defects dkh to �H using the current approximations ūh =
(ū1
h, . . . , ū

q
h)
T :

dkH := IHh d
k
h, dkh = f kh − Lkhūh. (8.2.3)

Here, IHh is the (scalar) restriction operator, LkH denotes the coarse grid analog of Lkh and
v̂H represents the solution of the coarse grid defect equations. If the FAS is to be employed,
e.g. for a nonlinear system of the form (8.1.14), the coarse grid equations are defined by

NkHwH = f kH (8.2.4)

with

f kH := IHh (f
k
h −Nkh ūh)+NkH ÎHh ūh (8.2.5)

and

ÎHh ūh := (ÎHh ū
1
h, . . . , Î

H
h ū

q
h)
T .

For H = 2h, a typical standard choice for the restriction operator IHh is the scalar FW
operator. The standard choice for ÎHh is the (scalar) injection applied to each unknown.

In general, the restriction operators need not be the same for all equations (see
Section 8.2.3).

8.2.2 Interpolation of Coarse Grid Corrections

The interpolation and addition of the corrections from the coarse grid is carried out separately
for each of the grid functions and looks exactly like in the scalar case. For the CS (see
Section 2.2.3), we have

u
k, after CGC
h = ūkh + IhH v̂kH , (8.2.6)
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where v̂kH is the correction computed on the coarse grid and IhH the (scalar) interpolation
operator. For the FAS (see Section 5.3.4), the coarse grid correction gives

u
k, after CGC
h = ūkh + IhH (ŵkH − ÎHh ūkh), (8.2.7)

where ŵkH is an approximate solution of the coarse grid equation (8.2.4), (8.2.5).
A typical choice for the coarse-to-fine transfer IhH is bilinear interpolation for each

unknown grid function. Again, different interpolation operators may be applied to different
grid functions (see Section 8.2.3).

8.2.3 Orders of Restriction and Interpolation

In the following, we assume that the interpolation of the coarse grid corrections and the
restriction of the defects are performed as described above. In general, the required orders of
the restriction and interpolation operators depend on the orders of the derivatives occurring
in the PDE system. Letmij denote the highest order of differentiation of the j th unknown in
the ith equation of the PDE system. In order to avoid large amplifications of high frequencies
by the coarse grid correction process, one should choose

mi +mj > mij , (8.2.8)

where mi denotes the order of the restriction of the ith equation and mj denotes the order
of the interpolation of the corrections of the j th unknown grid function. This basic rule can
be found by LFA, analyzing how the coarse grid correction amplifies the high frequency
harmonics of the lowest frequencies [66, 69, 187].

Remark 8.2.1 (full multigrid interpolation) The FMG interpolation can be performed
independently for each current approximation of the functions ukh and can be chosen as in
the scalar case (see Sections 2.6.1 and 3.2.2). �

8.2.4 Solution on the Coarsest Grid

As in the scalar case, the solution on the coarsest grid can be obtained with any suitable
solver. However, the discrete systems on the coarsest grid may be much larger than in the
scalar case, in particular for complex applications. The efficiency of a numerical algorithm
used for solving the coarsest grid problem may, therefore, be more important than for scalar
equations.

8.2.5 Smoothers

The immediate generalization of the scalar lexicographic point Gauss–Seidel relaxation
scheme is the pointwise collective Gauss–Seidel relaxation. Like its scalar counterpart,
this relaxation sweeps over all grid points in a lexicographic order. At each grid point
(x, y), all difference equations located there are solved simultaneously, changing the values
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u1
h(x, y), . . . , u

q
h(x, y) and using current values at the neighbor grid points. This means

that a linear q × q system of equations is to be solved at each grid point. Of course,
similar generalizations are possible for GS-RB or ω-JAC resulting in collective GS-RB and
collective ω-JAC. This collective approach is also in wide use with line relaxation, ILU etc.
However, collective relaxations are not always necessary.

For simple problems, relaxation schemes which do not collectively solve theq difference
equations located at the grid point (x, y), but solve them one after the other (decoupled
relaxation) may also have sufficient smoothing properties.

In some more involved cases, e.g. in the context of the Navier–Stokes equations, dis-
cussed in Section 8.6, the standard collective relaxations may fail to show satisfactory
smoothing and convergence properties. More advanced smoothing schemes such as box
relaxations or distributive relaxations may have to be applied then.

• The idea of box relaxation is to solve not only all equations at one grid point collectively,
but all equations at a set of grid points (box). These boxes may or may not be overlapping.
One smoothing step consists of a sweep over all boxes. In this sense, line relaxations are a
special type of box relaxation. Typically, however, box relaxation employs a more com-
pact set of points than a line. We will give examples of box relaxation in Sections 8.7.2
and 8.8.2.

• The idea of distributive relaxation is as follows. To relax the set of equationsLhuh = f h,
we introduce a new variable ûh by uh = Mhûh and consider the (transformed) system
LhMhûh = f h. For example, Mh is chosen such that the resulting operator LhMh

is suited for decoupled (equation-wise) relaxation. An example for such a distributive
relaxation has already been given in Section 4.7.2 where the Kaczmarz relaxation was
introduced. We will return to distributive relaxation in Sections 8.7.3 and 8.8.2.

The smoothing properties of a particular relaxation method for a given problem can again
be evaluated by smoothing analysis (see Section 8.3).

8.2.6 Treatment of Boundary Conditions

The general idea of the multigrid treatment of boundary conditions for systems of equations
remains essentially the same as in the scalar case. In particular, the transfer to coarse grids
is performed separately for the boundary condition and for the interior equations. For 2D
problems, 1D restriction operators are employed for boundary conditions (see Section 5.6).

There are, however, several complications compared to the scalar case. As already
mentioned, the number of boundary conditions will, in general, differ from the number of
unknown grid functions and from the number of PDEs. In particular, there is not necessarily
a one-to-one correspondence of boundary conditions and grid functions (or PDEs).

The relaxation at boundaries often needs to be modified. In general, it is no longer suffi-
cient to relax the boundary conditions separately and decoupled from the interior equations.
Instead, the relaxation at a boundary point may have to be coupled with that at adjacent
interior points. Box schemes which collectively update the unknowns at several adjacent
boundary points together with the unknowns at adjacent interior points are then appropriate.
For certain types of problems, additional local relaxations near the boundary may also have
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to be added as has been seen in the scalar case for problems with geometric singularities
(see Section 5.5). We will return to these approaches and give an example in Section 8.4.

8.3 LFA FOR SYSTEMS OF PDEs

In this section, we will generalize the LFA smoothing analysis to systems of PDEs (in
Section 8.3.1). The two-level LFA can be generalized in the same way. However, we will
not treat it in detail. In Section 8.3.2, we will extend the concept of h-ellipticity to systems
of PDEs.

8.3.1 Smoothing Analysis

In analogy to the scalar case (see Section 4.3), we consider the discrete system (8.1.10),
where the Lk,lh are assumed to be scalar difference operators with constant coefficients on
the infinite grid Gh, i.e. in 2D

L
k,l
h u

l
h(x) =

∑
κ∈V

sk,lκ1κ2
ulh(x1 + κ1h1, x2 + κ2h2)

with sk,lκ1κ2 ∈ R and a finite index set V .
Consider components of the form

ϕ(θ, x) = aeiθ·x/h,

where a = (1, . . . , 1)T ∈ R
q, θ = (θ1, θ2)

T , x = (x1, x2)
T ,h = (h1, h2)

T , eiθ·x/h :=
eiθ1x1/h1eiθ2x2/h2 . Obviously, we have

Lhϕ(θ, x) =

⎛⎜⎜⎜⎜⎝
L̃

1,1
h (θ) · · · · · · L̃

1,q
h (θ)

...
...

...
...

L̃
q,1
h (θ) · · · · · · L̃

q,q
h (θ)

⎞⎟⎟⎟⎟⎠
︸ ︷︷ ︸

=: L̃h(θ) ∈ C
q×q

ϕ(θ, x),

where the terms

L̃
k,l
h (θ) =

∑
κ∈V

sk,lκ1κ2
eiθ1κ1eiθ2κ2

are the symbols of the scalar discrete operators Lk,lh . Correspondingly, the matrix L̃h(θ) is
called the symbol of Lh.

As in the scalar case, we can distinguish low and high frequency error components. For
standard coarsening, we obtain the following definition.
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Definition 8.3.1

ϕ low frequency component :⇐⇒ θ ∈ T low =
[

− π

2
,
π

2

)2

ϕ high frequency component :⇐⇒ θ ∈ T high = [−π, π)2 \ [−π
2 ,

π
2 )

2

We will sometimes refer to θ as a high or a low frequency.
The smoothing analysis for systems of equations can now be performed as in the scalar

case. Let us assume a linear q × q system of difference equations

Lhuh = f h

and a smoothing operator Sh corresponding to a splitting of Lh

Lh = L+
h + L−

h

(L+
h ,L

−
h are again q × q systems) such that the smoothing procedure can be described by

L+
h w̄h + L−

h wh = f h.

Here, wh and w̄h denote the approximations to uh before and after the smoothing procedure,
respectively. Subtracting the discrete equation Lhuh = f h, we obtain the error equation

L+
h v̄h + L−

h vh = 0

or

v̄h = Shvh

where vh = uh − wh and v̄h = uh − w̄h denote the errors before and after the relaxation
and where Sh is the resulting smoothing operator.

Applying L−
h , L+

h , Sh to the formal eigenfunctions ϕ(θ, x), we obtain

L−
h aeiθ · x/h = L̃

−
h (θ)ae

iθ · x/h

L+
h aeiθ · x/h = L̃

+
h (θ)ae

iθ · x/h

Shae
iθ · x/h = S̃h(θ)ae

iθ · x/h = −L̃
+
h (θ)

−1L̃
−
h (θ)ae

iθ · x/h,

where the symbols L̃
−
h (θ), L̃

+
h (θ), S̃h(θ) are complex q×q matrices and where we assume

that L̃
+
h (θ)

−1 exists.
The smoothing factor for systems of equations can thus be defined as

μloc = μloc(Sh) := sup
{∣∣ρ(L̃+

h (θ)
−1L̃

−
h (θ)

)∣∣ : θ high frequency
}

(where ρ denotes the spectral radius) or equivalently

μloc = sup
{|λ(θ)| : det

(
λ(θ)L̃

+
h (θ)+ L̃

−
h (θ)

) = 0; θ high frequency
}
. (8.3.1)

Obviously, μloc is the worst (asymptotic) amplification factor of all high frequency error
components. This definition is consistent with the corresponding one in the scalar case (see
Definition 4.3.1 in Section 4.3).
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Remark 8.3.1 In practice one has to evaluate the symbols L̃
+
h (θ) and L̃

−
h (θ) of the

particular relaxation under consideration. The smoothing factor can then be determined
numerically (see http://www.gmd.de/SCAI/multigrid/book.html for a
program). �

Remark 8.3.2 (generalizations) The generalization of LFA for systems with nonconstant
coefficients or nonlinear systems is exactly as in the scalar case by linearization and freezing
of coefficients.

The generalization of LFA to GS-RB (or zebra line-type smoothing schemes) for sys-
tems follows the same basic considerations as presented in Section 4.5 for the scalar case.
The same holds for the two-grid LFA. We will not discuss these approaches here, but,
nevertheless, present some results of the two-grid LFA in the next section. �

Remark 8.3.3 (coarse grid correction and boundary conditions) In practice, there are
two major reasons why the measured convergence of a multigrid algorithm may differ from
what is predicted by smoothing LFA. The first is that the coarse grid correction may cause
problems. This is a typical phenomenon of singularly perturbed problems, which we have
discussed in detail in the context of the convection–diffusion problem. Similar effects also
occur for various systems of equations, e.g. the incompressible Navier–Stokes equations at
high Reynolds numbers. A proper analysis of this kind of situation requires a two-grid LFA
(often a simplified two-grid analysis, as introduced in Remark 4.6.1 is sufficient).

The second reason is an unsuitable treatment of boundary conditions. Boundary condi-
tions and their treatment by multigrid do not enter the LFA. The general experience is that
the multigrid convergence predicted by the LFA smoothing factor can only be observed in
practice if sufficient work at and near the boundary is invested. �

Remark 8.3.4 (smoothing factors and factorization ofL) For complicated PDE systems
a heuristic guideline of the question, which smoothing factors can be expected, is the
following (discussed in detail in [66]).

The smoothing factor of a smoothing procedure for a given PDE operator L can be as
good as the smoothing factors obtained for the factors of det L.

It can be shown [66] that if det L = L1L2, where eachLi is a scalar differential operator,
then one can factorize the q × q operator L into L = L1L2, where the Li are q × q matrix
operators such that det Li = Li . Factors, that often occur are the Laplacian � and the
convection–diffusion operator �+ a · ∇.

A general possibility to relax the factorized system

L1L2u = f

is to introduce the auxiliary vector of unknown functions v = L2u and relax the two systems

L1,hvh = f h and L2,huh = vh (8.3.2)

alternatingly.
The combined smoothing factor is not worse than the worst of the two systems. A simple

example for this approach is the biharmonic equation, which we will discuss in Section 8.4.
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If the smoothing factors μ1 and μ2 of the operators L1,h and L2,h differ significantly, a
more advanced smoothing strategy for the system (8.3.2) is to relax L1,hvh = f h ν1 times
and the other system ν2 times. Then we obtain for the smoothing factor μ of the whole
system

μ ≤ max
(
μ
ν1
1 , μ

ν2
2

)
. �

8.3.2 Smoothing and h-Ellipticity

In Section 4.7, we have discussed the question, which properties a (scalar) operatorLh must
have, so that a pointwise relaxation exists with h-independent smoothing factors < 1. The
answer was that Lh must be h-elliptic. This result carries over to systems of PDEs.

Of course, we first have to extend the definition of the h-ellipticity measure Eh to
systems. For standard coarsening, a natural generalization of Eh to systems is

Eh(Lh) := min
{∣∣ det L̃h(θ)

∣∣ : θ ∈ T high}
max

{∣∣ det L̃h(θ)
∣∣ : −π ≤ θ < π

} ,
where L̃h(θ) denotes the symbol of Lh.

Remark 8.3.5 As in the scalar case, the denominator in this definition is only a scaling
factor, which guarantees 0 ≤ Eh(Lh) ≤ 1. Other scalings are often used, e.g.

Ēh(Lh) := min
{ |det L̃h(θ)|

|| |Lh| || : θ ∈ T high
}
, (8.3.3)

where |Lh| is a q × q matrix formed by replacing each Lk,jh by its size. Here, the size of
a scalar discrete operator is defined as the sum of the absolute values of its entries in the
stencil.

�

There is a direct analog of Theorem 4.7.1 for systems of PDEs. The first (trivial) part is
thatμloc ≥ 1 for any point relaxation described by a splittingLh = L+

h + L−
h if Eh(Lh) =

0 and L̃
+
h (θ) �= 0.

This is easily seen since

Eh(Lh) = 0 =⇒ det L̃h(θ) = 0 for at least one high frequency θ.

This implies that μloc ≥ 1, because of (8.3.1) and L̃h(θ) = L̃
+
h (θ)+ L̃

−
h (θ).

The nontrivial part is that if Eh(Lh) is bounded away from 0 by some constant c > 0 :

Eh(Lh) ≥ c > 0 (for h → 0),

then there exists a pointwise relaxation with smoothing factorμloc ≤ const < 1 . The proof
is similar to that for the scalar case [240].
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In particular, one can show that a damped Kaczmarz relaxation of Jacobi-type exists
that has the smoothing factor

μloc = 1 − Eh(Lh)2
1 + Eh(Lh)2

.

Remark 8.3.6 As in the scalar case, small h-ellipticity measures indicate that pointwise
smoothers may be problematic. There are high frequencies which correspond to very small
defects. �

Remark 8.3.7 Semi-h-ellipticity can be defined as in the scalar case and allows corre-
sponding generalizations to line smoothers etc. (see Remark 4.7.5). �

8.4 THE BIHARMONIC SYSTEM

The biharmonic equation models deflections in 2D plates. If the biharmonic equation
��u = f is treated as a scalar fourth-order problem, discretized by standard second-order
differences, the O(h2) accurate 13-point stencil

�h�h = 1

h4

⎡⎢⎢⎢⎢⎣
1

2 −8 2
1 −8 20 −8 1

2 −8 2
1

⎤⎥⎥⎥⎥⎦
h

(8.4.1)

is obtained. The smoothing factor of GS-LEX on a Cartesian grid is μloc = 0.8, which
is not satisfactory and causes a rather poor multigrid efficiency. For ω-JAC-RB relaxation
(see Section 5.4.2), we obtain μloc (ω = 1) = 0.64 and μloc (ω = 1.4) = 0.512 (if the
underrelaxation is applied after the JAC-RB iteration) [379].

Better results are easily obtained if the biharmonic problem is treated as a system of the
form (8.1.6)–(8.1.7). This is trivial if we have the boundary conditions

u = f �,1 and �u = f �,2, (8.4.2)

which describe the case that the edges of the plate are simply supported. With these boundary
conditions, the biharmonic system is fully decoupled. One can solve the two discrete Poisson
problems

�hvh = f�h (�h)

vh = f
�,2
h (�h)

and
�huh= vh (�h)

uh= f �,1h (�h)
(8.4.3)

one after the other. Since multigrid works very well for the Poisson equation, we obtain a
solution of the biharmonic problem with excellent numerical efficiency. Furthermore, the
relaxation for the two Poisson problems (8.4.3) is simpler and cheaper than GS-LEX for
the 13-point stencil (8.4.1).
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For the boundary conditions

u = f �,1 and un = f �,2, (8.4.4)

which describe the case of clamped edges of the plate, the situation is more involved since the
PDEs are coupled via the boundary conditions. Moreover, we have two boundary conditions
for the function u, but none for v.

Since such situations often occur for PDE systems, we will discuss an appropriate
treatment of this problem in Section 8.4.2. Excellent multigrid performance can also be
achieved in this case, as will be shown in Section 8.4.3. The idea is to introduce a modified
collective relaxation at the boundaries which treats boundary points together with adjacent
interior grid points.

8.4.1 A Simple Example: GS-LEX Smoothing

In this section, we analyze the smoothing properties of GS-LEX for the discrete biharmonic
system (see also Example 8.1.1)(

�h 0
−I �h

)(
vh
uh

)
=
(
f�h
0

)
with �h = 1

h2

⎡⎣ 1
1 −4 1

1

⎤⎦
in order to illustrate how LFA is used for systems.

The collective GS-LEX relaxation corresponds to the splitting

L+
h =

(
�+
h 0

−I �+
h

)
, L−

h =
(
�−
h 0

0 �−
h

)
(8.4.5)

with

�+
h = 1

h2

⎡⎣ 0
1 −4 0

1

⎤⎦, �−
h = 1

h2

⎡⎣ 1
0 0 1

0

⎤⎦.
The symbols of L−

h and L+
h are easily computed to be

L̃−
h (θ) = 1

h2

(
eiθ1 + eiθ2

) (1 0
0 1

)
,

L̃+
h (θ) = 1

h2

((
e−iθ1 + e−iθ2 − 4

)
0

h2 (
e−iθ1 + e−iθ2 − 4

)).
Thus

S̃h(θ) = −(L̃+
h (θ))

−1L̃−
h (θ) = − 1

h2

(
eiθ1 + eiθ2

)
(L̃+
h (θ))

−1

= − eiθ1 + eiθ2

e−iθ1 + e−iθ2 − 4

(
1 0
� 1

)
,
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where � denotes some nonzero matrix element whose size does not influence the smoothing
factor, and we obtain

μloc = μ(Sh) = sup

{∣∣∣∣∣ eiθ1 + eiθ2

e−iθ1 + e−iθ2 − 4

∣∣∣∣∣ : θ high frequency

}
.

This is identical to the smoothing factor of pointwise GS-LEX for Poisson’s equation; we
thus obtain μloc = 0.5.

Remark 8.4.1 (decoupled relaxation) In the case of decoupled (noncollective) Gauss–
Seidel relaxations, we obtain exactly the same smoothing factor for the biharmonic system.
This can very easily be seen. If we apply a decoupled relaxation we have to distinguish two
cases. In the first case, we first relax the first equation of the system in a point (x, y) and
afterwards the second one; in the second case, we perform the (scalar) relaxations the other
way round.

The first case is described by exactly the same splitting (8.4.5) as the collective relax-
ation. Correspondingly, we obtain the same smoothing factor.

The second case is described by the splitting

L−
h =

(
�−
h 0

−I �−
h

)
, L+

h =
(
�+
h 0

0 �+
h

)
(8.4.6)

which leads to the same value for the smoothing factor, too.
Such behavior is not at all typical for general systems of equations. In the case under

consideration, the coincidence is due to the fact that the partial differential equations are
decoupled. �

8.4.2 Treatment of Boundary Conditions

If we want to develop a suitable multigrid method for the biharmonic system (8.1.6)–(8.1.7)
with boundary conditions (8.4.4), we have to explicitly take into account the fact that there
are two boundary conditions for the function u, but none for v.

We will discuss a proper multigrid treatment of boundary conditions in the specific
situation of � = (0, 1)2 and give some results in Section 8.4.3. Here, the un-boundary
condition can be discretized exactly as the Neumann boundary conditions for Poisson’s
equation (see Section 5.6.2). Using an extended grid with external points outside �̄ as
shown in Fig. 5.23, standard central second-order finite differences can be used.

In order to close the discrete system (to have as many equations as unknowns), (8.1.7)
is also discretized on the boundary �h, resulting in the discrete system

�hvh = f�h (�h) (8.4.7)

�huh − vh = 0 (�̄h = �h ∪ �h) (8.4.8)

uh = f
�,1
h (�h) (8.4.9)

(un)h = f
�,2
h (�h). (8.4.10)
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Remark 8.4.2 For standard second-order central differences on a square grid, (8.4.7)–
(8.4.10) are equivalent to the 13-point approximation (8.4.1) of the biharmonic equation
with the discrete boundary conditions (8.4.9) and (8.4.10). �

In this example, we consider eliminated boundary conditions. Using (8.4.8) and (8.4.10)
on �h, external grid points outside �̄ can be eliminated, resulting in eliminated boundary
conditions, which, for example, at the left boundary read

1

h2

⎡⎣ 1
0 −4 2

1

⎤⎦ uh − vh = − 2

h
f
�,2
h . (8.4.11)

This equation can also be written as

1

h2

[
0 0 2

]
uh − vh = − 2

h
f
�,2
h − 1

h2

⎡⎣ 1
−4
1

⎤⎦ f �,1h (8.4.12)

because of (8.4.9). Obviously, the value of vh at a given boundary point is only coupled
with the value of uh at the adjacent interior point. In particular, there is no direct coupling
along the boundary.

Since (8.4.12) is not at all diagonally dominant, special care has to be taken in selecting
an appropriate relaxation scheme near boundary points. We will use collective GS-LEX
in the interior of �̄h with the following modifications near boundary points.

(1) Whenever a neighbor point (x, y) of a boundary point (e.g. (x − h, y)) is relaxed,
(8.4.12) at the boundary point is included in the collective relaxation of (8.4.7)
and (8.4.8) at (x, y). Figure 8.1(a) illustrates which points are treated collectively
by this relaxation. This means that we solve a 3 × 3 system near boundary points in
order to update the approximations for uh(x, y), vh(x, y) and vh(x − h, y) simulta-
neously.

(2) At interior points near corners of �̄h, both eliminated boundary equations at the
adjacent boundary points are included in the collective relaxation (see Fig. 8.1(a))
such that near a corner point a 4 × 4 system is solved. The treatment at the corner
points is not essential for the multigrid process since they are completely decoupled
from all other points.

The eliminated boundary conditions are transferred to the coarse grid by the same
restriction operators (5.6.10), (5.6.11) as in the corresponding case of Poisson’s equation
with Neumann boundary conditions (see Section 5.6.2 and, in particular, Remarks 5.6.2
and 5.6.3).

8.4.3 Multigrid Convergence

Based on the treatment of the boundary conditions as described in the previous section,
we now present results for the multigrid solution of the biharmonic system with boundary
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Figure 8.1. Simultaneous relaxation of grid points near boundaries. (a) Collective point relaxation
near left and lower boundary; (b) collective line relaxation near left boundary.

Table 8.1. Asymptotic W-cycle convergence factors.

ν1, ν2 (μloc)
ν1+ν2 ρloc h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256

1,0 0.50 0.40 0.32 0.37 0.39 0.40 0.40
1,1 0.25 0.19 0.19 0.21 0.21 0.22 0.22
2,1 0.13 0.12 0.09 0.08 0.09 0.11 0.12
2,2 0.06 0.08 0.08 0.07 0.07 0.08 0.08

conditions (8.4.4). We choose standard multigrid components in the interior of�h (standard
coarsening, collective GS-LEX relaxation, ν = ν1 +ν2 smoothing steps, FW, bilinear inter-
polation and direct solution on the coarsest grid always defined by a mesh size of h0 = 1/4).
Table 8.1 shows measured asymptotic convergence factors for the W-cycle (using || · ||∞).
As we have seen in Section 8.4.1, the smoothing factor μloc of the decoupled and of the
collective GS-LEX relaxation is 0.5 for the discrete biharmonic system. It can be seen from
Table 8.1 (where collective GS-LEX has been used as an example) that the predictions
obtained by LFA smoothing and LFA two-grid analysis ((μloc)

ν1+ν2 and ρloc) are excellent
for the W-cycle.

Remark 8.4.3 (boundary treatment and V-cycle convergence) Unfortunately, the
V-cycle does not show this behavior. In fact, the corresponding results are much worse
than predicted by LFA. Moreover, the V-cycle multigrid convergence is level-dependent,
i.e. it deteriorates when increasing the number of levels. For example, for h = 1/256, we
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Table 8.2. V-cycle convergence factors with addi-
tional boundary relaxation.

ν1, ν2 (μloc)
ν1+ν2 ρloc h = 1/256

1,0 0.50 0.40 0.40
1,1 0.25 0.19 0.19
2,1 0.13 0.12 0.13
2,2 0.06 0.08 0.10

observe a convergence factor of the V(1,1)-cycle of 0.56. For V(1,0)-cycles even divergence
is observed.

This effect is caused by the boundary conditions since, for the decoupled boundary
conditions (8.4.2) with exactly the same multigrid components in the interior of �̄h, we
obtain multigrid V-cycle convergence factors which are in agreement with LFA smoothing
and two-grid analysis.

It has been shown [346] that the V-cycle convergence can be improved considerably if
additional collective line relaxations along all points which are adjacent to boundary points
(see Fig. 8.1(b)) are performed, where (8.4.12) at the boundary points is again included in
the relaxation. If we add such a collective line relaxation along each side of the boundary
before the restriction to a coarser grid and before the interpolation of corrections, we obtain
V-cycle convergence factors which are again in good agreement with the results from LFA
analysis. Table 8.2 shows that, for example, for h = 1/256 the measured V-cycle con-
vergence factors agree well with the LFA two-grid factors ρloc. Obviously, the additional
collective line relaxations (working on vh at boundary points and simultaneously on uh and
vh at points adjacent to the boundary), lead to an impressive improvement of the multigrid
convergence.

For a heuristic explanation, we focus again on the special structure of (8.4.12). This
equation can be interpreted as the discrete boundary condition for vh. In particular, we
see that the approximation of vh at a boundary point (x, y) depends strongly on the value
of uh at the adjacent grid point in the interior of the domain (e.g. u(x + h, y) at the
left boundary). If uh has certain error components, vh obviously has much larger error
components on fine grids since those of uh are amplified by the factor 1/h2. Such error
components can grow by, for example, successive interpolations (without or with insufficient
intermediate smoothing/damping of the errors). In the W-cycle, more smoothing iterations
are applied on intermediate levels than in the V-cycle. �

Remark 8.4.4 (local relaxation) Excellent multigrid convergence for the biharmonic
problem with boundary conditions (8.4.4) can also be obtained by noneliminated
un-boundary conditions and by performing additional relaxation sweeps near the bound-
ary. According to [77], the number of the sweeps and their depth (i.e. the distance from the
boundary up to which points have to be included in these extra relaxations) slightly increases,
at least for V-cycles, with decreasing h and increasing number of multigrid levels. �



MULTIGRID FOR SYSTEMS OF EQUATIONS 307

8.5 A LINEAR SHELL PROBLEM

In this section we discuss the multigrid treatment of a linear shell problem. With this
example, we will focus on the difference between collective (coupled) and decoupled
smoothing methods and make some general remarks on their ranges of applicability.

We consider thin elastic shells with weak curvature. The quantities to be computed are
the stress f (x, y) and the displacement w(x, y) of the shell mean surface under a load p
(normal to the shell mean surface). The geometric form of the shell is described by the given
function z(x, y). The system of PDEs derived by linear shell theory, is

�2f +�2K(z, w) = 0

�2w −�2K(z, f ) = p
(8.5.1)

with

K(z, f ) = zxxfyy − 2zxyfxy + zyyfxx.

The positive parameter�2 is proportional to the inverse of the thickness of the shell [363].
In the following, we restrict ourselves to the boundary conditions

f = 0, w = 0, �f = 0 and �w = 0,

which describe the case that the edges of the shell are simply supported.

Remark 8.5.1 Boundary conditions for f ,w, fn andwn describing clamped edges of the
shell, are often of interest. Such boundary conditions can be treated, for example, in the
same way as those for the corresponding biharmonic problem (see Section 8.4.2). Multigrid
results for these boundary conditions can be found in [346]. �

The shell problem (8.5.1) consists of two biharmonic-like equations which are coupled
via lower order terms. The strength of the coupling is proportional to the parameter�2 and
to the second derivatives of the given function z(x, y). For�2 = 0, for example, the system
reduces to two (decoupled) biharmonic equations.

The system is elliptic. The type of the lower order terms, which are responsible for the
coupling, depends on the shell geometry. Shells are called elliptic (hyperbolic, parabolic)
if the linear lower order operator K(z, ·) is elliptic (hyperbolic, parabolic).

As for the biharmonic problem, we can split each of the equations into two Poisson-like
equations if we introduce the functions v = �f and u = �w as additional unknowns. This
leads to the system

�v +�2K(z, w) = 0 (�)

�f − v = 0 (�)

�u−�2K(z, f ) = p (�)

�w − u = 0 (�)

(8.5.2)
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for the four functions u, v,w and f . Using second-order central differences, we obtain the
discrete system

�hvh +�2Kh(z,wh) = 0 (�h) (8.5.3)

�hfh − vh = 0 (�h) (8.5.4)

�huh −�2Kh(z, fh) = ph (�h) (8.5.5)

�hwh − uh = 0 (�h), (8.5.6)

where

Kh(z, fh) = zxx(fyy)h − 2zxy(fxy)h + zyy(fxx)h.

Remark 8.5.2 For increasing�2 and/or second derivatives of z(x, y), the shell problem is
singularly perturbed. As a consequence, standard central discretizations of the lower order
operators cannot be expected to work for large�2 if the diagonal dominance of the discrete
lower order terms is lost. In particular, for�2 → ∞ and hyperbolic shells, it turns out that
the h-ellipticity measure of the discrete system tends to zero. In such cases, different (h-
elliptic) discretizations need to be used as discussed in detail for the convection–diffusion
equation in Section 7.1. This is, however, not done here. �

8.5.1 Decoupled Smoothing

As indicated in Section 8.2.5, we can employ collective (coupled) or decoupled relaxation for
smoothing. In this and the following sections, we will discuss the difference between these
two approaches for lexicographic y-line Gauss–Seidel relaxation. Corresponding results
are obtained for x-line relaxations because of symmetry.

A decoupled point (line) relaxation scheme consists of a sweep over the grid points
(lines) and a sweep over the variables per point. In principle, we are free to choose the
ordering of these sweeps and, in addition, the ordering within these sweeps (ordering of
variables and ordering of points or lines).

As an example, we describe a decoupled line relaxation with the outer sweep being that
over the lines. For each of the four equations of (8.5.2), we perform a separate scalar line
relaxation, based only on the �h operator. The relaxation of one line thus consists of four
substeps, in each of which a tridiagonal system has to be solved as for a scalar Poisson-
like operator. First, we update the approximations of fh in this line using (8.5.4), then uh
using (8.5.5), then wh using (8.5.6) and, finally vh using (8.5.3) in such a way that new,
updated approximations are already used whenever possible. We denote this smoothing
procedure by y-line-decoupled relaxation (DEC). Changes of the ordering, in which the
equations are relaxed, result in minor differences in the smoothing factors.
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This relaxation corresponds to the splitting

L+
h =

⎛⎜⎜⎝
�+
h 0 0 �2K+

h

0 �+
h 0 0

0 −�2K+
h �+

h 0
0 0 −1 �+

h

⎞⎟⎟⎠,

L−
h =

⎛⎜⎜⎝
�−
h 0 0 �2K−

h

−1 �−
h 0 0

0 −�2K−
h �−

h 0
0 0 0 �−

h

⎞⎟⎟⎠
with

�+
h = 1

h2

⎡⎣ 1
1 −4 0

1

⎤⎦, �−
h = 1

h2

⎡⎣ 0
0 0 1

0

⎤⎦
and

K+
h = 1

h2

⎡⎣−(1/2)zxy zyy 0
zxx −2(zxx + zyy) 0

(1/2)zxy zyy 0

⎤⎦, K−
h = 1

h2

⎡⎣0 0 (1/2)zxy
0 0 zxx
0 0 −(1/2)zxy

⎤⎦
(8.5.7)

(using the standard central four-point second-order stencil for the mixed derivatives).
The smoothing factor μloc for this relaxation scheme depends on the shell geometry

(which determines the character of K) and on the factor

κh = �2h2 max{zxx, zxy, zyy}. (8.5.8)

Consequently, a change in the physical parameter�2 has the same effect on the smoothing
properties as a corresponding change in the mesh size h. In other words, effects caused by
a strong coupling on fine grids will be similar to those caused by a moderate coupling on
coarse grids (large h).

Table 8.3 shows smoothing factors of y-line-DEC for various values of κh for an elliptic
and for a hyperbolic shell. For �2 = 100, which is a representative value for typical
applications, κh in Table 8.3 corresponds to mesh sizes h between 1/4 and 0. The smoothing
properties are satisfactory on fine grids. For a stronger coupling of the discrete equations,
however, caused by larger�2 or by coarser grids (larger h), the smoothing factors increase
significantly until the smoothing properties are totally lost. This qualitative behavior is
independent of the form of the shell and occurs for elliptic, parabolic and hyperbolic shells.

Obviously, the sole use of decoupled relaxations such as y-line-DEC as a smoother is
not suitable here. In decoupled relaxations, the strength of the coupling of the equations
is not taken into account explicitly. Here, the strength of the coupling of the equations,
indicated by κh, is proportional to h2 and thus becomes large on coarse grids.
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Table 8.3. LFA smoothing factors depending on shell geometry (zxx , zxy , zyy) and κh
for y-line-DEC.

zxx zxy zyy κh = 0 κh = 0.025 κh = 0.1 κh = 0.4 κh = 1.6 κh = 6.4

1 0 1 0.45 0.45 0.47 0.56 > 1 > 1
1 0 −1 0.45 0.45 0.47 0.56 > 1 > 1

As long as we have good smoothing properties on all grid levels (the coarsest grid may
be omitted if, for example, a direct solver is applied here), multigrid can be applied with
this relaxation. If the smoothing factors on coarse grids are worse than on fine grids but still
less than 1, F- of W-cycles or level-dependent numbers of smoothing steps can be used in
order to compensate for an insufficient smoothing on coarse grids.

In the next section, we will discuss a corresponding collective smoothing scheme, which
turns out to be more robust for strong coupling.

8.5.2 Collective Versus Decoupled Smoothing

By collective Gauss–Seidel y-line relaxation with lexicographic ordering of lines, y-line-
collective relaxation (COL), all four grid functions are updated collectively by the solution
of the coupled system (8.5.3)–(8.5.6) in all points of a line. As a consequence, collective
relaxation is more expensive than the corresponding decoupled smoother. For y-line-COL,
for example, we have to solve a banded system with 12 nonzero entries in every row of the
matrix whereas y-line-DEC requires the solution of four tridiagonal systems all with the
same matrix resulting from the �h-operator. y-line-COL corresponds to the splitting

L+
h =

⎛⎜⎜⎝
�+
h 0 0 �2K+

h

−1 �+
h 0 0

0 −�2K+
h �+

h 0
0 0 −1 �+

h

⎞⎟⎟⎠,

L−
h =

⎛⎜⎜⎝
�−
h 0 0 �2K−

h

0 �−
h 0 0

0 −�2K−
h �−

h 0
0 0 0 �−

h

⎞⎟⎟⎠
with �+

h , �−
h , K+

h and K−
h as in (8.5.7).

As in the decoupled case, the smoothing factors depend only on the shell geometry and
on κh. As indicated above, κh is proportional to h2.

The collective relaxation proves to be more robust than its decoupled counterpart (see
Table 8.4). For the elliptic shell, we observe good smoothing for all values of κh. For the
hyperbolic shell, the situation is different. For�2 = 100, for example, we have satisfactory
smoothing properties for h � 1/8 (κh � 1.6). For larger κh, the smoothing factors become
larger than one. As discussed in Remark 8.5.2, this behavior has to be expected due to the
vanishing h-ellipticity for the hyperbolic shell considered here.
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Table 8.4. LFA smoothing factors depending on shell geometries and κh for y-line-COL.

zxx zxy zyy κh = 0 κh = 0.4 κh = 1.6 κh = 6.4 κh = 25.6 κh = 6500

1 0 1 0.45 0.48 0.48 0.45 0.45 0.45
1 0 −1 0.45 0.48 0.65 > 1 > 1 > 1

Table 8.5. Measured V(2,1)-cycle convergence factors in dependence of �2.

Smoother zxx zxy zyy �2 = 0 �2 = 40 �2 = 60 �2 = 80 �2 = 100

y-line-DEC 1 0 1 0.06 0.32 Div. Div. Div.
1 0 −1 0.06 0.15 0.19 0.31 Div.

y-line-COL 1 0 1 0.06 0.06 0.06 0.06 0.06
1 0 −1 0.06 0.13 0.17 0.21 0.23

Table 8.5 compares V-cycle convergence factors for the coupled and the decoupled
smoothing scheme for increasing values of the coupling parameter�2. Here, the multigrid
algorithm uses five grids with h0 = 1/2.

For small �2, both relaxations employed in a V-cycle are sufficient to obtain good
convergence. The combination of V-cycle and decoupled smoothing is suitable up to
�2 ≈ 20. For�2 � 60, the V-cycle using decoupled smoothing starts to diverge for one of
the shells, for �2 = 100 it diverges for both. The collective approach shows convergence
in all cases considered here.

An interpretation of the multigrid convergence factors with the LFA results in Tables 8.3
and 8.4 is not trivial since the smoothing factors are level-dependent. The worst smoothing
factors are obtained on the coarsest grids. On coarse grids, however, the LFA is only a very
rough prediction since it neglects the influence of the boundary conditions, which is large
on coarse grids (each point is close to a boundary). For h = 1/4, for example, there are
more boundary points than interior points on the unit square. This is a heuristic explanation
of the reasons why we will still observe convergence in some cases of Table 8.5 though the
smoothing factor on the next-to-coarsest level is already larger than one.

8.5.3 Level-dependent Smoothing

The results in the previous subsection have demonstrated that the decoupled smoother
y-line-DEC is not suitable for medium to large values of κh. On the other hand, the more
robust collective relaxation y-line-COL is much more expensive than the decoupled one.
Since, on fine grids, both relaxation schemes have comparable smoothing factors, it is rea-
sonable to combine these two smoothers, namely to employ the cheap decoupled relaxation
on fine grids and the collective relaxation only on coarse grids, where its cost is not an issue.

Table 8.6 shows measured convergence factors of V(2, 1)- and W(2, 1)-cycles which
employ such a level-dependent smoothing strategy (called LDS here). We consider the



312 MULTIGRID

Table 8.6. Multigrid convergence factors for different shells, smoothing strategies and cycle types.

zxx zxy zyy V(LDS) V(COL) W(LDS) W(COL)

1 0 1 0.08 0.06 0.05 0.05
1 0 −1 0.25 0.23 0.08 0.07

example�2 = 100 and employ five grids with h0 = 1/2. On the three coarsest meshes we
employ y-line-COL and on the finer ones y-line-DEC.

We observe a similar convergence behavior for both the fully collective and the much
cheaper level-dependent smoothing. The CPU times of multigrid algorithms using the col-
lective, the decoupled and the level-dependent smoothing have been compared in [346]. A
multigrid cycle based on collective line relaxation requires about ten times the computing
time of a cycle based on y-line-DEC. The computing times of the level-dependent strategy,
which has similar convergence properties to the collective variant, is comparable to that of
multigrid employing the decoupled smoother. It is thus a robust and efficient alternative.

8.6 INTRODUCTION TO
INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

In this and the following sections we review both the discretization aspects and correspond-
ing multigrid methods for the stationary incompressible Navier–Stokes equations. Due to
the tremendous amount of related literature and the large variety of approaches, we have to
restrict ourselves to a subset of available techniques. We focus on the discussion of some
basic and fundamental concepts which are essential for a proper multigrid solution. A survey
on the derivation of flow equations can be found in [33].

8.6.1 Equations and Boundary Conditions

We start with the 2D incompressible Navier–Stokes equations in conservative form in
primitive variable formulation i.e. using the velocities u and v and the pressure p as
primary variables. The corresponding nonlinear PDE system consists of the momentum
equations (8.6.1)–(8.6.2), which describe the momentum conservation, and the continuity
equation (8.6.3),which can be deduced from the mass conservation law:

−�u+ Re((u2)x + (uv)y + px) = 0 (8.6.1)

−�v + Re((uv)x + (v2)y + py) = 0 (8.6.2)

ux + vy = 0. (8.6.3)

Here, Re is the so-called Reynolds number, which is proportional to a characteristic velocity
(the unit in terms of which u and v are measured), to a characteristic length (the unit for
x and y) and to 1/ν, where ν is the kinematic viscosity of the flow. In this formulation,
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the variables u, v and p are dimensionless; the (only) relevant parameter is the Reynolds
number. The nonconservative form of the incompressible Navier–Stokes equations

−�u+ Re(uux + vuy + px) = 0 (8.6.4)

−�v + Re(uvx + vvy + py) = 0 (8.6.5)

ux + vy = 0 (8.6.6)

is often the starting point for the solution of flow problems.
For Re = 0, we have the special case of the Stokes equations already introduced in

Example 8.1.2, which describe highly viscous incompressible flows characterized by the
diffusion terms in the momentum equations. In contrast to the incompressible Navier–Stokes
equations, the Stokes equations are linear and simpler.

For high Reynolds numbers, the momentum equations become singularly perturbed.
With ε = 1/Re, we have an analogy to the convection–diffusion equation, but with nonlinear
convective parts of the operator.

Remark 8.6.1 We here focus on the stationary equations and, correspondingly, on steady-
state solutions. It is well known that, depending on the problem under consideration, the
physical flow becomes unsteady for high Reynolds numbers. In such cases, of course, the
time-dependent formulation of the equations is appropriate. Moreover, for high Reynolds
numbers the flow may become turbulent, which causes additional complications. We will
not consider turbulent and time-dependent flows in our discussion. �

The momentum equations are naturally associated with u and v, respectively. But there
is no natural equation for p in these systems. In particular, p is not present in the conti-
nuity equation. This gives rise to complications in the discretization and in the numerical
treatment.

The equations become inhomogeneous (i.e. they have nonzero right-hand sides) if exter-
nal sources of momentum or mass are present in the application under consideration.

In the following, we will start with the discretization and numerical treatment of the
nonconservative form of the incompressible Navier–Stokes equations. It is well-known
that a discretization of a nonconservative formulation of a conservation law may introduce
unacceptable errors in regions with strong gradients or discontinuities and the conservative
form should then be preferred [196]. For the incompressible Navier–Stokes equations with
smooth solutions, however, the nonconservative form can often be used safely.

Remark 8.6.2 (boundary conditions) The PDE systems (8.6.1)–(8.6.3) and (8.6.4)–
(8.6.6) require only two boundary conditions. This has been demonstrated for the Stokes
equations in Example 8.1.2 and carries over to the nonlinear case. If, however, boundary
conditions for u and v are prescribed, the pressure is determined only up to a constant.
One has a similar situation to that described in Section 5.6.4 for the Poisson equation with
pure Neumann boundary conditions. A solution exists only if a compatibility condition is
fulfilled. Similar techniques, as described in Section 5.6.4, can be used in such cases. �
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There are many possibilities to define proper boundary conditions for these systems
depending on the particular application under consideration. At solid walls, it is appropriate
to use u = v = 0 and no boundary conditions for p. At inflow and outflow boundaries,
velocity profiles or Neumann boundary conditions for the velocities may be prescribed.
If p is prescribed at inflow and outflow boundaries (flows may be governed by pressure
differences), only one further boundary condition at these boundaries is adequate. Other
boundary conditions are, e.g. free stress, free slip or symmetric boundary conditions (see,
for example, [33] for a physical motivation and formulation).

The actual choice of boundary conditions depends on the application under considera-
tion. For the multigrid treatment of boundary conditions, we refer to the general discussion
in Sections 5.6 and 8.2.6.

8.6.2 Survey

In this and the following sections, we will discuss the discretization and corresponding
multigrid treatment of the stationary incompressible Navier–Stokes equations in detail.

One prerequisite of any multigrid method is the availability of a relaxation process with
satisfactory error smoothing properties, the stability of the underlying discretization scheme
being a necessary condition for this. For the incompressible Navier–Stokes equations, there
are two sources of discrete instabilities.

The first is already present in the limit case of the Stokes equations and does not depend
on the size of the Reynolds number. This checkerboard instability appears if central dif-
ferencing of first-order derivatives in the pressure terms and in the continuity equation
is applied and if all variables are located at the grid points. We have already seen scalar
examples of this instability, e.g. in Example 4.7.5. In Section 8.6.3, we will discuss the
checkerboard instability for the Stokes equations.

One approach to overcome the checkerboard instability is to use so-called staggered
locations of unknowns (briefly: staggered grids or staggered discretization), for which the
unknown grid functions are located at different places in a grid cell. In Section 8.7, we
describe proper multigrid components such as box and distributive smoothers for staggered
discretizations.

In Section 8.8, we consider nonstaggered (vertex-centered) discretizations. In that case,
the checkerboard instability is overcome by the introduction of an artificial pressure term
in the continuity equation. Also in this case, appropriate smoothing operators are still of
box or distributive type. Straightforward collective relaxations can, however, be applied
if suitable reformulations of the incompressible Navier–Stokes equations are used for the
discretization (see Section 8.8.3). Most of the discussion up to Section 8.8.3 is on problems
at low or moderate Reynolds numbers (up to Re = 1000).

The second source of instability is caused by the singular perturbation character of the
momentum equations. For high Reynolds numbers, the h-ellipticity measure of standard
(central) discretization schemes decreases and one has to introduce additional “artificial
viscosity” to keep the discrete equations stable. This is a similar phenomenon as we have
discussed in detail for the convection–diffusion equation for ε → 0 (see Section 7.1),
where upwind schemes for the convection terms were proposed. Of course, the situation is
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somewhat more involved for the nonlinear system of the Navier–Stokes equations compared
to the scalar and linear convection–diffusion model problem. Nevertheless, straightforward
(higher order) upwind-type schemes can be used for moderate Reynolds numbers.

In Section 8.8.4, we describe an example for an upwind-type scheme, which is partic-
ularly well-suited for high Reynolds numbers. This flux splitting discretization scheme is
based on the conservative formulation of the incompressible Navier–Stokes equations and
allows the use of collective point or line relaxations as smoothers.

Remark 8.6.3 Another interesting discretization approach for the convective terms is to
use so-called narrow stencils (see, for example, [86]). However, we do not discuss this
approach here. �

Remark 8.6.4 (single grid solvers) A well-known classical solver for the incompressible
Navier–Stokes equations is the so-called SIMPLE algorithm (“semi-implicit method for
pressure-linked equations”) [301]. The SIMPLE and related algorithms are iterative solvers,
which treat the momentum equations and a “pressure equation” separately in an outer
iteration. Within this iteration, the pressure is updated using a Poisson-type equation. For
such codes with an outer iteration, it is easy to replace the most time-consuming component
of the solver, the solution of the Poisson-type equation for the pressure, by an efficient
multigrid solver.

Although this “acceleration” approach reduces the computing times [247, 364], the
overall convergence will, however, be unchanged since the outer SIMPLE iteration is not
accelerated. The multigrid solution for the whole system will typically be much faster.

On the other hand, the SIMPLE approach allows a relatively straightforward numerical
solution of more general and complicated PDE systems than the Navier–Stokes equations.
It is, for example, relatively easy to add turbulence equations in the SIMPLE framework.

�

8.6.3 The Checkerboard Instability

If the Stokes or Navier–Stokes equations are discretized by means of standard central
differencing with all unknowns at grid vertices (nonstaggered grid), pressure values are
directly coupled only between grid points of distance 2h. (The same is true if all variables
are located at the cell centers.)

Therefore, the grid Gh can be subdivided into four subgrids (in a four-color
fashion) among which the pressure values are decoupled. The pressure unknown at
(x, y), for instance, is only coupled with the grid points (x + 2h, y), (x, y + 2h),
(x + 2h, y + 2h), . . . and we have similar couplings for the unknowns at the grid points
(x + h, y), (x, y + h), (x + h, y + h), . . . . We detail this phenomenon for the Stokes case:

Lhuh =
⎡⎣−�h 0 (∂x)h

0 −�h (∂y)h
(∂x)h (∂y)h 0

⎤⎦⎡⎣uhvh
ph

⎤⎦ = 0
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with

−�h = 1

h2

⎡⎣ −1
−1 4 −1

−1

⎤⎦, (∂x)h = 1

2h

[−1 0 1
]
, (∂y)h = 1

2h

⎡⎣ 1
0

−1

⎤⎦.
The symbol of Lh is given by

L̃h(θ1, θ2) = 1

h2

⎛⎝4 − 2 cos θ1 − 2 cos θ2 0 ih sin θ1
0 4 − 2 cos θ1 − 2 cos θ2 ih sin θ2

ih sin θ1 ih sin θ2 0

⎞⎠,
that is, for vh =

⎛⎝1
1
1

⎞⎠ eiθ1x/heiθ2y/h, we have

Lhvh = L̃h(θ1, θ2)vh.

As in Example 4.7.5, we find that Lhuh = 0 has highly oscillating solutions on the infinite
grid, e.g.

uh = 0, vh = 0, ph(xi, yj ) = (−1)i+j ,

the so-called checkerboard mode. This can also be seen from

det L̃h(θ1, θ2) = 0 ⇐⇒

⎧⎪⎪⎨⎪⎪⎩
θ1 = π, θ2 = π

θ1 = 0, θ2 = π

θ1 = π, θ2 = 0
θ1 = 0, θ2 = 0

⎫⎪⎪⎬⎪⎪⎭ ,
which means that some high frequencies are annihilated by Lh. This is equivalent to the
fact that there are high frequency error components which do not contribute to the defect.
According to the discussion in Section 8.3.2, Lh is not h-elliptic, Eh(Lh) = 0: Pointwise
relaxation schemes do not have reasonable smoothing properties for such a discretization.

Remark 8.6.5 This unstable behavior is also reflected by det Lh = �h�2h. The checker-
board instability is implicitly present in the operator�2h when applied on�h. This carries
over to the system. �

8.7 INCOMPRESSIBLE NAVIER–STOKES EQUATIONS:
STAGGERED DISCRETIZATIONS

One remedy for the checkerboard instability in the case of the incompressible Navier–Stokes
equations is to use a staggered distribution of unknowns [182] instead of a nonstaggered one.
This can be seen most easily for the Stokes equations and carries over to the incompressible
Navier–Stokes case.
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In a staggered arrangement, the discrete pressure unknownsph are defined at cell centers
(the ×-points), and the discrete values of uh and vh are located at the grid cell faces in the
◦- and •-points, respectively (see Fig. 8.2).

The discrete analog of the continuity equation

ux + vy = 0

is defined at the ×-points and the discrete momentum equations are located at the ◦- and the
•-points, respectively. In the case of the Stokes equations, the discrete momentum equations
read

−�huh + (∂x)h/2ph = 0, −�hvh + (∂y)h/2ph = 0.

Here, we have used the standard five-point discretization for �h (for uh on the ◦ grid and
for vh on the • grid) and the approximations

(∂x)h/2ph(x, y) := 1

h

(
ph

(
x + h

2
, y
)

− ph
(
x − h

2
, y
))

(∂y)h/2ph(x, y) := 1

h

(
ph

(
x, y + h

2

)
− ph

(
x, y − h

2

))
.

The staggered discretization of the Stokes equations leads to the system⎡⎣ −�h 0 (∂x)h/2
0 −�h (∂y)h/2

(∂x)h/2 (∂y)h/2 0

⎤⎦⎡⎣uhvh
ph

⎤⎦ =
⎡⎣0

0
0

⎤⎦. (8.7.1)

This O(h2)-accurate discretization of the Stokes system is h-elliptic. The h-ellipticity can
be seen from the determinant of the discrete operator, which is det Lh = (�h)

2; therefore
Eh(Lh) = Eh((�h)

2) > 0.
The stability of the staggered location of unknowns is also reflected by the fact that

differencing of the first-order derivatives is now done with a distance of h rather than 2h
(see also Remark 8.6.5).

• • • •

• • • •

• • • •

• • • •

• • • •

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

× × × ×

× × × ×

× × × ×

× × × ×

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

×: p

◦: u

•: v

�: u, v, p

Figure 8.2. Staggered (left) and nonstaggered (right) location of unknowns.



318 MULTIGRID

Furthermore, the staggered approach leads to a natural discrete form of the continuity
equation on a Cartesian grid: in accordance with the continuous problem, pressure values
are not needed at physical boundaries.

Although we now have a stable discretization, a zero diagonal block appears
in the discrete system (8.7.1). For multigrid, this has the consequence that it is not
possible to relax the discrete equations directly in a decoupled way.

Moreover, the unknowns are not defined at the same locations. It is thus not
immediately clear how to define standard collective relaxation.

We will present a generalization of collective relaxations in Section 8.7.2 (“box relaxation”).
Another approach is to use distributive relaxation (see Section 8.7.3), which can be regarded
as a generalization of decoupled relaxation.

All these considerations can be generalized from the Stokes equations to the incom-
pressible Navier–Stokes equations in a straightforward manner. Clearly, when dealing with
the (nonlinear) incompressible Navier–Stokes equations, the FAS version of the multigrid
method (or global linearization) can be used. For high Re numbers, the singular perturbation
character of the momentum equations has to be taken into account additionally (upwind-
type discretizations have to be used for the discretization of the convective terms) as pointed
out in Section 8.6.2.

We will start the discussion on multigrid for staggered discretizations with a description
of some appropriate transfer operators.

8.7.1 Transfer Operators

In staggered discretizations, the transfer operators depend on the relative locations of
the unknowns with respect to the fine grid �h and the coarse grid �H (here, �2h) (see
Fig. 8.3). Transfer operators for the different unknowns in staggered grids can easily be
obtained. For the restriction ÎHh of the current approximation ūh in the FAS, the mean value
of the unknowns at neighbor grid points is used to define approximations on the coarse
grid:

ūH = 1

2

⎡⎣1
·
1

⎤⎦ ūh,
v̄H = 1

2

[
1 · 1

]
v̄h, (8.7.2)

p̄H = 1

4

⎡⎣1 1
·

1 1

⎤⎦ p̄h,
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×

×

Figure 8.3. A fine and a coarse grid cell with corresponding staggered fine and coarse grid
unknowns.

where the dot denotes the position on the coarse grid at which the restriction is applied. The
defects can be transferred to the coarse grid in the following way:

duH = 1

8

⎡⎣1 2 1
·

1 2 1

⎤⎦ duh , (8.7.3)

dvH = 1

8

⎡⎣1 1
2 · 2
1 1

⎤⎦ dvh, (8.7.4)

d
p
H = 1

4

⎡⎣1 1
·

1 1

⎤⎦ dph . (8.7.5)

Two appropriate interpolation schemes for the coarse grid corrections are the (properly
scaled) transpose of the restriction and bilinear interpolation. Let ŵH denote the coarse
grid correction for the fine grid function uh. Linear interpolation of ŵH means

ŵh(x, y) = 1
4 (ŵH (x, y + 3h/2)+ 3ŵH (x, y − h/2) (C)

ŵh(x, y) = 1
8 (ŵH (x − h, y + 3h/2)+ ŵH (x + h, y + 3h/2)

+3ŵH (x − h, y − h/2)+ 3ŵH (x + h, y − h/2) (D)

ŵh(x, y) = 1
4 (ŵH (x, y − 3h/2)+ 3ŵH (x, y + h/2) (A)

ŵh(x, y) = 1
8 (ŵH (x − h, y − 3h/2)+ ŵH (x + h, y − 3h/2)

+3ŵH (x − h, y + h/2)+ 3ŵH (x + h, y − h/2) (B),

(8.7.6)

where the geometric position (x, y) of the points A, B, C, D is shown in Fig. 8.4. The
interpolation formulas for the correction of vh are similar. For the pressure, the interpolation
formulas for cell-centered grids can be applied (see Section 2.8.4).
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h

A B A B A

C C CD D

A A AB B

C C CD D

Figure 8.4. Bilinear interpolation of coarse grid corrections for uh on a staggered grid.

Figure 8.5. One possibility for collective relaxation on a staggered grid.

8.7.2 Box Smoothing

For the staggered discretization, one could define a collective local relaxation which is
applied to the equations for uh, vh andph at adjacent locations (see Fig. 8.5 for an example).
However, this approach is not a good smoother [401]. Better results are obtained with the
so-called box relaxation [401, 402].

The basic idea of box relaxation [401] is to solve the discrete Navier–Stokes equations
locally cell by cell involving all discrete equations which are located in the cell (“box”).
This means that all five unknowns, sketched in Fig. 8.6, are updated collectively, using the
respective four momentum equations at the cell boundaries and the continuity equation in
the center of the box. Thus, for each box, one has to solve a 5 × 5 system of equations
to obtain corrections for the unknowns. Using this scheme, each velocity component is
updated twice and the pressure once per relaxation. Of course, the boxes are processed in a
Gauss-Seidel manner (lexicographically or red–black like).

Remark 8.7.1 (box-line relaxation) If significant anisotropies exist, e.g. in the case of
strongly stretched grids, one has to update all strongly coupled unknowns collectively if
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•

•

uh uh

vh

vh

ph

Figure 8.6. Unknowns updated collectively by box relaxation in the staggered case.

× × × × × ×◦ ◦ ◦ ◦ ◦ ◦ ◦
• • • • • •

• • • • • •

vh

vh

uh, ph

Figure 8.7. Unknowns updated collectively by box-line relaxation (staggered discretization).

standard coarsening is applied. In such cases, box relaxation can be replaced by a corre-
sponding box-line version [390]. For instance, in case of box x-line relaxation, this means
that all unknowns marked in Fig. 8.7 are updated collectively. �

Box relaxation turns out to have robust smoothing properties not only for small Re
numbers. However, underrelaxation is typically required, depending on Re. Box relaxation
has been analyzed within the framework of LFA [242, 360]. The smoothing factor of (lex-
icographic) box relaxation for the Stokes problem on a staggered grid is μloc = 0.32 using
an underrelaxation parameter of ω = 0.7 [360].

Example 8.7.1 As an example for the 2D incompressible Navier–Stokes equations, we
consider the driven cavity flow for Re = 100 and Re = 1000 in� = (0, 1)2 with boundary
conditions (u, v) = (1, 0) at y = 1 and homogeneous Dirichlet boundary conditions for u
and v elsewhere (see Fig. 8.8). We use a hybrid discretization as sketched in Remark 7.3.1,
where the switching is now governed by the mesh Reynolds number, i.e. by huhRe. We
compare the multigrid convergence for box and box-line smoothing. For both Reynolds
numbers, the smoothing steps are performed in alternating directions (although this is not
really necessary for Re = 100).
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Figure 8.8. Streamlines for the driven cavity problem at Re = 100 (left) and at Re = 1000 (right).

Table 8.7. Measured multigrid convergence factors: W(1, 1)-cycle
for solving the Navier–Stokes driven cavity problem.

Re = 100 Re = 1000

1/h Box Box-line Box Box-line

16 0.21 0.12 0.52 0.19
32 0.15 0.10 0.57 0.34
64 0.15 0.07 0.56 0.44

128 0.14 0.06 0.52 0.49

Here, for Re = 100 an underrelaxation parameter ω = 0.7 and for Re = 1000, ω = 0.3
has been employed. Other values of ω are, for example, used in [401]. LFA applied to
the linearized incompressible Navier–Stokes equations indicates which values for ω are
appropriate.

Table 8.7 presents measured average convergence factors of multigrid W(1, 1)-cycles.
Here, the restriction operators (8.7.3)–(8.7.5) and the bilinear interpolation of correc-
tions (8.7.6) have been applied. For Re = 100, the multigrid iteration converges very
well. For Re = 1000, the convergence factors are worse. Note that this is an example
of a recirculating flow. We have thus an analog to the convection-dominated convection–
diffusion problem discussed in Section 7.2. The multigrid convergence is limited by the
coarse grid correction, rather than by the smoothing properties. Accordingly, the somewhat
worse convergence factors for the high Reynolds number Re = 1000 are not surprising.

Of course, the remedy proposed in Section 7.8, i.e. the recombination of iterants, can
also be applied here to improve the convergence. �
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8.7.3 Distributive Smoothing

Whereas the box relaxation schemes are clearly collective in type, other relaxation schemes
have been proposed in the literature, some of which belong to the general class of so-called
distributive relaxation schemes. Distributive relaxation was considered first in [72]. For a
theoretical description and corresponding analysis, we refer to [419, 422, 423].

Before we give a general description of distributive relaxations, we would like to
point out that various distributed relaxation schemes have been introduced as predictor–
corrector type schemes. In the predictor step, a new velocity field (u∗

h, v
∗
h) is computed

from (umh , v
m
h , p

m
h ) by performing a few relaxations to the momentum equations. In the

corrector step, both velocity and pressure are updated

ūmh = u∗
h + δuh, v̄mh = v∗

h + δvh, p̄mh = pmh + δph (8.7.7)

so that

(1) the continuity equation is satisfied and
(2) the momentum defect remains unchanged (or changes only slightly).

The resulting schemes differ in the way in which these updates are actually computed.
In the distributive Gauss–Seidel scheme (DGS) introduced in [72], the predictor step

consists of a standard GS-LEX-type relaxation of each of the momentum equations to obtain
u∗
h and v∗

h. The corrector step is also carried out lexicographically over the points. Since we
will describe only the basic idea of DGS, we restrict ourselves to the Stokes equations. Let
d
p
h (x, y) be the defect of the discrete continuity equation at a point (x, y) just before the

corrector step is applied at that point. The corrector step then consists of the nine updates

uh(x + h/2, y) ← uh(x + h/2, y)+ c
vh(x, y + h/2) ← vh(x, y + h/2)+ c
uh(x − h/2, y) ← uh(x − h/2, y)− c
vh(x, y − h/2) ← vh(x, y − h/2)− c

ph(x, y) ← ph(x, y)+ 4c/h (8.7.8)

ph(x, y + h) ← ph(x, y + h)− c/h
ph(x, y − h) ← ph(x, y − h)− c/h
ph(x + h, y) ← ph(x + h, y)− c/h
ph(x − h, y) ← ph(x − h, y)− c/h,

where c = hd
p
h (x, y)/4 (see Fig. 8.9 for the geometric position of the updates). After

these updates, the defect of the discrete continuity equation at (x, y) is zero. Moreover, the
pressure changes are such that the defects of the momentum equations at all points remain
unchanged.

An elegant and general way to describe distributive relaxations is to introduce a right
preconditioner in the smoothing procedure [419, 422].
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Figure 8.9. Geometric position of the updates in the corrector step of DGS.

The introduction of a right preconditioner means that we introduce new variables ûh,
where uh = Chûh, and consider the transformed system LhChûh = f h. Ch is chosen
in such a way that the resulting operator LhCh is suited for decoupled (noncollective)
relaxation. In particular, the zero block in Lh resulting from the continuity equation in (8.7.1)
should disappear in LhCh.

The distributive relaxation can then be described in the following way.

(1) Transform the system Lhuh = f h to a “simpler” one by a suitable preconditioning
with Ch (the distributor).

(2) Choose a point- or linewise relaxation process, preferably for each of the equations
of the transformed system separately, of the form

û
m

h = ûmh + Bh(f h − LhChû
m
h ) (8.7.9)

with Bh being some approximation of the inverse of LhCh. Note that, depending on
the choice of Bh, Jacobi-or Gauss–Seidel-type iterations are obtained.

(3) Reformulate this relaxation scheme in terms of the original operator and unknowns
by using umh = Chûh:

ūmh = umh + ChBh(f h − Lhu
m
h ). (8.7.10)

This interpretation of distributive relaxation as a “standard” relaxation method for a properly
preconditioned system may also serve as a general basis on which to construct smoothing
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schemes for the incompressible Navier–Stokes equations. Then, the operator Lh is inter-
preted as the operator of the linearized equations (nonlinear terms frozen to current values
by, for instance, a Picard-type linearization).

The above description leads to an elegant approach for analyzing the smoothing prop-
erties of distributive schemes by means of LFA.

Example 8.7.2 For the Stokes equations, the DGS described above is represented by the
preconditioner

Ch =
⎛⎝Ih 0 −(∂x)h/2

0 Ih −(∂y)h/2
0 0 −�h

⎞⎠. (8.7.11)

In order to see the equivalence of the DGS approach described above and the use of this
preconditioner, consider (8.7.10). Note that, according to (8.7.9),Bhd

m
h = Bh(f h−Lhu

m
h )

determines the corrections ûm+1
h − ûmh obtained by a standard GS-LEX type relaxation with

respect to the operator

LhCh =
⎛⎝ −�h 0 0

0 −�h 0
(∂x)h/2 (∂y)h/2 −�h

⎞⎠. (8.7.12)

According to (8.7.10), Ch then indicates how these corrections are to be distributed to uh.
With these considerations, the equivalence of the preconditioning approach to (8.7.8) can
be derived.

For DGS, the LFA smoothing analysis can be performed in terms of the product oper-
ator LhCh. Here, the smoothing properties only depend on the diagonal terms �h. The
DGS smoothing factor μloc is just that of pointwise GS-LEX for LhCh and thus equal to
μloc(−�h) = 0.5 [72].

A detailed two-grid analysis can be found in [280], where stretched grids are also
included in the discussion. �

Box relaxation and DGS work well for low Reynolds numbers. Box relaxation is, how-
ever, somewhat more expensive than DGS. For higher Reynolds numbers, distributive relax-
ation (in its “classical form” [72]) is known to become worse than box relaxation. A variety of
modified distributive schemes has been proposed (see for example [53, 66, 148, 149, 419]).

Remark 8.7.2 (pressure correction-type smoothers) The SIMPLE algorithm [301] men-
tioned in Remark 8.6.4 is another example of a distributive scheme. It belongs to the class of
the so-called pressure correction schemes, which have been used as smoothers (for example,
in [24, 247, 352]). They are obtained by using a distributor of the form

Ch =

⎛⎜⎝ Ih 0 −Q̂−1
h (∂x)h/2

0 Ih −Q̂−1
h (∂y)h/2

(∂x)h/2 (∂y)h/2 Ih

⎞⎟⎠. (8.7.13)
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with Q̂h being an approximation ofQh := −�h+Re uh(∂x)h/2 +Re vh(∂y)h/2. A suitably
chosen relaxation scheme is then employed for the resulting product system LhCh (e.g.
line Gauss–Seidel successively for velocity and pressure).

Smoothing analysis results for pressure correction schemes are available in [352]. The
resulting smoothing factor is μloc = 0.6 for the Stokes equations. In [53], the pressure cor-
rection smoothers are, however, not recommended as smoothers for the stationary incom-
pressible Navier–Stokes equations. �

Remark 8.7.3 Distributive relaxation may not be suitable for the boundary conditions and
should then be replaced by box relaxation at and near the boundary. �

Remark 8.7.4 When applied to the conservative form of the Navier–Stokes equations,
usually not only a right preconditioner is introduced, but additionally a left one. The result-
ing schemes are sometimes called weighted distributive relaxations (see, for example,
Appendix C). �

Summarizing our discussion, the incompressible Navier–Stokes equations can be
solved efficiently by multigrid using staggered discretizations. Typical smoothers
are of box or distributive type. The use of box relaxation may be considered as more
straightforward and more convenient than that of distributive relaxation.

8.8 INCOMPRESSIBLE NAVIER–STOKES EQUATIONS:
NONSTAGGERED DISCRETIZATIONS

In complexflow domains nonorthogonal curvilinear meshes (boundaryfitted grids) are often
used. The staggered discretization of the incompressible Navier–Stokes can be generalized
to such grids. However, in order to obtain a stable discretization, one has to work with
covariant velocities (i.e. velocities tangential to the cell faces) or contravariant velocities
(velocities normal to the cell faces) as new unknowns. The numerical accuracy of the
“straightforward” staggered discretization on boundary fitted grids depends sensitively on
the nonorthogonality of a grid. This can be overcome by even more sophisticated staggered
variants [330, 331, 417].

On curvilinear meshes, a nonstaggered discretization is much easier to implement
since the equations can be discretized directly in terms of the original Cartesian velocity
components [317], e.g. with a finite volume discretization. On the other hand, nonstag-
gered schemes have to overcome the checkerboard instability by artificial stabilization
terms. We will discuss various possibilities of stabilizing the nonstaggered discretiza-
tion in the following sections. A detailed discussion on the advantages and disadvan-
tages of staggered and nonstaggered grids on curvilinear grids can, for example, be
found in [327].

Flux splitting concepts as described in Section 8.8.4 are particularly suited for flows at
high Reynolds numbers.
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8.8.1 Artificial Pressure Terms

Stabilization for nonstaggered discretizations can be achieved by adding an artificial elliptic
pressure term, e.g.

−ωh2�hph (8.8.1)

to the continuity equation (ux)h + (vy)h = 0. For h → 0, the artificial pressure term tends
to 0. Since this term is proportional to h2, second-order accuracy is maintained if all other
terms in the PDE system are discretized with second-order accuracy.

For the Stokes equations and for low Reynolds numbers, central second-order discretiza-
tions can be employed in a straightforward way when using the artificial pressure term.

The addition of an artificial pressure term is implicitly also used in other Stokes or
Navier–Stokes discretizations. For instance, the SIMPLE method for nonstaggered dis-
cretizations as discussed in [302] can be seen to implicitly solve a discrete continuity
equation augmented by an artificial pressure term of the form (8.8.1) with ω = 1/8. Also,
in the framework of (stabilized) finite element approximations, artificial pressure terms are
quite common. Flux splitting discretizations such as the flux difference splitting described
in Section 8.8.4 also implicitly introduce artificial pressure terms.

The parameter ω has to be chosen small enough to maintain a good accuracy but large
enough so that the discrete Navier–Stokes system becomes sufficiently h-elliptic. The
h-ellipticity measure Ēh(Lh) indicates a proper choice of ω. For simplicity, we restrict
ourselves to the Stokes equations. The symbol of the discrete Stokes operator, L̃h(θ) is
given by

L̃h(θ) =
⎛⎝−�̃h(θ) 0 ∂̃x,h(θ)

0 −�̃h(θ) ∂̃y,h(θ)

∂̃x,h(θ) ∂̃y,h(θ) −ωh2�̃h(θ)

⎞⎠, (8.8.2)

where �̃h, �̃2h, ∂̃x,h and ∂̃y,h denote the symbols of the respective scalar difference oper-
ators �h,�2h,

(∂x)h := 1/(2h)
[−1 0 1

]
h

and (∂y)h := 1/(2h)

⎡⎣ 1
0

−1

⎤⎦
h

.

We obtain

det L̃h(θ) = −�̃h(ωh2�̃h�̃h − �̃2h). (8.8.3)

From this, we can compute Ēh = Ēh(ω). To simplify this computation, note that only the
second term of det L̃h (i.e., the term in parentheses in (8.8.3)) is crucial. Only this term may
become small for high frequencies. Omitting the factor �̃h in (8.8.3), we obtain

Ēh(ω) ∼

⎧⎪⎨⎪⎩
8ω(1 − 8ω) (ω ≤ 1/16)

1/4 (1/16 ≤ ω ≤ 1/12)

(1 + 1/(4ω))/16 (ω ≥ 1/12)
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which does not depend on h. This means that the h-ellipticity of the discrete Stokes equa-
tions, stabilized by (8.8.1), is h-independent.

As expected, the h-ellipticity measure is zero for ω = 0. The maximum of Ēh(ω)
(= 1/4) is obtained for 1/16 ≤ ω ≤ 1/12. The smallest ω for which the maximum
is attained is ω = 1/16. This choice turns out to be a reasonable choice in practice, with
respect to both accuracy and stability. This value ofω can also be used for the Navier–Stokes
equations at low Reynolds numbers.

Remark 8.8.1 (high Reynolds numbers) For high Reynolds numbers, the diffi-
culties of dominating advection operators have to be taken into account again (see
Section 8.6.2). Moreover, the artificial pressure term also has to be suitably adapted. For high
Reynolds numbers, when a significant amount of artificial viscosity (e.g. proportional to
max{Re|uh|h,Re|vh|h}) is introduced in the momentum equations, the choice of an appro-
priate ω is somewhat more involved and can be based on an analysis of the h-ellipticity of
the linearized operator. �

Remark 8.8.2 Central differencing of ∂p/∂x, ∂p/∂y on nonstaggered grids formally
requires pressure values at physical boundaries. They can most easily be obtained by means
of extrapolation from interior pressure values. However, in order to obtain second-order
accuracy, extrapolation has to be sufficiently accurate. In many cases, linear extrapolation
is sufficient.

If the pressure is not prescribed at any boundary, the system is singular (p is determined
only up to a constant) and one has to take into account the considerations in Section 5.6.4
(see also Remark 8.6.2). �

Remark 8.8.3 h-elliptic nonstaggered discretizations can also be obtained without intro-
ducing an artificial pressure term by simply using noncentral discretizations, e.g., forward
differences for p in the momentum equations and backward differences for u and v in
the continuity equation. This is most easily seen by considering the determinant of the
operator. If we replace, for example, the second-order central differences in (8.8.2) by the
respective first-order one-sided schemes (and set ω = 0), h-ellipticity follows immediately
from det L̃h = �̃h�̃h in the Stokes case. Some multigrid results are reported in [149]. In
order to obtain an overall second-order accuracy, the nonsymmetric (forward and backward)
upwind-type discretizations also have to be of second-order accuracy. �

8.8.2 Box Smoothing

When discretizing the incompressible Navier–Stokes equations with standard second-order
discretizations and the artificial pressure term as discussed in Section 8.8.1, the develop-
ment of smoothing schemes is not straightforward. LFA shows that the smoothing factors
of standard collective point relaxations are not satisfactory. Although, according to the
discussion on h-ellipticity in Section 8.3.2, there exist pointwise smoothing schemes with
smoothing factors bounded below 1, the smoothing factor of such a scheme may be rather
poor. One possibility to overcome this problem is to extend the idea of box relaxation,
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which has proved to be a suitable smoother in the case of staggered discretizations, to the
nonstaggered case [243] (see Fig. 8.10).

In Cartesian coordinates, box relaxation is defined essentially in the same way as in the
staggered case, except that the side lengths of the boxes are now twice as large. For each
box, again a 5 × 5 system is solved, using the respective four momentum equations along
the edges and the continuity equation in the center of the box.

Remark 8.8.4 (Box-line relaxation) As in the staggered case, box relaxation should
be replaced by a corresponding box-line version, as indicated in Fig. 8.11, if significant
anisotropies occur. �

The smoothing factor, μloc, of lexicographic box relaxation for the Stokes operator on
a nonstaggered grid with ω = 1/16 is μloc = 0.63 [242]. For box-line relaxation one
obtains μloc = 0.56. Using underrelaxation for the pressure, these smoothing factors can
be improved to values below 0.5 [243].

� � �

�

�

uh uh

vh

vh

ph

Figure 8.10. Unknowns, �, updated collectively by box relaxation in the nonstaggered case.

� � � � � � �

� � � � � � �

� � � � � � �

vh

vh

uh, ph current line

Figure 8.11. Unknowns, �, updated simultaneously by box-line relaxation.
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Example 8.8.1 For a demonstration of the multigrid convergence, we consider the nonstag-
gered discretization of the Stokes equations (in the unit square) with ω = 1/16 in the artifi-
cial pressure term. The algorithm uses linear pressure extrapolation at physical boundaries,
FW and bilinear interpolation. Table 8.8 gives convergence factors using W(2,1)-cycles and
compares box- and box-line smoothing (without underrelaxation).

Ideally, according to the smoothing factors given above, one would expect a convergence
factor per cycle of around 0.24 (≈ 0.633) and 0.18 (≈ 0.563) in the case of lexicographic
box smoothing and box-line smoothing, respectively. This is in good agreement with the
observed results in Table 8.8. �

Example 8.8.2 Table 8.9 shows the corresponding multigrid convergence for the driven
cavity flow problem introduced in Example 8.7.1 both for Re = 100 and Re = 1000. We
use a hybrid discretization (see Remark 7.3.1).

For Re = 100, the multigrid convergence factors are similar to those in the Stokes
case. However, they become worse for Re = 1000 (unless the finest grid size is sufficiently
small). Again, this effect is a consequence of the h-dependent amount of artificial viscosity
used, which limits the two-grid convergence factor to 0.5. On the finest grid, however, the
convergence improves due to the hybrid discretization. For this application, it is possible to
apply central differencing at many fine grid points. �

Remark 8.8.5 Although distributive relaxations were originally developed for discretiza-
tions on staggered grids, these schemes can also be used on nonstaggered grids, with similar
smoothing and convergence properties similar to the staggered case. �

Table 8.8. Measured multigrid convergence factors: W(2,1)-cycle
for the Stokes problem.

n = 1/h 16 32 64 128 256

Box 0.24 0.22 0.24 0.24 0.24
Box-line 0.14 0.13 0.13 0.14 0.14

Table 8.9. Measured multigrid convergence factors:
W(2,1)-cycle for the Navier–Stokes driven cavity problem,
with lexicographic box smoothing.

n = 1/h 32 64 128 256

Re = 100 0.16 0.22 0.23 0.23
Re = 1000 0.58 0.49 0.49 0.41
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8.8.3 Alternative Formulations

As discussed above, difficulties in the numerical solution of the incompressible Navier–
Stokes equations are caused by the special form of the continuity equation. As mentioned
above standard collective point relaxations are not suited as smoothers for the nonstag-
gered discretization if stabilized by the artificial pressure term. It is, however, possible to
reformulate the incompressible Navier–Stokes system in such a way that standard collec-
tive relaxations become appropriate for second-order accurate central discretizations. The
applicability of these reformulations is, however, limited to certain classes of problems.

As an example, we consider a reformulation of the stationary incompressible Navier–
Stokes system which is well suited to low Reynolds numbers. In this formulation, a Poisson-
like equation for p is obtained. To guarantee equivalence between the two systems of
equations, the continuity equation has to be satisfied at the boundary of the domain. We will
discuss this approach and a proper multigrid treatment in some detail in the following.

Result 8.8.1 Assume that� is a bounded domain in R
2 and that u(x, y), v(x, y), p(x, y)

and ∂� are sufficiently smooth. Then the two systems

−�u+ Re(uux + vuy + px) = 0 (�) (8.8.4)

−�v + Re(uvx + vvy + py) = 0 (�) (8.8.5)

ux + vy = 0 (�̄ = � ∪ ∂�) (8.8.6)

and

−�u+ Re(vuy − uvy + px) = 0 (�) (8.8.7)

−�v + Re(uvx − vux + py) = 0 (�) (8.8.8)

�p + 2(vxuy − uxvy) = 0 (�) (8.8.9)

ux + vy = 0 (∂�) (8.8.10)

are equivalent.

Proof. The momentum equations (8.8.4)–(8.8.5) can be written as (8.8.7)–(8.8.8) because
of (8.8.6). Differentiating (8.8.7) with respect to x and (8.8.8) with respect to y, adding
these equations and using again (8.8.6), we obtain (8.8.9).

In the other direction, (8.8.6) can be regained from (8.8.7)–(8.8.9): the difference
of (8.8.9) and the sum of the derivatives of (8.8.7) with respect to x and (8.8.8) with
respect to y is �(ux + vy) = 0. This PDE with the homogeneous Dirichlet boundary con-
dition (8.8.10) interpreted as a boundary value problem for ux + vy has the unique solution
(8.8.6).

The problems related to the checkerboard instability in the original Navier–Stokes sys-
tem disappear for the new boundary value problem. The “new continuity equation” (8.8.9)
naturally contains the elliptic term �p. In the Stokes case, we obtain the Laplace equation
itself.
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In the same way and under similar assumptions as in 2D, a corresponding 3D system
can be derived [347].

For low Reynolds numbers, we can use standard second-order discretizations for all
derivatives occurring. This discretization has a good h-ellipticity measure. A good smooth-
ing algorithm for the resulting discrete Navier–Stokes problem can easily be found: the
principal part of each difference equation is characterized by the �h-operator. The three
equations are coupled by lower order terms. So, a standard collective point relaxation is
suitable, which updates the three variables uh, vh and ph simultaneously by the solution of
a 3×3 system in every grid point. On a square grid the corresponding collective (pointwise)
GS-LEX relaxation has a smoothing factor of μloc = 0.5 for the Stokes problem.

Remark 8.8.6 (treatment of boundary conditions) Two boundary conditions are nec-
essary for the solution of the original Navier–Stokes equations (8.6.4)–(8.6.6). The new
system (8.8.7)–(8.8.9) requires three, one of them being the continuity equation (8.8.10)
on the boundary. We end up with three conditions for the velocity components but no con-
dition for the pressure p if, for example, u and v are prescribed by functions u0 and v0
on the boundary. This problem can be treated in the same way as the biharmonic problem
with u and un boundary conditions (see Section 8.4.2), introducing auxiliary points along
the boundary �h(� = ∂�). The discrete equations at the boundary �h are (8.8.7)–(8.8.9),
discretized by standard second-order central differences and

uh = u0, vh = v0, (∂x)huh + (∂y)hvh = 0. (8.8.11)

These are six equations for six unknowns at the boundary (uh, vh and ph at any boundary
point and at the corresponding auxiliary point).

For a collective update of the unknowns located at a boundary pointP , one has to include
the three equations at that grid point of the interior of �h, which is the direct neighbor of
P , in the same way as described in detail for the biharmonic system. �

Example 8.8.3 Finally, we apply a corresponding multigrid algorithm to a driven cavity
Stokes flow problem on � = (0, 1)2 here with

u0(x, y) =
{

0 if y < 1

16x2(1 − x)2 if y = 1.

v0(x, y) = 0.

The FAS algorithm uses F(2,1)-cycles, FW and bilinear interpolation. The mesh size is
1/128 on the finest grid and 1/4 on the coarsest one.

The measured convergence factor is about 0.11, which is in good agreement with the
smoothing factor μloc = 0.5 of the collective GS-LEX relaxation (0.53 = 0.125). �

In the above example, the measured multigrid convergence factors are satisfactory for
Re less than about 50.
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Remark 8.8.7 (stream function–vorticity formulation) Another possibility to refor-
mulate the incompressible Navier–Stokes equations, particularly suitable in 2D, is the so-
called stream function–vorticity formulation. Here, the unknowns to be solved for are the
vorticity (sometimes denoted by ω = ∇ × u) and the stream function, � (u = ∂�/∂y,

v = −∂�/∂x). In this formulation, the solution of the Navier–Stokes system reduces to
the solution of two Poisson-like equations for the stream function and the vorticity, respec-
tively. Multigrid methods have been developed which are appropriate even for high Reynolds
numbers (see, for example, [157]).

In 3D, however, this approach becomes more complicated and loses its attractive fea-
tures. In particular, the 3D vorticity–velocity formulation requires the determination of
six unknown functions (three components of the vorticity and of the velocity). A corre-
sponding multigrid algorithm for the incompressible Navier–Stokes equations has been
proposed [201], however, on a staggered grid employing a distributive relaxation. �

8.8.4 Flux Splitting Concepts

In the following, we will present a discretization for the incompressible Navier–Stokes
equations which is particularly suitable for flows at high Reynolds numbers. Up to now,
we have motivated the discretizations for the incompressible Navier–Stokes equations by
departing from the linear case of the Stokes equations. Here, the situation is different. The
structure of the convective terms of the incompressible Navier–Stokes system resembles
that of PDE systems describing compressible flow.

Many upwind discretizations for compressible flow problems make use of so-called flux
splitting concepts in various forms [196]. Examples are the flux vector splitting method of
van Leer [231], the flux difference splitting method of Roe [328] or of Osher et al. [97,
287, 288]. These discretization schemes lead naturally to an upwind-type discretization
for systems of nonlinear equations. We will show how such a method can be applied to
incompressible flow problems.

In flux formulation, the 2D incompressible Navier–Stokes equations in conservation
form (8.6.1)–(8.6.3) can be written as

∂f

∂x
+ ∂g

∂y
= ∂f v
∂x

+ ∂gv
∂y
, (8.8.12)

where f and g are the convective fluxes and f v and gv are the viscous fluxes:

f =
⎛⎝u2 + p

uv

c2u

⎞⎠, g =
⎛⎝ uv

v2 + p
c2v

⎞⎠,
(8.8.13)

f v =
⎛⎝(1/Re)(∂u/∂x)
(1/Re)(∂v/∂x)

0

⎞⎠, gv =
⎛⎝(1/Re)(∂u/∂y)
(1/Re)(∂v/∂y)

0

⎞⎠.
Here, c is a constant reference velocity introduced to homogenize the eigenvalues of the
system matrices, as will be discussed below. The unknown functions (sometimes also called
state variables, or state vector) are u = (u, v, p)T .
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The starting point for a finite volume discretization is the integral formulation of (8.8.12)
in a control volume �i,j (see also Section 5.7)∫

�i,j

(∂f
∂x

+ ∂g

∂y
− ∂f v
∂x

− ∂gv
∂y

)
d� = 0.

According to Gauss’s theorem, we obtain∫
�i,j

(∂f
∂x

+ ∂g

∂y
− ∂f v
∂x

− ∂gv
∂y

)
d� =

∮
∂�i,j

(nxf + nyg − nxf v − nygv) dS,

where nx and ny denote the x- and the y-component, respectively, of the unit outward
normal vector of the respective side.

A step towards a discrete formulation is to use an approximation∮
∂�i,j

(nxf + nyg − nxf v − nygv) dS

≈
∑
k

(nxf h + nygh)k|Sk| −
∑
k

(nxf v,h + nygv,h)k|Sk|,

where k is an appropriate index representing the sides Sk of �i,j and where |Sk| denotes
the length of a side of the control volume.

The discretization of the viscous fluxes f v and gv does not cause any problems and is
performed as in the scalar case for the Laplacian (see Section 5.7).

For the convective fluxes f and g, however, central differences do not yield stable
discretizations.

The idea of many upwind-type discretizations starts from∑
k

(nxf h + nygh)k|Sk| = F i+1/2,j |Si+1/2| + F i−1/2,j |Si−1/2|

+ F i,j+1/2|Sj+1/2| + F i,j−1/2|Sj−1/2|,
(8.8.14)

where each flux vector F i+i0,j+j0 has to be defined in such a way that it is a sufficiently
accurate approximation for (nxf h + nygh)k at the corresponding side Sk of �i,j . The
indices i + i0, j + j0 with either i0 or j0 ∈ {−1/2, 1/2} correspond naturally to a point on
a control volume side Sk (see Fig. 8.12). Note that the calculation of the flux vectors at grid
points, denoted by F i,j , is no problem since all grid functions are defined there.

The flux vector F i+i0,j+j0 depends on the vector uh at the left-hand and right-hand
side of a control volume boundary denoted by uLh and uRh . An appropriate approximation
for F i+i0,j+j0 = FR(u

L
h ,u

R
h ) has to be found. In a straightforward discretization, uLh and

uRh are, for example, chosen as

uLh = ui,j and uRh = ui+1,j . (8.8.15)

for the side Si+1/2,j .
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i,j+1

i+1,j

i–1,j

i,j–1

S __i+

i,j

2
1

Figure 8.12. Control volume around point i, j .

Remark 8.8.8 Theflux function FR(u
L
h ,u

R
h ) is usually based on the approximate solution

of a so-called Riemann problem and is often called an approximate Riemann solver [196].
By 1987 [329], more than 100 different variants of such discretization schemes were

listed. However, an “optimal” scheme, if it exists at all, has not yet been identified. We
will not discuss this topic here in detail and refer to the literature for a more profound
understanding (see [183, 196, 232] for a survey).

A general approach is

FR(u
L
h ,u

R
h ) = 1

2 (F (u
L
h )+ F (uRh )− d(uLh ,u

R
h )) (8.8.16)

which corresponds to a central approximation modified by a dissipative term d. Different
approximative Riemann solvers use different definitions for the function d. Different choices
of uLh and uRh lead to approximations of different accuracies (see the example below). �

As one example, we describe a Roe-type flux difference splitting approach developed
in [125] and discuss some of its features. Since the derivation of the scheme is technically
rather complicated, we restrict ourselves first to (8.8.15), which will result in a first-order
discretization.

Readers not interested in the (somewhat technical) details of the definition of the upwind
flux function can move immediately to (8.8.25).

To define an upwind flux, we consider differences

δF i,i+1 = nxδf i,i+1 + nyδgi,i+1, (8.8.17)

where

δF i,i+1 = F i+1,j − F i,j , δf i,i+1 = f i+1,j − f i,j ,

δgi,i+1 = gi+1,j − gi,j .

The flux difference splitting approach makes use of the fact that the components of the flux
vectors f and g (8.8.13) are polynomials in the primitive variables u, v and p. For example,
a difference δ(uv) can be written as

δ(uv) = ūδv + δuv̄,
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where the overbar denotes the algebraic mean of the differenced variables (“linearization”).
Differences of the convective fluxes with respect to u can thus be expressed as

δf i,i+1 = A1δui,i+1 and δgi,i+1 = A2δui,i+1 (8.8.18)

with

A1 :=
⎛⎝2ū 0 1
v̄ ū 0
c2 0 0

⎞⎠ and A2 =
⎛⎝v̄ ū 0

0 2v̄ 1
0 c2 0

⎞⎠, (8.8.19)

where δui,i+1 = ui+1,j − ui,j . The linear combination δF i,i+1 in (8.8.17) is written as

δF i,i+1 = Aδui,i+1 (8.8.20)

with

A = nxA1 + nyA2 =
⎛⎝nxū+ w̄ nyū nx

nxv̄ nyv̄ + w̄ ny
c2nx c2ny 0

⎞⎠ (8.8.21)

and w̄ = nxū+ nyv̄. For a unit normal vector ((nx)2 + (ny)2 = 1), A has the eigenvalues

λ1 = w̄, λ2 = w̄ + a, λ3 = w̄ − a where a =
√
w̄2 + c2 (8.8.22)

and can thus be diagonalized:

A = R�L,

with the left and right eigenvector matrices L and R (R = L−1) and the diagonal matrix�
which consists of the eigenvalues λi of A.

In its diagonalized form, the matrixA can easily be split into positive and negative parts,
i.e. in a matrix A+ with nonnegative and in a matrix A− with nonpositive eigenvalues,

A = A+ + A−, A+ = R�+L, A− = R�−L, (8.8.23)

where

�+ = diag(λ+
1 , λ

+
2 , λ

+
3 ), �− = diag(λ−

1 , λ
−
2 , λ

−
3 )

with

λ+
i = max (λi, 0), λ−

i = min (λi, 0).

Using (8.8.21) and (8.8.23), any linear combination of flux differences can now be written
in terms of differences of the dependent variables u as

nxδf + nyδg = A+δu + A−δu. (8.8.24)

Based on (8.8.20) and using

|δF i,i+1| := (A+
i,i+1 − A−

i,i+1)δui,i+1
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we define an upwind flux (at the right boundary of the control volume) by

F i+1/2,j := 1
2 (F i,j + F i+1,j − |δF i,i+1|). (8.8.25)

Note that we have obtained a special choice for the approximate Riemann solver introduced
in (8.8.16) implicitly assuming uLh = ui,j and uRh = ui+1,j at the right side Si+1/2 of the
control volume, where the dissipative term d is given by |δF i,i+1|.

The upwind character of the definition (8.8.25) is clarified by the representations

F i+1/2,j = F i,j + A−
i,i+1δui,i+1 (8.8.26)

= F i+1,j − A+
i,i+1δui,i+1. (8.8.27)

If all eigenvalues of A are positive, we have F i+1/2 = F i , and if all eigenvalues of A are
negative, F i+1/2 = F i+1.

The other sides of the control volume are treated in the same way. In this way, an overall
upwind discretization for a system of PDEs can be defined. If we use (8.8.26) and sum up
over all sides of the control volume, we obtain the flux balance∮

∂�i,j

(nxf + nyg) dS ≈ |Si+1/2|A−
i,i+1δui,i+1 + |Si−1/2|A−

i,i−1δui,i−1

+ |Sj+1/2|A−
j,j+1δuj,j+1 + |Sj−1/2|A−

j,j−1δuj,j−1

(using
∑
k |Sk|nk = 0).

By computing A− and A+, the stencil of the discrete Navier–Stokes operator obtained
by first-order flux difference splitting can be determined. On a Cartesian grid it has the form
shown in Fig. 8.13.

Figure 8.13. Linearized discrete operator obtained by flux difference splitting on a Cartesian grid;
the subscript h and the overbars in ū and v̄ have been omitted.
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In this figure, ∂x , ∂y , ∂xx and ∂yy have been used to indicate standard central difference
operators, omitting the subscript h. Each element in this operator matrix consists of the
operator representing the direct discretization of the linearized Navier–Stokes equations by
central differences and additional stabilization terms. For clarity, we have written the central
differences and the stabilization terms on separate lines. The stencil shows that, when using
this first-order flux difference splitting, an artificial viscosity proportional to h appears
implicitly in the continuity equation. All other terms also contain artificial stabilization.
This is significant for higher Reynolds numbers.

First-order upwind schemes are, in general, not accurate enough and second-order
upwind discretizations are required. Second-order upwind-type discretizations can be
obtained by defining the states uLh and uRh as

uLh = uLi+1/2,j := ui,j + 1 + κ
4
(ui+1,j − ui,j )+ 1 − κ

4
(ui,j − ui−1,j ) and

uRh = uRi+1/2,j := ui+1,j + 1 + κ
4
(ui,j − ui+1,j )+ 1 − κ

4
(ui+1,j − ui+2,j ),

(8.8.28)

respectively, where −1 ≤ κ ≤ 1 (compare the κ-schemes introduced in Section 7.3.2).
With this definition, we obtain

F i+1/2,j := 1
2 (F (u

L
h )+ F (uRh )− |δFL,R|) (8.8.29)

instead of (8.8.25).
The artificial terms will then be of higher order. A figure, corresponding to Fig. 8.13, for

the second-order scheme can be found, for example, in [125]. For incompressible Navier–
Stokes problems, it is, in general, not necessary to introduce a limiter in the discretization.
Typically, even at high Reynolds numbers, spurious oscillations in the discrete solution do
not appear.

8.8.5 Flux Difference Splitting and Multigrid: Examples

With respect to the multigrid convergence, LFA results [145] indicate that it is possible to
use collective pointwise and linewise relaxation methods for the first-order accurate flux
splitting discretization. Second-order accurate solutions can again be computed by the defect
correction technique or directly using multigrid with the KAPPA smoother as described in
Section 7.4.1.

In the following examples, we use the first-order discretization presented above and the
second-order discretization based on Fromm’s discretization (8.8.28) with κ = 0.

We will present some typical results of three possibilities (first-order directly, multi-
grid for the first-order discretization combined with defect correction of the second-order
discretization and multigrid with the KAPPA smoother directly for the second-order dis-
cretization).

We choose the FAS version of multigrid, with nonlinear line relaxation. In order to keep
the discussion as simple as possible, we use only W(1,1) cycles and fix the multigrid com-
ponents for all problems considered here: we use FW and its transpose (2.3.8) as transfer
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operators. For the first-order discretization we always employ (collective) alternating sym-
metric line Gauss–Seidel smoothing. This smoother is also used within the defect correction
procedure. The KAPPA smoother is also of alternating symmetric type. The generalization
of this smoother to the case of the system of incompressible Navier–Stokes equations is
straightforward. Only the coefficients of the first-order accurate discretization appear on
the left-hand side of the linewise relaxation; the second-order discretization is used in the
right-hand side. For all smoothers, we use an underrelaxation parameter of 0.9. In all cases,
the calculation starts on the coarsest grid (nested iteration) to obtain a first approximation
on the finest grid.

Example 8.8.4 (analytic test problem) As a first example, we use the prescribed smooth
solution

u = sin πx sin πy

v = cosπx cosπy (8.8.30)

p = sin πx + cosπy

on � = (0, 1)2, for which we can easily check the accuracy of the flux splitting discretiza-
tion. The right-hand side of the incompressible system is set accordingly. Note that the
right-hand side of the continuity equation is zero. This easy test can be used to evaluate the
discretization scheme.

We prescribe Dirichlet boundary conditions for u and v, but, not, however, for the
pressure for which we use second-order extrapolation at the boundary. Table 8.10 shows
the measured accuracy in the Euclidian norm || · ||2 of the discrete solution with first- and
second-order flux difference splitting discretization for Re = 5000. The O(h) and O(h2)

accuracy is obvious when comparing the discrete solutions for h = 1/64 and h = 1/128,
respectively.

Table 8.11 presents the corresponding convergence factors. Convergence factors (defect
reduction) for 20 iterations are presented in the maximum norm || · ||∞. In the defect
correction iteration, one multigrid cycle for the O(h) discretization is applied per defect
correction step. The defect correction does not converge for h = 1/16. Multigrid using the
KAPPA smoother is more robust and somewhat faster than the defect correction iteration
for this problem.

Table 8.10. Measured accuracy for an analytic test problem with
flux difference splitting, Re = 5000.

n = 1/h 16 32 64 128

O(h) discr. u: 5.7 (−2) 3.0 (−2) 1.7 (−2) 9.3 (−3)
v: 5.5 (−2) 3.4 (−2) 2.0 (−2) 1.0 (−2)
p: 6.7 (−2) 3.8 (−2) 2.1 (−2) 1.1 (−2)

O(h2) discr. u: 1.9 (−2) 5.4 (−3) 1.4 (−3) 3.6 (−4)
v: 1.1 (−2) 3.1 (−3) 8.2 (−4) 2.0 (−4)
p: 8.7 (−3) 3.1 (−3) 9.4 (−4) 2.6 (−4)
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Table 8.11. Measured convergence factors for Example 8.8.4.

n = 1/h 16 32 64 128

O(h) discr. 0.10 0.20 0.17 0.10
O(h2) with defect correction Div. 0.58 0.64 0.66
O(h2) with KAPPA smoother 0.23 0.39 0.46 0.50

However, within only a few iterations of the defect correction iteration or of the multigrid
cycle using the KAPPA smoother (less than five in both cases), the discretization accuracy
from Table 8.10 is already achieved.

Qualitatively the same results with respect to accuracy are obtained at lower Reynolds
numbers. The multigrid convergence depends, however, on the Reynolds number. For exam-
ple, for Re = 500 the multigrid convergence factor with the KAPPA smoother on the 1282

grid is 0.20, for Re = 50 it is 0.46. For Re = 5, the convergence is only 0.81. This behav-
ior reflects the fact that the flux difference discretization is oriented to compressible flow
discretizations, which corresponds to high values of Re. (The unsatisfactory convergence
for Re = 5 can be improved by a recombination of iterants (see Section 7.8) to 0.57 when
using two iterants and to 0.53 when using five iterants.) �

Example 8.8.5 (driven cavity flow) As the next test problem, we consider the driven
cavity flow problem introduced in Example 8.7.1 at Re = 5000, which has a boundary
layer. Fig. 8.14 presents some streamlines obtained for the second-order discretization of
this test problem.

Fig. 8.15 shows centerline velocity profiles, i.e. velocity u is shown at the line x = 1/2,
obtained with first- and second-order discretizations and compares them with a reference
profile [157]. The need for second-order discretizations is obvious for this problem. Actually,
only the second-order discretization approximates the reference profile well.

The fact that we have a boundary layer here can also be seen in Fig. 8.15. We find u = 1
at the top boundary y = 1, whereas u ≈ 0.4 at a short distance from the boundary. A similar
observation can be made for y = 0.

With respect to the multigrid convergence, note that we are dealing with a recirculating
flow problem at a relatively high Reynolds number. For such flow problems, we cannot
expect good multigrid convergence factors. This is confirmed by the results in Table 8.12.
In this case, even if the first-order problems are solved exactly, the defect correction iteration
does not converge. The recombination of multigrid iterants leads to a significant improve-
ment of the multigrid convergence with the KAPPA smoother. Using only m̃ = 2 improves
the convergence factors from 0.74 to 0.51. �

Example 8.8.6 (block-structured grid) As an example of a flow problem in a non-
Cartesian block-structured grid, we consider the domain sketched in Fig. 8.16. Here, two
obstacles (plates) are placed inside the domain (indicated by the bold lines). The domain
consists of five blocks (see Fig. 8.16). The grid is shown in the right picture of the same
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Figure 8.14. Streamlines for the driven cavity problem at Re = 5000.
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Figure 8.15. Centerline velocity profile for the driven cavity problem at Re = 5000.

Table 8.12. Measured multigrid W(1,1) cycle convergence for the cavity
problem at Re = 5000, h = 1/128.

O(h) discr. 0.59
O(h2) with KAPPA smoother 0.74
O(h2) with KAPPA smoother and iterant recombination m̃ = 2 0.51

figure. Block 1 and Block 5 consist of 16×32 cells, Block 2 of 8×88 cells, Block 3 of 32×88
cells and Block 4 of 16 × 88 cells. The inflow boundary is at the upper part of Block 1. A
parabolic velocity profile is prescribed there. At the outflow, in Block 5, Neumann boundary-
type conditions are set. At all other boundaries and at the obstacles, zero velocities are
prescribed.
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Figure 8.16. Domain and grid for Example 8.8.6.

Figure 8.17. Streamlines of the flow in Example 8.8.6 at Re = 100 (left) and Re = 1000 (right).

In this block-structured application, collective line relaxation is performed “blockwise”,
i.e. lines in the context of the relaxation end at the boundaries of the blocks.

Figure 8.17 shows the streamlines for the laminar flow at Re = 100 (left picture) and
Re = 1000 (right picture) with a second-order accurate discretization. The influence of the
Reynolds number can be clearly seen. For Re = 1000 larger recirculation zones occur.

The corresponding multigrid convergence with the KAPPA smoother is 0.22 for Re =
100 and 0.63 for Re = 1000. �

Example 8.8.7 (a 3D example) A well-known channelflow, which is often studied as a test
case for 2D discretizations (for example in [215, 390]) is the laminar flow over a backward-
facing step. This channel flow is solved in 3D here. The flux splitting discretization can
be generalized to 3D in a straightforward way [290]. The flow domain consists of nine
rectangular blocks (see Fig. 8.18). The geometry is defined by L1 = 50, L2 = 10, H = 2,
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Figure 8.18. Domain for flow over a 3D backward-facing step and its division into nine blocks.

h1 = 1, h2 = 1. At the left boundary, a fully developed 2D velocity profile is prescribed. At
the right boundary, Neumann boundary conditions are applied. We consider this problem
for Re = 200, 400, 600 and 800.

Here, we are interested in the length (xr ) of the recirculation zone at the bottom of the
channel. This length depends on the Reynolds number.

The shape of the recirculation length along the y-axis is shown in Fig. 8.19. In Fig. 8.20
two selected streamlines show the recirculation at the step for Re = 400. The recirculating
region is clearly visible. The recirculation due to the step results in a real 3D effect; the flow
direction moves towards the channel centerline. In 3D, recirculation zones are generally not
determined by closed characteristics (closed streamlines), which is the case in 2D.

With respect to the multigrid convergence, this example is easy. The recirculation is a
harmless one; it is not of convection dominating type. Correspondingly the convergence
is fast and defect correction works well enough to obtain the second-order accuracy. The
defect correction convergence shown in Fig. 8.21. is satisfactory for all Reynolds numbers
considered. �

8.9 COMPRESSIBLE EULER EQUATIONS

In this section, we will discuss the multigrid solution of the compressible Euler equations.
These equations are an important basis for many industrial applications. Physically, they
model inviscid compressible flow.

Section 8.9.1 introduces the PDE system and gives a brief survey of some of its prop-
erties. In Section 8.9.2, we describe the idea of one particular finite volume discretization,
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Figure 8.19. The shape of the recirculation length along the y-axis for different Reynolds numbers.

Figure 8.20. 3D flow over a backward-facing step (the different 163 blocks are also visible) at
Re = 400: two selected streamlines showing the recirculation.

which is based on the so-called Godunov upwind approach with Osher’s flux difference
splitting for the convective terms. This is one example of many different discretizations that
have been used in multigrid algorithms for the compressible Euler equations. A general
survey on discretization schemes for compressible flow equations is given in [196].
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Figure 8.21. Nine-block defect correction convergence for 3D backward-facing step flow; grid
164 × 32 × 32 cells.

In Section 8.9.2, we restrict ourselves to the stationary Euler equations to find steady-
state solutions. The generalization to implicit discretizations of the time-dependent case is
then straightforward and can be done as outlined in Section 2.8.2.

In Section 8.9.3, we give some examples for the multigrid treatment of the Euler equa-
tions, including an example with shocks.

In Section 8.9.4, we briefly discuss the application of the multistage Runge–Kutta
approach, as introduced in Section 7.4.2, to the Euler equations.

We also refer to Appendix C, which gives general guidelines on how to apply multigrid
efficiently to CFD problems including the compressible Euler equations.

8.9.1 Introduction

In 2D, the time-dependent compressible Euler equations can be written as

∂u

∂t
+ Nu := ∂u

∂t
+ ∂f

∂x
+ ∂g

∂y
= 0 (8.9.1)

with

u =

⎛⎜⎜⎝
ρ

ρu

ρv

E

⎞⎟⎟⎠,
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and where

f =

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

(E + p)u

⎞⎟⎟⎠ and g =

⎛⎜⎜⎝
ρv

ρuv

ρv2 + p
(E + p)v

⎞⎟⎟⎠
are the two components of the flux vector.E is the total energy. In order to close the system,
we use the thermodynamic equation of state for a perfect gas

p = (γ − 1)(E − 1
2ρ(u

2 + v2)), (8.9.2)

where γ is the (constant) ratio of specific heats at constant pressure and constant volume.
The first equation represents the conservation of mass. The second and the third equa-

tions represent the conservation of momentum (neglecting viscosity). The vector u is repre-
sented in the variables of the conservation laws: mass (or density), momentum and energy
per unit volume. The equations are a reasonable model for flows at high Reynolds numbers
away from solid wall boundaries, i.e. if viscous effects (such as boundary layers) can be
neglected.

The Mach numberM∞ is defined by

M∞ = |u∞|
c∞

,

where c∞ is the speed of sound and u∞ is the velocity of the undisturbed flow (“at infinity”).
In the literature, often also (ρ, u, v, p) or (u, v, c, z) are used as the unknown functions,
where

c =
√
γp

ρ
(8.9.3)

is the local speed of sound and

z = ln
p

ργ
(8.9.4)

is a measure for the specific entropy.
Essential features of the Euler equations are the following: First, the Euler equations are

a first-order system (only first derivatives are present). Although the physical assumptions
for the compressible Euler equations are quite different compared to the incompressible
Navier–Stokes equations (compressible versus incompressible flow, viscid versus inviscid
flow), some formal relations between the first three of the compressible Euler equations
and the incompressible Navier–Stokes equations are easily recognized (assuming constant
density ρ).

The compressible Euler equations are an example of a hyperbolic system of PDEs. In
nonconservative (differentiated) form, they read

∂u

∂t
+ ∂f

∂u

∂u

∂x
+ ∂g

∂u

∂u

∂y
= 0. (8.9.5)
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The Jacobian matrix

n1A1 + n2A2 = n1
∂f

∂u
+ n2

∂g

∂u

has real eigenvalues for all directions (n1, n2). The corresponding eigenvalues are
(n1u + n2v) + c, (n1u + n2v) − c and the double eigenvalue n1u + n2v. The sign of
the eigenvalues determines the direction in which the information on the solution is propa-
gated in time along the characteristics governed by (n1, n2).

Because of the nonlinear terms, solutions of the Euler equations may develop discon-
tinuities like shocks and contact discontinuities, even if the initial flow solution at t = t0
is smooth. Formally, discontinuities are allowed if a weak formulation of the PDE system
is used instead of (8.9.1). The weak formulation is known to give nonunique solutions.
The physically relevant solution, which is the limit solution of the flow with disappearing
viscosity, satisfies the so-called entropy condition [229].

Here, we depart from the integral form

∂

∂t

∫∫
�

u dx dy +
∫
∂�

(nxf + nyg) dS = 0, (8.9.6)

where ∂� is the boundary of � and (nx, ny) is the outward normal unit vector at the
boundary ∂�.

8.9.2 Finite Volume Discretization and Appropriate Smoothers

Much progress has been made in the discretization and in the multigrid-based solution
for complex compressible flow problems [196]. At first sight, due to the fact that we are
dealing with a hyperbolic system, it may be surprising that multigrid can contribute to
efficient solution methods. Heuristically, this can be understood since one basically deals
with several “equations of convection type”. We have seen for the example of the convection–
diffusion equation, but also for the incompressible Navier–Stokes equations discretized
by flux splitting discretizations, that some h-ellipticity is introduced by an appropriate
discretization of convective terms.

For the finite volume discretization, the domain � is divided into quadrilaterals �i,j .
For each quadrilateral, (8.9.1) holds in integral form∮

∂�i,j

(nxf (u)+ nyg(u)) dS = 0 (8.9.7)

for each (i, j), where nx and ny are the components of the unit outward normal vector on
∂�i,j and where we assume steady-state flow.

The flux splitting concepts, that we have described in Section 8.8.4 were originally
developed for the Euler equations. Proceeding as for the incompressible Navier–Stokes
equations, the discretization results in (8.8.14), with f h and gh as defined in the Euler case.
Again, F i+i0,j+j0 is a suitable approximate Riemann solver, which approximates (nxf h+
nygh)k at the corresponding side Sk of�i,j . The discretization requires a calculation of the
convective flux at each control volume side Sk .
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Flux difference splitting, which has been described in detail for the discretization of the
inviscid terms of the incompressible Navier–Stokes equations, can also be applied here. Of
course, the definition of the matrices A1 and A2 in (8.8.19) has to be adapted accordingly
(see, for example [124]).

In the examples in this section, we use the Godunov upwind approach [158]. An approxi-
mate solution F i+1/2,j of the 1D Riemann problem is obtained by an approximate Riemann
solver proposed in [288] in the so-called P-variant [188]:

F i+1/2,j = 1

2

(
F (ui,j )+ F (ui+1,j )−

∫ ui+1,j

ui,j

|A(u)| du
)
. (8.9.8)

Here, u = (u, v, c, z)T is the state vector (see (8.9.3) and (8.9.4)). |A(u)|(= A+(u) −
A−(u)) is a splitting of the Jacobian matrix A into matrices with positive and negative
eigenvalues, F = nxf h + nygh is again the flux along the normal vector, and the integral
corresponds to a special choice of the dissipative term d in (8.8.16). This approximation
is first-order accurate. Details on the discretization and on boundary conditions are given
in [145, 188, 220, 372].

With respect to the multigrid solution, the FAS is commonly used for the discrete Euler
equations. Since the unknowns occur in all equations, one can, in principle, use well-known
collective relaxation methods. The equations are of “convection type”, so, as in the flux
splitting for the incompressible Navier–Stokes equations, Gauss–Seidel-type relaxations
can very efficiently be used for the first-order discretization. Typical relaxation schemes
for this nonlinear system for um+1

h are the lexicographic collective Gauss–Seidel (CGS-
LEX) point or line smoothers [188, 220, 274, 371]. For the (approximate) solution of the
nonlinear system, one local Newton linearization per grid point or grid line is usually
sufficient.

Symmetric CGS-LEX (forward followed by backward ordering) or even four-direction
CGS-LEX and the corresponding alternating symmetric line smoothers are robust smooth-
ing variants.

Second-order accurate discretizations can be obtained by the use of van Leer’s
κ-scheme [233]. The vectors ui,j and ui+1,j in (8.9.8) are replaced accordingly. TVD
schemes (as described in Section 7.3.2) need to be employed if the solution has
discontinuities.

As discussed for the convection–diffusion equation, the CGS-type smoothers are well-
suited for the first-order discretization, but not for second-order schemes. For second-order
discretizations, there are again three possibilities: first, we can combine a multigrid algo-
rithm described above for the first-order scheme with defect correction (as described in
Section 5.4.1), which has been done, for example, in [124, 188, 220, 371]. Another pos-
sibility is to use the KAPPA smoothers as introduced in Section 7.4.1, which have also
been applied successfully to the Euler equations in [293]. The third possibility is to use
multistage smoothers (see Section 8.9.4). This last option is actually most commonly used
in practice when solving the Euler equations.
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8.9.3 Some Examples

Here, we will present two examples of multigrid as described above for subsonic and
transonic compressible flow.

Example 8.9.1 (KAPPA smoothers for transonic flow) We consider a transonic Euler
problem at Mach number M∞ = 0.85 in a channel with a small circular bump; the height
of the channel is 2.1, its length is 5 and the bump length is 1. For this transonic channel
flow problem, we measured the multigrid convergence for the first- and the second-order
discretization on three grids, a 24×16, a 48×32 and a 96×64 grid. The grids are moderately
stretched (see Fig. 8.22). The pressure distribution is presented in Fig. 8.23. Obviously, the
solution of this problem has a shock starting near the end of the bump. Correspondingly,
we use van Leer’s κ-scheme as described above together with the van Leer limiter (7.3.4)
in order to avoid oscillations that may appear near shocks.

The V(2,1) cycle convergence for the first-order discretization with alternating line
Gauss–Seidel smoothing is very fast: it is about 0.1 on all three grids.

Figure 8.22. The 48 × 32 grid in a channel with a bump.

Figure 8.23. The pressure distribution for the transonic test M∞ = 0.85 on a 96 × 64-grid.
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Figure 8.24. Multigrid convergence for a transonic Euler example (M∞ = 0.85) with the KAPPA
smoother on a 96 × 64 stretched grid.

The second-order discretization of the Euler equations is solved directly with V(2,1)-
cycles using the (alternating symmetric line) KAPPA smoother (ω = 0.7). With the KAPPA
smoother, we find defect reduction factors of 0.3–0.4. The convergence on the finest grid is
presented in Fig. 8.24. It is similar to the convergence obtained for scalar problems with the
van Leer limiter (7.3.4). A single-grid version, however, does not lead to fast convergence
in this case.

Although the multigrid convergence for the first-order discretization is excellent and
the multigrid convergence with the KAPPA smoother is very satisfactory, the algebraic
convergence of the defect correction iteration is slow. �

In the following example, we will see that for the defect correction approach, the con-
vergence of relevant physical quantities such as the drag or the lift coefficient may be fast
even if the algebraic convergence is slow. The “differential convergence” is faster than the
algebraic convergence indicated by the defects.

Example 8.9.2 (flow around an airfoil) A classical test case for 2D compressible Euler
discretizations is the flow around a NACA0012 airfoil. Figure 8.25 shows a part of the
128×24 grid used in the computations. A well-known case is the Euler flow atM∞ = 0.63
with a (flow) angle of attack α = 2◦. The corresponding flow is subsonic. Shocks are
not present in the solution. The resulting pressure distribution (isobars) near the airfoil are
presented in Fig. 8.26(a). The pressure at the airfoil is usually described by the pressure
coefficient cP . It is presented in Fig. 8.26(b). For a multigrid Euler solver, this is an easy
test. The measured multigrid convergence with the KAPPA smoother is 0.28 for an F(1,1)
cycle.
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Figure 8.25. Part of the computational grid for the flow around an airfoil.
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Figure 8.26. Subsonic Euler flow around a NACA0012 airfoil, M∞ = 0.63, β = 2◦. (a) pressure
distribution; (b) pressure coefficient, cP .
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Figure 8.27. The convergence of the lift coefficient cL versus the number of defect correction
iterations. (a) M∞ = 0.63, α = 2◦; (b) M∞ = 0.85, α = 1◦.

Although the convergence of the (second-order) defects is slow in the case of defect
correction, it is found that convergence of the lift and drag coefficients, cL and cD , which are
the interesting quantities for such calculations is extremely fast. Figure 8.27(a) shows that
the lift coefficient cL for the subsonic case has converged after only a few defect correction
iterations. This phenomenon has been described in detail [220].

A second classical test case is the transonic flow at M∞ = 0.85 with angle of attack
α = 1◦. In this case two shocks appear in the flow solution; one at each side of the
airfoil (see both parts of Fig. 8.28). The multigrid convergence with the van Leer limiter
remains satisfactory. The F(1,1) cycle with the KAPPA smoother converges with an average
reduction factor of 0.59. However, in this case, an underrelaxation parameterω = 0.5 needs
to be used for convergence. The defect correction iteration also shows a good convergence,
for example, of the lift coefficient (see Fig. 8.27(b)). �

8.9.4 Multistage Smoothers in CFD Applications

In computational fluid dynamics (CFD), when complicated steady-state problems are to
be solved, the following approach is often used. Instead of solving the discrete problem
Nhuh = 0 directly, a time variable is introduced and

∂uh(t)

∂t
= −Nhuh (8.9.9)

is considered, a system of ordinary differential equations (ODEs). An advantage of using
this time-dependent formulation is that the corresponding initial value problem is “well
posed”, irrespective of the particular type of flow considered, sub- or supersonic, invicid or
viscous. This initial value problem can be solved by a suitable ODE solver.
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Figure 8.28. Transonic Euler flow around a NACA0012 airfoil, M∞ = 0.85, β = 1◦. (a) Pressure
distribution; (b) pressure coefficient, cP .

This approach is the starting point for the multistage Runge–Kutta smoothers. Certain
time-integration schemes like the classical Runge–Kutta methods are slowly convergent
(because of the stiffness of the ODE system) but have reasonable smoothing properties with
respect to the original steady-state problem Nhuh = 0. In fact, the multistage Runge–Kutta
smoothers turn out to be equivalent to the multistage smoothers introduced in Section 7.4.2.
(The respective parameters βj in (7.4.3) can consequently be interpreted as Runge–Kutta
coefficients scaled by the time step τ and the mesh size h.)

This idea is the basis of the work and software development of Jameson et al. [202, 203].
Jameson successfully solved complicated 3D inviscid and viscous flow problems around
aircraft [204] using four- and five-stage Runge–Kutta schemes for smoothing. This success
for inviscid flow problems and the simplicity of the multistage approach has motivated
many groups in industry to choose this approach for compressible flow problems.

Multistage smoothers can be applied directly to second-order upwind discretizations of
the Euler equations. Their smoothing properties depend on the choice of the coefficients βj
(see Section 7.4.2).

Remark 8.9.1 Using LFA smoothing analysis, it is possible to find optimal smoothing
parameter sets for different equations (replacing the classical Runge–Kutta parameters).
Since these smoothers are often used for solving inviscid CFD equations, a simple reference
equation, for which the optimal multistage parameters are calculated, is the limit case ε → 0
of the convection–diffusion equation (see, for example, [96])

aux + buy = 0 (�).
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Often, the multistage parameters obtained are then also used for more complicated problems.
For systems of PDEs, they are, however, not suitable in all cases [234]. �

A very popular multistage smoother for central discretization schemes with artificial
viscosity (also called artificial dissipation) is the Jameson–Schmidt–Turkel scheme [202]. A
variety of modifications in the form of preconditioners has been proposed for the multistage
smoother from [202] in order to make it more efficient. An overview is given in [205].

The idea of these modifications is to introduce a preconditioner C = Ch [234, 385] so
that the system (8.9.9) is replaced by

∂ũh(t)

∂t
+ ChNhuh = 0. (8.9.10)

The preconditioning can, for instance, be based on collective Jacobi iteration [4, 126, 127,
318]. This leads to a clustering of eigenvalues, for which the optimal coefficients are not
significantly different from those obtained for the convection equation [385] (which then
can also be applied).

Remark 8.9.2 The multiple semicoarsening approach has been pioneered in [275, 276]
for the Euler equations. The idea is to make the multigrid method with pointwise smoothers
more robust, in particular in the case that the flow is aligned with the grid. The combination
of multistage smoothing, preconditioning and semicoarsening has been shown to work well
for the 2D Euler equations [118]. �

8.9.5 Towards Compressible Navier–Stokes Equations

In this section, we will survey multigrid for the compressible Navier–Stokes equations
instead of giving a detailed discussion. These equations describe viscous and heat-
conducting fluids. In contrast to the compressible Euler equations, they take, in particular,
all the shear stresses into account.

Generally speaking, efficient multigrid based solution methods for the compress-
ible Navier–Stokes equations remain a topic of current research. A survey of multigrid
approaches for this PDE system can be found in [416]. In Section 10.5, we will outline the
difficulties that arise when dealing with the compressible Navier–Stokes equations in an
industrial aerodynamic design environment.

A typical boundary condition for the compressible Navier–Stokes equations at solid
walls is the “no flow” boundary condition u = v = 0. As a result, sharp boundary layers
appear in the physical flow solutions which is an essential difference compared to the
compressible Euler equations. In order to resolve such thin boundary layers, highly stretched
cells (with aspect ratios of up to 104) need to be employed.

As usual, the anisotropies resulting from such grids can be dealt with by line relax-
ations and/or semicoarsening approaches. For compressible Navier–Stokes applications,
semicoarsening techniques are starting to be accepted. A semicoarsening variant for the
Navier–Stokes equations is presented in [307]. Smoothing results for semicoarsening are
given in [4, 303, 305].
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Due to these anisotropies, the “straightforward” application of multistage smoothers
does not lead to efficient multigrid solution methods in this case, in contrast to the case of
the Euler equations.

However, the multistage scheme can be made more suitable for compressible Navier–
Stokes by using special preconditioners Ch which take care of such anisotropies [304, 404].
For example, one may choose Ch corresponding to collective line-Jacobi iteration, with lines
chosen perpendicular to the boundary layer.

Significant improvements in the efficiency can be obtained by combining the multistage
smoother with Jacobi preconditioning and semicoarsening.

Approaches, that also work on unstructured meshes, are decribed in [257–260, 271, 272].
The grid coarsening is done algebraically in that case (AMG-like, see Appendix A). A
coarse grid operator for the compressible Navier–Stokes equations is then constructed by a
Galerkin coarse grid approximation.

Turbulence modeling brings additional difficulties, that are typical for reactive flows as
well. Some references for this topic are [15, 128, 156, 238, 245, 353].

Appendix C gives some general guidelines on how to apply multigrid to CFD problems
including the compressible Navier–Stokes equations and the modeling of turbulence.
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Adaptivity is an important means to improve the efficiency of numerical methods for solving
PDEs. In an adaptive method, the grid and/or the discretization (type, order) are adapted to
the behavior of the solution in order to solve a given problem more efficiently and/or more
accurately.

In this book, we restrict ourselves mainly to adaptive grid refinement. In principle, we
distinguish two types of adaptive approaches:

– predefined (also called static) refinement: predefined refinement refers to grid structures
where the refinement is determined in advance, i.e. before the solution process is started.

– self-adaptive (also called dynamic) refinement: in self-adaptive approaches, the grid
refinements are carried out dynamically during the solution process, controlled by some
appropriate adaptation criteria.

In practice, the approaches may, of course, be combined.
Most of our description of adaptive multigrid is independent of whether the grid is refined

in a predefined way or self-adaptively and applies to both static and dynamic refinement.
The actual choice of the refinement criterion that has to be provided in the dynamic

case depends on the application, more concretely, on the objective of the grid adaptation.
One may be interested in balancing the global discretization error, in minimizing some
error functionally or in improving the error locally. In our examples, we will mainly aim at
balancing the global discretization error or at minimizing it in some norm (see [308] for a
more general treatment of adaptivity objectives).

Self-adaptive refinements are particularly useful if the solution shows a certain singular
behavior which is not (exactly) known in advance but detected during the solution process.
The singularity may be a non-smooth behavior of the solution or of its derivatives, a rapid
change like a boundary or interior layer, a shock, some turbulent behavior etc. In many
cases, these singularities occur locally so that a local adaptation of the grid (and/or of the
discretization) is appropriate. In addition to the local effects of singularities, typically a
global impact on the discretization accuracy is also observed. This global effect, also called
pollution, is an important phenomenon in the context of adaptivity.

356
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There are different reasons for singular behavior of the solution. Peculiarities of the
shape of the domain (like reentrant corners or other singularities), special features of the
PDE data (discontinuous or nonsmooth coefficients, jumps or other singularities in the right-
hand side or in the boundary conditions), but also more intrinsic features like changes of
the PDE type (from elliptic to hyperbolic), hyperbolic nonlinearities leading to shocks etc.

To be more specific, we will give an example of adaptive refinements for singularities,
which are caused by the shape of the domain, especially due to reentrant corners (see
Section 9.1).

In this book, we are interested in the combination of adaptivity and multigrid. Actually,
adaptive grid refinement turns out to be fully compatible with the multigrid structure and
philosophy. Realizing this idea, Brandt [58, 59] has introduced the so-called multilevel
adaptive technique (MLAT). The fast adaptive composite grid method (FAC) [252, 262],
can be regarded as an alternative to the MLAT approach. In our view, MLAT and FAC are
closely related and we will make use of both approaches.

Typically, adaptive grid refinement techniques start with a global (possibly coarse) grid
covering the whole computational domain (or with a hierarchy of such global grids). Finer
grids are then introduced locally only in parts of the domain in order to improve the accuracy
of the solution. Starting with a representative example, we will present some notation for
the global, the local and “composite” grids in Section 9.1. In Section 9.2, we will introduce
the idea of adaptive multigrid and formulate the problem on the composite grid, i.e. the
problem which is actually solved in the adaptive approach. In Section 9.3, we will discuss
appropriate conservative discretizations at the boundaries of the local refinement areas.

There, we start with a consideration, showing how the conservative discretization at the
interfaces can easily be dealt with in the adaptive multigrid algorithm. The main objective
of this section is to describe an adaptive multigrid cycle in detail, assuming, for simplicity,
a static (i.e. predefined) hierarchy of grids. Provided some automatic refinement criterion is
given, this procedure immediately can be used in a dynamic (self-adaptive) way if combined
with adaptive FMG.

Such a criterion has to answer the important question, where and how the refinement is
to be constructed in the dynamic case. We will discuss refinement criteria in Section 9.4.

In Section 9.5, we will consider the parallelization of adaptive methods. Adaptivity and
parallelism are numerically important principles, which, however, partly conflict with each
other. Nevertheless, we will see in Section 9.6 that very satisfactory results are obtained
(for systems of PDEs).

9.1 A SIMPLE EXAMPLE AND SOME NOTATION

9.1.1 A Simple Example

We will take a look again at one of the examples with a reentrant corner discussed in detail
in Section 5.5. Here, we consider the classical example of Poisson’s equation in an L-shaped
domain �:

−�u = f� (� = (−1, 1)2\{(0, 1)× (−1, 0)})
u = f � (� = ∂�).

(9.1.1)
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As we know from Section 5.5, the problem has, in general, a singularity at (0,0). The
typical singular behavior is reflected by the function us(r, φ) = r2/3 sin 2φ/3, where (r, φ)
denote polar coordinates. We assume smooth data f� and f � such that the solution u of
the problem (9.1.1) can be written as

u = ũ+ const us,

where ũ is a smooth function.
In order to obtain an impression of the potential of local refinement, we consider (9.1.1)

with the specific solution us and discretize this problem with the standard five-point stencil
�h. Table 9.1 gives the maximum errors ||u− uh||∞ obtained on a uniform grid and on a
locally refined grid, as illustrated in the left and the right pictures of Fig. 9.1, respectively.
For h = 1/128, i.e. on the uniform grid with about 50 000 grid points, the maximum error
||u−uh||∞ is about 3.3×10−3. On an appropriate locally refined grid, however, it is possible
to obtain a similar accuracy with less than 700 grid points and thus with significantly less
computational work.

Table 9.1. Comparison of the number of grid points and of the
errors for a uniform and an adaptive grid for Problem 9.1.1.

Grid Uniform Locally refined (adaptive)

Grid points 49665 657
||u− uh||∞ 3.3(−3) 3.8(−3)

Figure 9.1. Uniform grid (left) and adaptive (composite) grid (right) for Problem (9.1.1).
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In this simple example the full information about the behavior ofu close to the singularity
is available (but was not used). Nevertheless, the example shows the large potential of
adaptive grids. If the required accuracy is higher than in this example, the benefits of local
refinements are even more spectacular. The same is true for 3D problems. More realistic
examples will be treated in Section 9.6.

Remark 9.1.1 (second-orderaccuracy) As we have discussed in Section 5.5, the accuracy
in the above example is no longer O(h2) for the standard five-point discretization on the
uniform grid. At a fixed distance from the singularity, the accuracy behaves like O(h4/3).
Near the singularity it is even worse, namely O(h2/3). So, the singularity in the reentrant
corner leads to an increase of the discretization error in all of �. This is a typical example
of pollution. (Theoretically, the pollution effect can be analyzed using Green’s function of
the underlying problem.)

It may be interesting to know whether the grid can be structured in such a way that an
overall “second-order accuracy” is obtained by adaptation and how this can be achieved. In
other words: how does the adaptive grid structure have to be arranged in order to improve
the accuracy of the discrete solution by a factor of four if the mesh size of the global grid
is divided by two?

This question has been studied systematically in [208], where a general formula giving
“optimal” global and local refinement grid sizes for problems with reentrant corners was
given. For the L-shaped domain, for instance, the result illustrated in Fig. 9.2 can be derived
from that formula. Given a locally refined grid with global mesh size h (the left picture in
Fig. 9.2), we achieve a reduction of the overall error u−uh by a factor of four, under natural

Figure 9.2. Adaptive refinement structures, giving an error reduction by a factor of four for
Problem 9.1.1.
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assumptions on u, by the following procedure. The mesh sizes of the entire locally refined
grid are divided by 2 (h → h/2 etc.), but, in addition two more refinement steps need to be
added to the overall refinement structure (see right picture in Fig. 9.2). �

9.1.2 Hierarchy of Grids

In nonadaptive multigrid (on uniform grids), we have used a hierarchy of global grids
�0, �1, . . . , ��. In the adaptive approach, we maintain the hierarchy of global grids, but
we also introduce a hierarchy of increasingly finer grids restricted to smaller and smaller
subdomains. Adaptive multigrid differs from standard multigrid only in the sense that we
consider a hierarchy of grids

�0, . . . , ��,��+1, . . . , ��+�∗ , (9.1.2)

where �0, . . . , �� are global, whereas ��+1, . . . , ��+�∗ are local grids.

Example 9.1.1 A typical hierarchy of grids for the solution of the L-shaped problem is
shown in Fig. 9.3. In this case, �0 and �1 are global grids (� = 1) and the refined grids
�1+1, �1+2 (�

∗ = 2) cover increasingly smaller subdomains as indicated in Fig. 9.4.
�

We will call the boundaries of the locally refined domains in the interior of the
domain � interfaces of the locally refined domains in the following and denote them by
∂I�+1, . . . , ∂I�+�∗ (see Fig. 9.4).

�0 �1

(l = 1)

�1+1 �1+2

(l∗ = 2)

Figure 9.3. Hierarchy of grids.

Figure 9.4. Subdomains and interfaces ∂I�+k corresponding to the hierarchy of grids in Fig. 9.3.
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�̂0 �̂1 �̂1+1 �̂1+2

Figure 9.5. Composite grids corresponding to the hierarchy of grids in Fig. 9.3.

In addition to the global and the local grids, we consider their “composition”. The
corresponding sequence of composite grids (see Fig. 9.5) is defined by

�̂k := �k (k = 0, . . . , �) and �̂�+k := �� ∪
k⋃
j=1

��+j (k = 1, . . . , �∗).

(9.1.3)

9.2 THE IDEA OF ADAPTIVE MULTIGRID

Using the notation from the previous section, we are able to give a simple description of
adaptive multigrid.

We will start with the two-grid case (for cycle and FMG) Section 9.2.1. In Section 9.2.2,
we discuss the generalization of the two-grid cycle to multigrid. In these two sections, we
assume (for simplicity and without loss of generality) that the locally refined grids are
defined a priori.

Section 9.2.3 describes, how FMG can be applied in the context of dynamic local
refinements.

9.2.1 The Two-grid Case

In this section, we start with the two-grid case of one global and one locally refined grid
�1 and �1+1 as sketched in Fig. 9.3. If we know how to apply adaptive multigrid (FMG
and the two-grid cycle) to this situation, the recursive generalization to more grid levels is
straightforward. We will thus briefly describe an adaptive two-grid algorithm.

Assume that we have computed an approximation u1 on the (global) coarse grid. As
usual in FMG, we can interpolate this approximation to �1+1, for example by bicubic
interpolation. The fact that �1+1 covers only a subgrid of �1 is not a problem at all and
simply means that the interpolation is restricted to those parts of the computational domain
where �1+1 is defined.

On�1+1, we can now perform a two-grid cycle in a straightforward way. First, standard
smoothing schemes like GS-LEX, GS-RB or line smoothers can be applied on�1+1 without
any trouble, keeping the approximations of u1+1 at the interface points constant (i.e. these
values are interpreted as “Dirichlet values”).

For the coarse grid correction, we choose the FAS.
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Figure 9.6. Two levels �1 and �1+1 of a locally refined grid. Left: coarse grid points inside the
domain of local refinement; right: points on the composite grid �̂1+1.

Remark 9.2.1 It would not make much sense to use the multigrid correction scheme since
in those parts of the domain, which are not covered by the finer grid �1+1, on �1, one has
to work with the full solution and not just with a correction. �

Of course, the FAS is applied only at those coarse grid points belonging to�1+1 which
are not interface points. These coarse grid points are marked by in Fig. 9.6. The resulting
problem on the coarse grid �1 is then defined by L1w1 = f1 with

f1 :=
{
I1

1+1f1+1 + τ 1
1+1 at the points marked by in Fig. 9.6

f� on the remaining part of �1,
(9.2.1)

where τ 1
1+1 is the τ -correction as defined in Section 5.3.7 (applied to the current approxi-

mation).
When a solution w1 (or a new approximation) of the coarse grid problem on �1 has

been computed, the coarse grid corrections can be interpolated to �1+1 as usual, e.g. by
bilinear interpolation, including the interface points (marked by � and ◦). After the coarse
grid correction, we can again smooth the current approximation on �1+1.

Of course, this two-grid cycle can be applied iteratively. What we have described so far,
is essentially the two-grid case of the MLAT introduced in [58, 59].

Remark 9.2.2 (the discrete problem solved by the two-grid algorithm) We have des-
cribed the above two-grid method as a generalization of the two-grid case on globally
defined grids. We have, however, not defined the discrete problem which is to be solved if
we iterate the two-grid cycle until convergence.
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Obviously, we compute a solution on the composite grid �̂1+1 though this composite
grid is not addressed explicitly in the above description of the algorithm. This discrete
solution is characterized

• by the discrete equations L1+1u1+1 = f1+1 at the points marked by • in Fig. 9.6 (i.e.
on the locally refined grid �1+1 without interface points),

• by the discrete equations L1u1 = f1 at the points marked by ◦ in Fig. 9.6 (i.e. at the
interface points which also belong to the coarse grid and at those points of �1, which
do not belong to �1+1) and

• by implicitly defined relations at the points marked by � (i.e. at the interface points
which do not belong to the coarse grid). These points are also called hanging nodes. In
fact, the relations at the hanging nodes are not directly available but only defined by the
above two-grid algorithm. In our description, a first approximation has been obtained
by a cubic interpolation in FMG and, in each two-grid cycle, corrections from coarse
grid points have been added using linear interpolation.

If we want to postulate that cubic interpolation is to be fulfilled at the hanging nodes,
we have to modify the above two-grid algorithm. The easiest way is then to also use bicubic
interpolation for the coarse grid correction at the hanging nodes.

In general, a “conservative interpolation” is recommended, which corresponds to a
conservative discretization (see Section 9.3). �

9.2.2 From Two Grids to Multigrid

The generalization from the two-grid cycle to multigrid by recursion is straightforward (see
Fig. 9.7 for an illustration of adaptive multigrid V-cycles). MLAT works on the hierarchy
of grids as presented in Fig. 9.3, not on the hierarchy of composite grids (Fig. 9.5).

1

1+4

1+3

1+1

0

1+2

Figure 9.7. Cycles in the multilevel adaptive technique: , smoothing on locally refined grid levels;
•, smoothing on global grid levels; ◦, solution on coarsest grid.
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Actually, MLAT can simply be regarded as an adaptive generalization of FAS, in the
following sense.

• The sequence of the computation with respect to the grid levels is not affected,
i.e. the grid levels are run through as in the nonrefined case.

• On level �+ k, smoothing takes place in the refined parts of the domain �, i.e.
at all points of ��+k .

• In the interior parts of the locally refined grids, interpolation and restriction can
be carried out as usual.

• At the interfaces of the locally refined regions suitable interpolations and restric-
tions of the solution have to be chosen. Whenever a coarse grid correction is
interpolated or a restriction of the current approximation is performed in the
cycle, then corresponding operations are carried out at the interfaces.

On each grid level�k with k = 0, . . . , �+ �∗, we can apply any reasonable smoothing
procedure to the discrete equations Lkuk = fk , where fk is defined by exactly the same
formula as in (9.2.1), the index 1 being replaced by k and the index 1 + 1 being replaced
by k + 1, i.e.

fk :=

⎧⎪⎨⎪⎩
I k
k+1fk+1 + τk

k+1 at those points where τk
k+1 can be computed

(marked by � in Fig. 9.6)

f� on the remaining part of �k.

(9.2.2)

The unknowns at the interfaces ∂Ik are not included in the smoothing iteration on the
locally refined grid �k . On �k , they are treated as Dirichlet points. Their values are only
updated by the coarse grid correction.

At the hanging nodes (marked by � in Fig. 9.6), we have the same options as in the
two-grid case.

Summarizing, the idea of adaptive multigrid is a straightforward generalization of multi-
grid on uniform grids. The main difference is the treatment of the interface points.

Example 9.2.1 We compare the adaptive multigrid convergence for the example in
Section 9.1.1 with �∗ = 4 levels of refinement (h� = 1/8, h�+4 = 1/128) with the
multigrid convergence on a nonadaptive global fine grid (h = 1/128). For F(1,1) cycles
with GS-RB smoothing, FW restriction, bilinear interpolation (in general) and bicubic inter-
polation at the local refinement interfaces, the convergence speed is almost identical for the
adaptive and the nonadaptive multigrid iteration (see Fig. 9.8). �

9.2.3 Self-adaptive Full Multigrid

So far, the discussion of adaptive multigrid has been essentially based on locally refined
grids, which were defined a priori. In an advanced multigrid philosophy, however, the grid
generation, the discretization and the solution process should not be seen as three separate
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Figure 9.8. Multigrid convergence on a globally refined grid (h = 1/128) and on the locally refined
grid, h0 = 1/8 with 4 levels of refinement (|| · ||∞).

processes but as closely connected. A close interaction between the grid, the discretization
and the multigrid solution is realized in self-adaptive FMG.

Although the FMG approach can, of course, be applied to predefined locally refined
grid structures, it is more naturally combined with the self-adaptive technique. FMG on
adaptive grids is sketched in Fig. 9.9 and proceeds as follows:

(1) Perform FMG on a series of global grids until an approximation on the finest global
level has been computed with satisfactory accuracy.

(2) Based on some appropriate criteria (see Section 9.4.1), determine whether the current
grid should be locally refined. If yes, generate a locally refined grid in the subregions
flagged for refinement. If not, stop.

(3) Interpolate the current approximation to the nextfiner grid level by some suitable FMG
interpolation.

(4) Perform r adaptive multigrid cycles on this level.
(5) Continue with Step (2) if the required accuracy is not yet achieved. Otherwise, the

algorithm stops.

This procedure should terminate automatically if proper criteria for adaptive refinement are
used. To be on the safe side, one may additionally prescribe a maximum number of grid
levels.
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0

1

1+1

1+2

1+3

Figure 9.9. FMG on adaptive grids: starting on a hierarchy of global coarse grids, additional levels
are introduced. //, FMG interpolation; , smoothing on locally refined grid levels; •, smoothing on
global grid levels; ◦, solution on coarsest grid.

Obviously, the basic idea of self-adaptive FMG is simple and a straightforward gener-
alization of nonadaptive FMG.

9.3 ADAPTIVE MULTIGRID AND THE COMPOSITE GRID

Adaptive multigrid as sketched in Section 9.2 works on the hierarchy of locally refined
grids as shown in Fig. 9.3. Of course, the problem which is finally solved, depends on the
discretization on the finest composite grid (see Fig. 9.5) and may depend on algorithmic
details of MLAT at the interface points.

McCormick et al. [252, 262] have proposed the so-called FAC method and outlined
the importance of conservative discretization at the interfaces of local refinement areas.
The main difference between MLAT and FAC is the composite grid orientation of FAC.
Whereas the composite grid is only implicitly constructed in MLAT, FAC addresses the
composite grid explicitly. Once the sequence of local refinement regions is defined and
constructed, FAC can be regarded as a multigrid algorithm that works on the corresponding
composite grid.

At first sight, FAC may look conceptually different from MLAT. In concrete MLAT and
FAC algorithms, however, both approaches turn out to be closely related. Relations between
MLAT and FAC have been studied for Poisson’s equation in [235] with respect to parallel
computing.

In this section, we follow the FAC approach in that we start with the formulation of
the discrete problem on the composite grid. In Section 9.3.1, we describe a conservative
discretization approach for points at the interfaces which can be considered as an exam-
ple for an FAC discretization on the composite grid. In Section 9.3.2, we show that one
way to obtain a conservative discretization at the interface points is to introduce ghost
points near the interfaces and perform a so-called conservative interpolation at these points.
In Section 9.3.3, we give a formal description of an adaptive multigrid cycle based on this
technique. Here, we remain with the MLAT philosophy and work on the hierarchy of locally
refined grids. In Section 9.3.4, we make some brief comments on some related approaches.
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Figure 9.10. Regular points (marked by • and ◦) on the composite grid.

In order to formulate the discrete problem on the composite grid, we assume operators
Lk (k = �, . . . , �+ �∗) and, for simplicity, a predefined local refinement. For convenience,
we assume Dirichlet boundary conditions so that we do not have to bother about boundary
points.

The discrete equations on a composite grid �̂�+�∗ are now defined in a straightforward
way at all regular points, i.e. at grid points which are not interface points. Here, we have
the natural discrete equations

Lkuk = fk(:= f |�k ) (k = �, �+ 1, . . . , �+ �∗), (9.3.1)

at those points of �k , which do not belong to a finer grid �k+1. The situation is illustrated
by Fig. 9.10. At the points marked by •, a “regular” discretization with grid size hk is used.
At the points marked by ◦, we apply the “regular” discretization based on the mesh size
hk−1 = 2hk . For the interface points, more specific considerations are needed (see the next
section).

9.3.1 Conservative Discretization at Interfaces of Refinement Areas

We have mentioned in Section 8.8.4 that conservative discretizations are important for many
fluid dynamics problems. Conservation is then guaranteed independently of the grid (global
or locally refined) under consideration. A general approach to define discrete equations is
the finite volume discretization, resulting in conservative discretizations on uniform but also
on locally refined grids. In particular, at the interfaces the finite volume discretization can
be defined such that the “composite grid discretization” is conservative.
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(b)(a)

Figure 9.11. (a) Part of a composite grid; (b) corresponding finite volumes.

In this section, we present one possibility for a conservative finite volume discretization
on a composite Cartesian grid. As a reference example, we use the 2D problem

−� · (a�u) = f� (�)

with some boundary conditions on ∂�which we do not specify in detail here. Figure 9.11(a)
shows a part of a composite grid on which the problem is discretized. Figure 9.11(b) shows
the finite volumes around the grid points.

The domain is covered by square finite volumes, except for the grid points at the local
refinement interface. Here, the volumes are enlarged, so that they are adjacent to the coarse
volumes. For the square volumes, we apply the usual conservative finite volume discretiza-
tion as described in Section 5.7. We consider the discretization for the enlarged nonsquare
(shaded) volumes. The situation is shown in more detail in Fig. 9.12.

For the dark-shaded volume, the fluxes F = a�u are used at three faces, (w) west,
(e) east and (n) north,

Fh,w

(
x − h

2
, y

)
= a

(
x − h

2
, y

)
[uh(x, y)− uh(x − h, y)]/h (9.3.2)

Fh,e

(
x + h

2
, y

)
= a

(
x + h

2
, y

)
[uh(x + h, y)− uh(x, y)]/h (9.3.3)

Fh,n

(
x, y + h

2

)
= a

(
x, y + h

2

)
[uh(x, y + h)− uh(x, y)]/h. (9.3.4)

We assume that the values of the coefficients a are known. In order to satisfy the conservation
of flux at the local refinement boundary, the flux Fh,s at the southern face is determined by
linear interpolation

Fh,s = 1
2 (FH,l + FH,r ) (9.3.5)
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Figure 9.12. Part of the composite grid in detail, with the dark-shaded volume �xy around (x, y).

where FH,l and FH,r are the fluxes of the coarse (square) volumes (see Fig. 9.12). They
are determined by

FH,l(x − h, y − h) = a(x − h, y − h)(uh(x − h, y)− uh(x − h, y − 2h))

2h
(9.3.6)

FH,r (x + h, y − h) = a(x + h, y − h)(uh(x + h, y)− uh(x + h, y − 2h))

2h
. (9.3.7)

The discrete equation at the point (x, y) in the shaded volume �x,y is given by

3h

2

(
Fh,e

(
x+ h

2
, y

)
−Fh,w

(
x− h

2
, y

))
+h
(
Fh,n

(
x, y+ h

2

)
−Fh,s

(
x, y− h

2

))
= f (x, y)|�x,y |,

where the left-hand side of this flux balance equation is the net flux of the shaded volume
�x,y . The resulting discretization can be generalized to 3D without any difficulties. This
is a simple example of a conservative discretization on a composite grid since fluxes are
preserved across the interface of a locally refined region.

9.3.2 Conservative Interpolation

We will discuss a simple procedure, by which a conservative discretization can easily
be treated in the adaptive multigrid context. For this purpose, we introduce a so-called
conservative interpolation, which can be interpreted as a connection between interpolation
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(a) (b)

Figure 9.13. (a) Part of a composite grid; (b) grid with ghost points (◦).

and conservative discretization at the interfaces. Other possibilities are outlined at the end
of this section.

Since all the refinement levels are treated separately in adaptive multigrid, it is useful
to rewrite the composite discretization in such a way that only grid points in the refined
region are addressed when smoothing is carried out on the fine grid. For that purpose, we
reformulate the composite conservative discretization in a setting with “Dirichlet-type local
refinement ghost points” [412] (see Fig. 9.13).

With such ghost points, adaptive multigrid can proceed in a straightforward way. Stan-
dard smoothing techniques can be used at all grid points in the refined region including
the interfaces. The ghost points are the points at which the values need to be determined
by interpolation. They serve as Dirichlet boundary points of the locally refined grid. This
situation is illustrated in Fig. 9.14. The equivalent conservative discretization based on the
composite grid extended with these ghost points is obtained as follows. The net flux in the
shaded square volume �̂x,y in Fig. 9.14(b) is determined by

Flux(�̂x,y) = h(Fh,e − Fh,w)+ h(Fh,n −Gs)

withGs depicted in Fig. 9.14(b). The fluxes Fh,w, Fh,e and Fh,n, are the same as in (9.3.2)–
(9.3.4). Gs is defined by

Gs = a(x, y − h/2)[uh(x, y)− uh(x, y − h)]/h (9.3.8)

where uh(x, y−h) is a Dirichlet value on the local refinement boundary. In order to regain
the composite grid conservative discretization in the situation of Figs 9.14(a) and 9.14(b),
the two net fluxes in �x,y and �̂x,y need to be equal:

Flux(�x,y)

3h2/2
= Flux(�̂x,y)

h2
. (9.3.9)



ADAPTIVE MULTIGRID 371

Gs

(x–h,y) (x+h,y)

(x,y+h)

(x–h,y–2h) (x+h,y–2h)

(x–h,y) (x+h,y)

(x,y+h)

(x–h,y–2h) (x+h,y–2h)

s

F

(a) (b)

l
Fr

w e

nF

FF

F

w

nF

FF e

Figure 9.14. Part of the composite grid (a) composite grid finite volumes with �xy ; (b) finite
volumes with �xy and ◦, ghost points.

From (9.3.9), we obtain an interpolation formula for the flux Gs :

Gs = Fh,n + 2Fh,s
3

.

Now, it is possible to compute the boundary valueuh at the ghost point (x, y−h) from (9.3.8),
namely

uh(x, y − h) = uh(x, y)− h Gs

a(x, y − h/2) . (9.3.10)

With constant coefficients a, the interpolation (9.3.10) coincides with the well-known
quadratic interpolation. Hence, the order of the interpolation (O(h3)) is lower than that
of cubic interpolation (O(h4)), but it is a conservative interpolation. Numerical experi-
ments [412] confirm that this aspect is often more important than the order of the interpo-
lation with respect to accuracy.

During a smoothing iteration on a locally refined grid, the unknowns from which the
ghost points are interpolated are updated. In our multigrid algorithm after this update,
before a restriction, the ghost points are updated again, i.e. an additional interpolation of
the unknowns at the ghost points is carried out.

Other interpolations at interior locally refined boundary points can be found in [39, 390].

Remark 9.3.1 Instead of conservative interpolation schemes one can also use proper
τ k
k+1-corrections at those interface points which also belong to the coarse grid in order to

enforce conservation (“conservative fine to coarse transfer” [14]). One has to analyze which
corrections are missing, when cubic interpolation is used, in order to make the discretization
conservative. These quantities are then added as a τk

k+1-correction to the discrete equations.
�
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9.3.3 The Adaptive Multigrid Cycle

Using the above definitions on all levels k = 0, 1, . . . , �, � + 1, . . . , � + �∗, an adaptive
multigrid cycle as described in Section 9.3.2 (including an update at the ghost points within
each smoothing step), is summarized in the following box.

Adaptive cycle um+1
k = ADAPCYC(k, γ, umk , u

m
k−1, Lk, fk, ν1, ν2)

(1) Presmoothing
– Compute ūmk by applying ν1 (≥ 0) smoothing steps to umk on �k .

(2) Coarse-grid correction
– Compute the defect on �k d̄mk = fk − Lkūmk .

– Restrict the defect from �k d̄m
k−1 = I k−1

k d̄mk .

– Compute

ūmk−1 =
{
Î k−1
k ūmk on �k−1 ∩�k,
um
k−1 on the remaining part of �k−1.

– Compute the right-hand side fk−1 according to (9.2.2).
– Compute an approximate solution ŵm

k−1 of the coarse grid equation
on �k−1

Lk−1w
m
k−1 = fk−1. (9.3.11)

If k = 1 employ a direct or fast iterative solver for this purpose.
If k > 1 solve (9.3.11) by performing γ (≥ 1) adaptive multigrid
k-grid cycles to (9.3.11) using ūm

k−1 as initial approximation

ŵmk−1 = ADAPCYCγ (k − 1, γ, ūmk−1, u
m
k−2, Lk−1, fk−1, ν1, ν2).

– Compute the correction at �k−1 ∩�k v̂m
k−1 = ŵm

k−1 − ūm
k−1.

– Set the solution at the other points of �k−1 um+1
k−1 = ŵm

k−1.

– Interpolate the correction to �k v̂mk = I k
k−1v̂

m
k−1.

– Compute the corrected approximation on �k

u
m, after CGC
k = ūmk + v̂mk .

– Carry out a conservative interpolation
at the ghost points.

(3) Postsmoothing

– Compute um+1
k by applying ν2 (≥ 0) smoothing steps to um, after CGC

k
on �k .
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Note that, in general, the current approximation on the composite grid �̂k is required
for the computation of a new approximation um+1

k . However, for ease of presentation, we
have included only the approximations on two levels (umk on �k and um

k−1 on �k−1) in the
argument list of ADAPCYC. (The adaptive cycle implicitly updates the approximation not
only on the finest grid, but also on the entire composite grid.)

Remark 9.3.2 For time-dependent applications, it is natural to use local refinements which
follow certain time-dependent features in the solution, i.e. a subdomain which is refined in
some time step may not be locally refined in a later one [38, 206, 392]. Furthermore, the
extension of adaptive multigrid to discretizations on staggered grids is straightforward (see
[390] for an example). �

9.3.4 Further Approaches

In addition to MLAT and FAC several related, but formally different, approaches for adap-
tivity have been proposed, in particular in the context of finite elements [18, 55, 425]. In the
finite element context, local refinement techniques (which may be based on criteria similar
to those discussed below) will typically lead to a discrete problem defined on the composite
grid, for each level of refinement.

Finally, we would like to mention that additive versions of adaptive multigrid have
also been proposed and are in use. A comparison of additive and multiplicative adaptive
multigrid is given in [32] (in a finite element framework). One essential distinction in this
context refers to the basic smoothing pattern. If the smoothing is applied only to unknowns
corresponding to the “new” locally refined points (�k+1\�k) in the refined regions, the
respective method corresponds to Yserentant’s hierarchical basis method (HB) [432, 434]
in the additive case and to the so-called hierarchical basis multigrid method (HBMG) [18] in
the multiplicative case. These approaches do not lead to level independent convergence, but
to O(N logN) complexity instead. Only if the smoothing procedure is applied to all grid
points in a refined region�k+1 as in MLAT, can level independent convergence be achieved.
The corresponding additive version is the adaptive BPX method [55]. These methods are
surveyed in [32].

Remark 9.3.3 (AFAC) The AFAC (asynchronous fast adaptive composite grid method)
has been proposed [262] for parallel computing. It can be regarded as an additive version
of FAC. Comparisons of AFAC with parallel versions of MLAT can be found in [235, 323].

�

9.4 REFINEMENT CRITERIA AND OPTIMAL GRIDS

In this section, we briefly discuss where and how locally refined grids are set up. Since we
are interested in a fully self-adaptive technique, refinement criteria have to be provided, on
the basis of which the algorithm can work and, in particular, also terminates automatically.
A lot of research and experimental work deals with the definition of efficient and reliable
refinement criteria. Although many interesting results are available [25, 92, 137, 308], the
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field of refinement strategies is far from being settled. Since different singular phenomena
occur in different situations (geometric singularities in elliptic equations versus hyperbolic
shocks, scalar equations versus systems, for instance), it is difficult tofind refinement criteria
which are reliable and efficient in all cases.

The general requirement is to use an indicator for the determination of refinement
regions, which is based on calculated quantities. Usually, the indicator is oriented to an (a
posteriori) estimate of the (local or global) discretization error.

With respect to adaptive multigrid, any refinement criterion can, in principle, be chosen.
Most of our presentation is, however, based on the so-called τ -criterion, which we regard
as a natural indicator in the context of multigrid. This criterion is based on the τHh quantity
introduced in Section 5.3.7.

Other error estimators and error functionals are natural in the finite element context. A
survey on such criteria is presented in [308]. These techniques can also be applied in the
finite difference and finite volume context (see Remark 9.4.3 below).

A different class of criteria is based on the behavior of the solution itself, e.g. on physical
features such as flow gradients in CFD applications. This type of criteria is somewhat
problematic if the refinement strategy is solely based on it.

Before we return to the τ -criterion and give examples, we would like to make the
following trivial, but fundamental remark on local refinements.

Remark 9.4.1 Consider an elliptic problem in� to which we want to apply a trivial local
refinement technique around a point P0 ∈ �. If we repeat the local refinement process
recursively, we will obtain a series of locally refined grids

��+k; k = 0, 1, 2, . . .

covering smaller and smaller subdomains of� and correspondingly a local truncation error
τk = Lku− Lu at P0 that tends to 0 for k → ∞:

τk(P0) → 0 (k → ∞).

This does, of course, not mean that the real error uk(P0) − u(P0) also tends to zero for
k → ∞. According to the elliptic nature of the problem, the error of uk(P0), in general
depends on the discretization error at all other grid points of the composite grid. Therefore,
even for an infinite number of purely local refinement steps, the accuracy that can be achieved
is, in general, limited. �

9.4.1 Refinement Criteria

In this section, we discuss first the τ -criterion (in the context of standard coarsening). As
we know from Section 5.3.7, τ 2h

h is the quantity that is to be added to the right-hand side of
the discrete problem on the coarse grid �2h in order to obtain the accuracy of the fine grid
(up to interpolation). Thus, τ 2h

h is a measure of the extent to which the local introduction of
the grid �h has influenced the global solution. Also, τ2h

h is an approximation to τ2h − τh
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where τh and τ2h are the respective truncation errors

τh = Lhu− Lu, τ2h = L2hu− Lu.
Heuristically, if τ2h − τh (and thus also τ2h) is large at some grid point, the discretizations
on �h and �2h differ significantly, which indicates that an even finer grid should be used
near this grid point. If τ2h is small, the benefit of a finer grid will be much smaller.

A useful local refinement criterion based on these quantities is to compare hdτ 2h
h ,with a

given tolerance ε, where d denotes the dimension of the application. Here, τ2h
h is evaluated

using the current approximation on the finest grid.
Note that any h-dependent scaling in the discrete equations has to be taken into account.

In finite volume discretizations, for example, the discrete equations (and thus also τ2h
h ) have

been implicitly multiplied by hd already. In this case, the corresponding “τ2h
h ” has then to

be compared with the given tolerance ε.
This error indicator and variants are often used for scalar equations but also for systems

of equations. (See, for example, [206] for an application in process simulation, [266] and
many others for Euler applications or [270] for an application in semiconductor device
simulation.)

In the simplest approach, the grid is refined locally if (and where) the estimator indicates
values above ε. In practice, the local refinement areas then have to be determined (i.e.,
extended) in such a way that the refined regions are consistent with the overall grid structure.

For instance, if block-structured grids are used, this means that the refined grid should
also have an appropriate block structure. Since this structural question is important for
parallel adaptive methods, we will return to it in Section 9.5 and in the examples (see
Section 9.6).

Example 9.4.1 Figure 9.15 shows a refined grid for the convection–diffusion problem with
a boundary layer (at the right and upper boundaries) as discussed in Example 7.1.2. The
refinement regions have been found with the τ -criterion. It can be seen that the boundary
layers are well detected, and that the locally refined grid contains many fewer grid points
than a corresponding globally refined grid. �

Example 9.4.2 (nonlinear problemwith a shock) We consider the nonlinear convection-
dominated conservation law (see also [359])

−ε�u+
(
u2

2

)
x

+ uy = 0 (9.4.1)

with ε = 10−6 on � = {(x, y); 0 ≤ x ≤ 3, 0 ≤ y ≤ 2} and the boundary conditions

u = u0 = 1
2 (sin(πx)+ 1) (9.4.2)

along the x-axis. For the other boundary conditions which are derived from the solution of
the reduced equation (u2/2)x + uy = 0, see [359]. The exact solution is constant along the
characteristic lines (u, 1)T . This example is related to Burger’s equation.
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Figure 9.15. Locally refined grid near the boundary layer for a convection–diffusion problem.

The solution obtained by a conservative finite volume discretization is shown in
Fig. 9.16. It contains a shock wave along the line y = 2x − 2. Limiters are necessary
for an accurate solution of this problem. Here, we have applied the van Leer limiter (7.3.4).
Figure 9.16 shows two levels of grid refinement near the shock detected by the τ -criterion
for adaptive refinement. �

So far, we have considered only grid refinement based on (2D) standard coarsening,
i.e. grids which are refined by a factor of two in each direction. The two examples above
represent cases, however, in which more efficient refinement structures are feasible. The
following remark refers to more sophisticated refinements.

Remark 9.4.2 (anisotropic refinements) In certain cases, in particular when boundary
layers occur, a 1D local refinement (corresponding to semicoarsening) may be sufficient.
Compared to the grid shown in Fig. 9.15, such a 1D refinement (parallel to the upper and
right boundaries) would give a similar accuracy with substantially fewer grid points.

1D refinements are also possible in more general situations. In Example 9.4.2, a
“1D local refinement” relative to local coordinates fitting to the shock position would be
sufficient to resolve the shock. Such possibilities have been considered in [66]. �

The following three remarks refer to other refinement criteria. In Remark 9.4.3, we
describe a finite element-based criterion which we will use in one application at the end
of this chapter. The other two remarks refer to the global discretization error and to the
behavior of the solution, respectively.
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Figure 9.16. Locally refined grid near a shock and isolines of the solution.

Remark 9.4.3 (FE residual) In the context of finite element discretizations, the finite
element residual is a natural error indicator [308]. But for finite difference or finite volume
discretizations, the finite element residual is also an option (proposed in [365] for the
Euler equations). In that case, the discrete approximation uh, which is defined only on
the respective grid points of �h, is extended to the whole domain � by some suitable
interpolation giving ũh. In the case of a PDE system Lu = f (consisting of q PDEs), the
finite element residual

r̃h := Lũh − f

can be calculated and evaluated.
In the examples below, we have used the finite element residual based on linear shape

functions for the first-order Euler equations discretized by finite volumes in the following
way: the rectangular control volume around a point (xi, yj ) is subdivided into two triangular
elements�1 and�2. The values at the four corners of the two triangles can be interpolated
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linearly from the nine neighbor nodes. At (xi, yj ), theL1-norm of the finite element residual
is

ψL1(xi, yj ) =
∑
κ=1,2

∑
k=1,...,q

∫
�κ

|r̃kh | d�, (9.4.3)

where the index κ corresponds to the number of the triangle and rkh is the kth component
of rh (see [365, 323] for details).

The grid at (xi, yj ) is then refined if ψL1(xi, yj ) is larger than a given tolerance ε.
Note that linear shape functions are, in general, not appropriate for calculating the finite

element residual if the underlying PDE (system) is of second or higher order. In that case,
the principal part of the PDE would give no contribution to the residual. �

Remark 9.4.4 (criteria based on uh—u estimators and pollution effects) Pollution
as mentioned in Remark 9.1.1 occurs, in particular, as a consequence of the elliptic nature of
a PDE. An error caused at one point in� leads to an error at any other point of�. This effect
has an obvious significance for adaptivity criteria. As we have seen for the example (9.1.1),
it is sufficient to refine the grid close to the corner point P ∗ since the singularity in P ∗ is the
reason for the discretization inaccuracy. If, however, a naive estimation of the discretization
error u(P )− uh(P ) itself is used for controlling the refinement, the pollution effect would
lead to refinements in a larger area than necessary and consequently to a less efficient
refinement procedure than the τ -criterion. �

Remark 9.4.5 (adaptivity criteria based on the behavior of the solution) Physical
features are often used as the basis for a refinement criterion since they are directly available.
However, the corresponding criteria are not general. Although large gradients of a solution
may be an indication for large errors, they may also be harmless with respect to the errors.
(Constant large gradients are usually not a problem.) In typical CFD applications, however,
the largest errors occur in regions with large gradients such as shocks. On the other hand,
the location of a shock wave may depend on the flow in a much more “smooth region” and
this region should be detected by the refinement criterion.

Sometimes different sensors like shock, entropy and density sensors are applied simul-
taneously in order to identify crucial flow regions which require a finer resolution [193].

�

In practice, one may well think of combining some of the criteria discussed above. For
example, it may be useful to refine the grid in regions in which a particular nonsmooth
behavior of the solution is detected and additionally in regions in which the τ -tolerance is
violated. Furthermore, if some a priori information is available about the solution (about
the approximate position of shocks, singularities and the like), this information can be used
in the construction of the global grid.

9.4.2 Optimal Grids and Computational Effort

The refinement criteria discussed above may, in principle, lead to an automatic refinement
of the grids and to algorithms which no longer have “O(N) complexity”.
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Remark 9.4.6 We illustrate the question of O(N) complexity here for the example in
Section 9.1. Assume that for this problem on each refinement level the size of the refinement
region is approximately 1/4 of the size of the previously refined subregion (as illustrated
in Fig. 9.3). In that case, the number of grid points of the refined regions is approximately
the same for all levels. If, for h → 0, this process of refinement is continued in the same
way, we will have #��+k

.= #�� (k = 0, 1, 2, . . . ), where
.= means equality up to lower

order terms. For the number N = N(k) of grid points of the corresponding composite grid
�̂�+k , we obtain #�̂�+k

.= (1 + 3k/4)#�� = kO(1). Obviously, the above assumption
that the refined region has 1/4 the size of the previously defined region is a limit case. If
this ratio is larger than 1/4, N will grow exponentially with k; if it is smaller than 1/4, N
will be bounded. In the first case, one may speak of a generous refinement, in the second
case of a contracting refinement. �

If N is the number of grid points of the composite grid, the adaptive FMG based on V-
cycles leads to anO(N) algorithm for generous refinements, whereas the complexityO(N)
is no longer maintained for contracting refinements. On the other hand, the algorithm with
contracting refinement will be cheaper (less overall operations) than the “O(N) optimal”
algorithm with generous refinement. Trivially, the nonadaptive FMG algorithm is always
O(N) optimal (according to the considerations and under the assumptions in Section 3.2.2)
whereas the adaptive FMG algorithm may not be (for contracting refinement).

Such a paradoxical phenomenon, that a “nonoptimal” algorithm may be much faster and
more efficient than an “optimal” one, can be found in many other situations, in particular,
if the term of optimality is oriented only to the algebraic convergence and if the size/order
of the discretization error is not taken into account.

Looking at the differential convergence rather than looking at the algebraic convergence
of adaptive multigrid, is the basis of the so-called λ-FMG strategy proposed in [66].

Remark 9.4.7 (λ-FMG) The idea of the λ-FMG strategy is to define the grid refinement
strategy within FMG in such a way that an optimal accuracy can be achieved within a given
amount of work. Some numerical experiments based on the λ-FMG strategy have been
made [320] for the Poisson equation in regions with reentrant corners. Here, the numerical
efficiency was additionally improved by the use of local relaxations (see also Section 5.5).
The construction of optimal grids is also an option in the context of the so-called “dual
method” [308]. �

9.5 PARALLEL ADAPTIVE MULTIGRID

9.5.1 Parallelization Aspects

If the adaptive multigrid techniques as described in Sections 9.2 and 9.3.3 are to be applied
on a parallel computer with distributed memory, we face a specific difficulty. As we do not
know in advance where the local refinements will occur, load balancing becomes crucial.
Simplifying the situation to some extent, we have, in principle, two choices.

(1) We can use the grid partitioning approach as described in Section 6.3 in order to
maintain the boundary-volume effect in communication. Clearly, we have to be aware
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that some subdomains will be refined (by the refinement criteria used) whereas others
will not. This results in a load imbalance which will, in general, be unacceptable.

(2) In order to avoid this load imbalance, one has to suitably redistribute the subgrids
on each refined level. Of course, this means, that volumes of data must be redis-
tributed on each level of local refinement leading to a possibly high amount of com-
munication. The boundary-volume effect will no longer be valid. Instead we have
to expect that the communication complexity is of the same order as the computing
complexity.

This clearly shows that there is a conflict between ideal parallelism and ideal
adaptivity.

However, we will see below (see also [323]) that this conflict is not so crucial in
practice, at least not in real-life problems. Whereas thefirst choice with its immanent
load imbalance turns out to be unacceptable in many cases, the second choice is
usually acceptable.

Since the different multigrid levels are treated sequentially in adaptive multigrid, a straight-
forward distribution strategy is to map the locally refined grid on each level uniformly to as
many processors as possible. Again, the efficiency of this distribution strategy depends on
the problem, the size of the refined grid regions and on the hardware properties. The grid
partitioning employed here for locally refined grids is analogous to the strategy of paralleliz-
ing nonadaptive multigrid. The well-known deficiencies—the increase of the communica-
tion/computation ratio (for very small or rapidly contracting refined grids) and, eventually,
fewer points than processors—not only apply to the global coarse levels but to the locally
refined ones as well.

Remark 9.5.1 One can also consider changing the adaptive features of the algorithm in
order to establish a good compromise between the parallel efficiency requirements and the
numerically ideal adaptivity. We are not going to discuss such modifications in detail. �

In the following, we consider block-structured grids. In block-structured grid applica-
tions, the number of blocks may be much lower than the number of available processors, P .
Consequently, on a parallel machine, large blocks are further subdivided in order to provide
the basis for a good load balancing which typically means that each “subblock” contains
roughly the same number of grid points.

Remark 9.5.2 The combination of adaptivity, multigrid and parallelism has been inves-
tigated for unstructured grids [31] including the additive version of adaptive multigrid.
Depending on the application, additive multigrid may be of some interest in the case of
locally refined grids, since smoothing at different levels can be performed simultaneously.
Convincing examples of the benefits of additive methods over multiplicative methods for
real-life applications are, however, not yet known. �
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9.5.2 Distribution of Locally Refined Grids

During the refinement phase, the grid data of each new refinement level is initially available
to only some of the processes. The parallel adaptive multigrid method cannot continue in a
load-balanced way with the new level, until the new refined grid has been redistributed to all
processors. (This distribution does not affect the distribution of previous refinement levels.)
Generally, obtaining optimal load balancing at each stage of the adaptive multigrid process
is too complicated and costly. An appropriate solution of this load-balancing problem is
usually based on heuristic considerations. What is required is an algorithm that rapidly
remaps locally refined block structures to reasonably load-balanced ones. One such strategy
has been implemented, for example, in the adaptive routines of the CLIC library [321]. Other
remapping strategies and corresponding systematic discussions can be found in [268, 446].
Here, we describe one practicable way of distributing (mapping) a locally refined block-
structured grid to the processors of a parallel computer with distributed memory.

We assume that a refined grid ��+k already exists and that the next refined grid,
��+(k+1), has to be created and distributed.

(1) Based on a given refinement criterion, each process checks for refinement areas inde-
pendently of the others. Since we deal with block-structured grids, each process has
to embed its local refinement areas into structured (i.e. in 2D, logically rectangular)
subgrids. If no processfinds new refinement areas, the refinement procedure isfinished.

(2) If refinement areas have been detected, communication is required to analyze the
resulting block structure and to set up the corresponding data structure. At this point,
local “process blocks” may be joined to larger “superblocks” whenever possible in
order to obtain a final block structure with as few blocks as possible. The optimal
number of grid points each processor can work on,N(P) = N�+(k+1)/P , is computed
and broadcast.

(3) Based on a fast heuristic load balancing strategy, the blocks with the local refinement
regions are redistributed among the processors. Very small blocks may share the same
processor so that the total number of points treated by a processor is close to N(P).
Blocks containing significantly more than N(P) points are subdivided for satisfactory
load balancing.

The result of this procedure is a new block structure and a new (satisfactorily load-balanced)
mapping of blocks to processes. Each of the essential mapping steps can be performed
in parallel.

Remark 9.5.3 Due to the required remapping of blocks, data has to be redistributed
whenever locally refined levels are processed during an adaptive multigrid cycle. Let us
assume that we have finished a relaxation sweep on grid ��+k and that we need to trans-
fer corrections from this level to the next finer one, ��+(k+1). At this point, the relevant
correction data is contained in the part of the coarse-level subgrid ��+k , which is being
refined. Since this subgrid data is only available to some of the processors, one distributes
the data first to the processes of grid��+(k+1) and only then performs the actual interpola-
tion and correction. Similarly, during the fine-to-coarse transfer, all necessary computations
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(evaluation of defects, application of the FW operator etc.) are performed on the fine level;
only the data which is really relevant for the coarser level are then redistributed. (For the
fine-to-coarse transfer in the FAS, two types of grid functions have to be redistributed,
defects and current approximations.) In addition to load-balanced computations, this way
of redistributing data has another advantage: the amount of data to be redistributed on the
coarse grid is smaller than the amount of data on the fine grid. �

9.6 SOME PRACTICAL RESULTS

In this section, we give some results for two 2D problems and one 3D problem from
computational fluid dynamics. The results have been obtained by using the remapping
strategy as described in Section 9.5.2.

The two examples described in Sections 9.6.1 and 9.6.2 are the Euler equations for a
flow around an airfoil and the incompressible Navier–Stokes equations for a double hole
problem. Both examples and their treatment with parallel adaptive multigrid have been
discussed in more detail in [323] and [424], respectively. Our intention here is only to
demonstrate the improvement of computing times due to the adaptive multigrid technique
and to show that adaptivity and parallelism can be combined. Although a full synergy of
these somewhat conflicting principles cannot be expected, the gain in CPU time and storage
achieved in practice is impressive.

In the first example, the refinement criterion based on the finite element residual (see
Remark 9.4.3) has been used.

For nonadaptive multigrid applications corresponding to the examples discussed in
Sections 9.6.1 and 9.6.2, the parallel efficiencies E(P ) on the IBM SP2-systems are higher
than 90%. The utilization of parallel adaptive refinements at run-time requires additional
communication and organization, and the communication among processes is no longer
restricted to the exchange of boundary data but requires a redistribution of volumes of data.
Nevertheless, the numerical results clearly show considerable reductions of computing times
and memory requirements for the applications under consideration. These improvements
by adaptive refinement are demonstrated by comparing the parallel computing times (wall-
clock), the number of employed processors and the number of required grid points (the
memory requirements being approximately proportional to the number of grid points).

9.6.1 2D Euler Flow Around an Airfoil

We consider a compressible Euler flow around the NACA0012 airfoil at Mach number
M∞ = 0.85 and an angle of attack of 1.0◦. The finite-volume discretization used is Osher’s
flux-difference splitting [220, 287] with a vertex-centered location of the variables.

Figure 9.17 shows the computationalflow domain around the airfoil, which is partitioned
into 16 blocks. Figure 8.25 presents a part of the computational grid before local refinements.
Obviously, there is already a significant inherent refinement of this global grid towards the
profile. Each block contains the same number of grid points and the blocks adjacent to the
profile cover much smaller geometric domains than the others.
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Figure 9.17. Computational domain around NACA0012 wing, 16 blocks.

Figure 9.18. Geometric regions of adaptive refinement with block structures (16 blocks on each
refinement level).

Figure 9.18 shows the geometric regions of refinement (with the corresponding block
structures) of the three refinement levels. Note that the scale of each picture varies (as can
be seen from the size of the profile).

A part of the adaptive composite grid, after the three steps of local refinement have been
applied, is shown in Fig. 9.19. Obviously, the refinement regions are concentrated around
the position of the shocks at the upper and the lower surface of the airfoil. Figure 9.20 shows
that the shocks are determined much more sharply than on the global (coarse) grid without
local refinement.
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Figure 9.19. Part of adaptively refined (composite) grid around NACA0012 airfoil.

Figure 9.20. (Left) Pressure contours on global grid without refinement; (right) pressure contours
on grid with adaptive refinement.
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Table 9.2 shows that an improvement of more than a factor of ten is achieved with
respect to computing time and memory for this example using the adaptive approach (three
levels of refinement, approximately 14 000 grid points) as compared to a global fine grid
(approximately 200 000 grid points). The accuracy achieved is approximately the same in
both cases.

Remark 9.6.1 In [323] it is emphasized that a conservative discretization at the interface
points is essential. The use of nonconservative formulas (e.g. cubic interpolation) may cause
a deterioration in the accuracy and in the multigrid convergence (see also [100]). �

9.6.2 2D and 3D Incompressible Navier–Stokes Equations

In the following example the incompressible Navier–Stokes equations have been solved
based on a similar adaptive multigrid technique as used for the Euler equations [220]. Here,
the finite volume discretization on the nonstaggered grid is based on Dick’s flux difference
splitting (see Section 8.8.4). Second-order accuracy is obtained using van Leer’s κ-scheme
in an outer defect correction iteration [220].

The example is shown in Fig. 9.21 (double-hole flow, in which the flow in a channel with
height 1.0 is disturbed by two cavities; eleven blocks are used for the computation). The
Reynolds number is Re = 200. Figure 9.22 shows clearly that the local refinement regions
of the grid are located near the singularities (the upper corners of the cavities). Again, three
refinement levels are used.

As can be seen from the results in Table 9.3, the global fine grid requires more than
23 times as many grid points as the adaptive grid in order to achieve comparable accuracy.

Table 9.2. Computing time, grid points and improvement factors for the flow around
the NACA0012 profile.

Global fine grid Adaptive grid Improvement factor

Processors 16 16
Grid points 197632 13866 14
Computing time (sec) 6115 590 10

Figure 9.21. Block structure of double-hole flow problem.
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Figure 9.22. Refined grid of double-hole flow problem.

Table 9.3. Computing time, grid points and improvement factors for the double-hole
flow problem.

Global fine grid Adaptive grid Improvement factor

Processors 11 11
Grid points 181761 7725 23
Computing time (sec) 656 49 13

Figure 9.23. Domain and block structure for 3D flow around cylinder.

Figure 9.24. A streamline picture for steady flow around a cylinder at Re = 20.
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Figure 9.25. The first level of refinement around the cylinder after reblocking.

Figure 9.26. The second level of refinement around the cylinder after reblocking.

Using 11 processors of an IBM SP2 system for the computations, the computing time is
reduced by a factor of 13 due to the adaptive refinement.

As a 3D example, we consider 3D steady incompressible Navier–Stokes flow around
a circular cylinder. This is a reference problem, discussed in [394], where all the details
of the domain and the boundary conditions are presented. The Reynolds number for the
reference problem is Re = 20. One reference quantity to be determined is the pressure
difference, δp at the cylinder’s centerline points in front of and behind the cylinder. We
use a 3D finite volume discretization based on flux difference splitting for the convective
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terms [290]. Local refinement based on the τ -criterion is used in order to obtain a solution
close to the reference δp values from [394]. The global 3D grid consisting of about 49 000
grid points is divided into eight blocks (see Fig. 9.23). Figure 9.24 presents a streamline
picture with some recirculation in the flow.

Many of the topics discussed in this book, including parallelization, self-adaptive multi-
grid with an appropriate refinement criterion and the KAPPA smoother, have been employed
in the multigrid solver for this problem. After FMG with r = 3 cycles on each global grid, the
first local refinement region is determined self-adaptively and the refined grid is processed.
Figure 9.25 presents the first level of refined blocks for this flow at Re = 20. The refined
region is divided into 20 blocks, which are then redistributed among the eight processors.
Figure 9.26 shows the 16 blocks on the second refinement level.

The corresponding multigrid convergence (with the KAPPA smoother) is excellent for
this low Reynolds flow. The reference quantity δp is found to be 0.178 on the global (coarse)
grid, 0.174 on the first locally refined grid and 0.173 on the grid with two local refinement
levels. This value fits well into the reference results given in [394].
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APPLICATIONS

In this chapter, we summarize several multigrid applications. Some of the applications
are difficult problems, some are less ambitious, but have particular features which were not
covered in the earlier chapters.

Section 10.1 deals with appropriate multigrid techniques for the Poisson equation on
the sphere. In Section 10.2, we discuss how multigrid and continuation techniques can
be combined. As an example we use a nonlinear problem with a so-called turning point.
In Section 10.3, we show how multigrid can be applied for the generation of curvilinear
grids.

Section 10.4 describes the parallel multigrid software package LiSS [322], which is
suited to a rather general class of PDEs on 2D block-structured grids. Many of the numerical
results presented throughout this book, including those in Chapter 9, have been obtained
with this package and its adaptive extension.

Section 10.5 is dedicated to the multigrid solution of compressible flow equations in
industrial aerodynamic design. We describe some of the problems which occur for com-
plicated flow problems in aircraft design, report some results and point out some topics of
future research.

10.1 MULTIGRID FOR POISSON-TYPE EQUATIONS ON THE SURFACE
OF THE SPHERE

The solution of elliptic equations in or on spherical geometries is of interest for several
applications, for example, in astro- or geophysics and meteorology. We describe efficient
multigrid solvers for 2D Poisson- and Helmholtz-type equations on the surface of the sphere.

In Section 10.1.1, we will briefly describe a discretization of the Laplacian on the sphere
including the poles. This discretization is inherently anisotropic with varying directions
of the anisotropy. Multigrid-related issues of the discrete problem will be discussed in
Section 10.1.2.

389
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Section 10.1.3 contains a discussion of a special segment relaxation scheme, proposed
in [28], which takes into account the locality of the anisotropies of the discrete operator. The
relaxation obtained is as cheap as usual line relaxation and has good smoothing properties.

10.1.1 Discretization

Here, we consider Poisson’s equation in spherical coordinates:

x(r, φ, θ) = r sin φ cos θ

y(r, φ, θ) = r sin φ sin θ

z(r, φ, θ) = r cosφ

giving

� = 1

r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin φ

∂

∂φ

(
sin φ

∂

∂φ

)
+ 1

r2 sin2 φ

∂2

∂θ2
. (10.1.1)

On the surface of a sphere, i.e. r = 1,�(φ,θ) becomes

�(φ,θ) = 1

sin φ

∂

∂φ

(
sin φ

∂

∂φ

)
+ 1

sin2 φ

∂2

∂θ2
, and

−�(φ,θ)u = f (�) (10.1.2)

is the problem under consideration, where we denote the surface of the sphere in the coor-
dinates (φ, θ) by �. On � we define the computational grid Gh by

Gh = {(φj , θk): j = 0, . . . , nφ, k = 0, . . . , nθ }, (10.1.3)

with φj = jhφ, θk = khθ and the mesh sizes hφ = π/nφ and hθ = 2π/nθ . The quantities
nφ andnθ are chosen so that standard coarsening strategies can be applied. This grid contains
two singular lines which correspond to the north and the south pole (see Fig. 10.1).

A second-order accurate finite volume discretization [27] of (10.1.2) is

−
⎡⎣ hφ/(hθ sin φj )
(hθ/hφ) sin φj−1/2 −∑ (hθ/hφ) sin φj+1/2

hφ/(hθ sin φj )

⎤⎦ uj,k
= hθhφ sin(φj )fj,k

(10.1.4)

j = 1, . . . , nφ − 1, k = 0, . . . , nθ , where
∑

denotes the sum of the four neighbor stencil
elements. This discretization of the Poisson equation is equivalent to a finite difference form
used in [380].

For the discretization at the poles, the finite volume integration of the equation is per-
formed over all adjacent cells at once. At the north pole PN (where φ = 0), we obtain [28]∫

�PN

�(φ,θ)u d� ≈
nθ∑
k=1

hθ sin φ1/2
u(φ1, θk)− u(PN)

hφ
.
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Figure 10.1. Spherical coordinates with poles PN and PS and a control volume at (φj , θk).

By discretizing the right-hand side as∫
�PN

f d� ≈ f (PN)π
hφ

2
sin φ1/2,

we obtain

nθ∑
k=1

hθ

hφ
sin φ1/2(u(φ1, θk)− u(PN)) = f (PN)π

hφ

2
sin φ1/2. (10.1.5)

The south pole discretization is analogous. The resulting discretization is conservative and
symmetric.

Remark 10.1.1 (compatibility condition) The Poisson equation has a solution on the
surface of the sphere only if the right-hand side f satisfies the compatibility condition∫
� f d� = 0. The solution is then determined up to a constant. In general, the discrete

compatibility condition is not fulfilled, even if the continuous condition is. The discrete
right-hand side fh has then to be modified in order to ensure the existence of a solution to
the discrete problem [28] (see also Section 5.6). �

10.1.2 Specific Multigrid Components on the Surface of a Sphere

Here, we discuss an efficient multigrid process for the Poisson equation on the surface of the
sphere. We assume the discretization according to (10.1.4) and (10.1.5) and assume further
that the discrete compatibility condition is fulfilled. The multigrid scheme is constructed
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based on the following guidelines:

• Grids and coarsening The finest grid is defined by (10.1.3) (corresponding to the
surface of the sphere). The coarse grids are obtained by standard coarsening. The coarse
grid operators, LH , are defined by discretizing as on the finest grid.

• Transfer operators Defects are transferred from fine to coarse grids by a transformed
FW operator (as discussed in Remark 2.3.1). At nonsingular grid points, this operator
is defined by the stencil

1

4

⎡⎢⎣ sin φj−1/sin φj 2 sin φj+1/sin φj
2sin φj−1/sin φj 4 2sin φj+1/sin φj
sin φj−1/sin φj 2 sin φj+1/sin φj

⎤⎥⎦ (10.1.6)

where (φj , θk) denotes the corresponding fine grid point at which the transfer is carried
out. At the poles P , a special definition of the restriction operator is needed. It is defined
such that the transferred defect will automatically satisfy the discrete compatibility
condition on the coarse grid if it is fulfilled on the fine grid:

d2h(P ) := 2
sin(hφ/2)

sin hφ
dh(P )+ 4

nθ

nθ∑
k=1

dh(φ̄, θk), (10.1.7)

where dh denotes the defect on the fine grid, with φ̄ = hφ if φ = 0 (north pole) or
φ̄ = π − hφ if φ = π (south pole). nθ is the number of grid points on the fine grid in
the θ -direction. The sum in (10.1.7) can also be interpreted as an average of all defects
surrounding the pole.

Bilinear interpolation is employed to transfer the corrections from coarse to fine
grids.

• Relaxation Due to the strong anisotropy of the Laplacian in spherical coordinates,
especially near the poles where its coefficients in the θ -direction are orders of magnitude
larger than in the φ-direction, pointwise relaxation methods are not suitable as they have
poor smoothing properties.

In order to design an appropriate smoothing procedure, we apply LFA to the problem
obtained by freezing the (variable) coefficients of the discrete operator at each point. The
LFA smoothing factors μloc depend on φ, θ and on the quantity

ql = hφ/hθ . (10.1.8)

As expected, GS-RB (ω = 1) and the φ-zebra relaxation give poor smoothing factors.
Actually, they tend to one for points near the poles. On the other hand, it can be seen that θ -
zebra-line relaxation has good smoothing properties if ql ≥ 1: We findμloc (ν = 2) ≤ 0.34,
so that we can expect convergence factors of about 0.1 for multigrid cycles employing two
relaxation steps. For ql < 1, the situation is more involved since in that case there is a change
in the anisotropy direction inside the domain and none of the relaxations considered so far
have good smoothing factors. As expected, alternating zebra line relaxation provides good
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Table 10.1. V(1, 1) multigrid convergence factors
using zebra line relaxation (ql = 2).

Relaxation

nθ , nφ θ -line relax. φ-line relax.

32, 8 0.020 0.76
64, 16 0.030 0.93

128, 32 0.040 0.97
256, 64 0.045 0.98

Table 10.2. V(1, 1) multigrid convergence factors
using zebra line relaxation (ql = 0.25).

Relaxation

nθ , nφ θ -line relax. φ-line relax. Altern. line

8, 16 0.68 0.34 0.026
16, 32 0.72 0.53 0.031
32, 64 0.75 0.76 0.042
64, 128 0.77 0.93 0.051

smoothing in all cases. Tables 10.1 and 10.2 show measured V(1, 1)-cycle convergence
factors using various relaxations. They are in agreement with the LFA results. Note that
the simplest and most efficient choice is to apply ω-GS-RB with an appropriate ω > 1 for
smoothing (see Remark 5.1.2) if the anisotropies are not too large. In the following section,
we will discuss another efficient approach, which works well for any anisotropy.

10.1.3 A Segment Relaxation

As seen above, the line relaxation using lines in only one direction is not sufficient to achieve
good multigrid convergence in cases with ql < 1. There is actually no sudden deterioration
of the convergence factors when crossing the value ql = 1, but they will gradually worsen
with decreasing values of ql . In these cases, the θ -line relaxation smoothes well near the
poles but cannot provide good smoothing near the equator, where the anisotropy has a
different direction.

Alternating line relaxation is a good smoother in any of these cases, but it requires
twice the computational work of a single line relaxation. Half of the cost of alternating line
relaxation can, however, be saved by a segment relaxation. The idea is to split the domain
into some (nonoverlapping) regions, such that the anisotropy has a fixed direction inside
them. In other words, we apply each type of line relaxation only in those regions in which
its smoothing properties are good. As can be seen by LFA, the θ -line relaxation does an
excellent job in regions where ql ≥ sin φ, while for ql < sin φ the φ-line relaxation is more
effective. We then split the domain into regions according to whether or not ql ≤ sin φ. The
pattern of the segment relaxation is illustrated in Fig. 10.2.
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↑
φ

π

0 2π

θ →

ql = sin φ →

ql = sin φ →

Figure 10.2. Pattern of the segment relaxation for cases with ql < 1.

Table 10.3. V(1,1) multigrid convergence factors with the seg-
ment and with the alternating line relaxation.

ql = 0.5 ql = 0.25

Relaxation Relaxation

nθ , nφ Altern. Segment nθ , nφ Altern. Segment

16, 16 0.031 0.044 8, 16 0.026 0.026
32, 32 0.031 0.054 16, 32 0.031 0.059
64, 64 0.040 0.060 32, 64 0.042 0.073

128, 128 0.047 0.064 64, 128 0.051 0.082

A practical implementation of the segment zebra relaxation is done as follows: we
perform θ -line relaxation zebrawise (odd lines first, then even lines) on the regions around
the poles (where ql < sin φ) followed by φ-zebra-line relaxation near the equator (where
ql < sin φ). Table 10.3 shows the convergence obtained with the segment relaxation.

Remark 10.1.2 (3D generalization) The strong and varying anisotropy of the equations
on the sphere causes difficulties for the realization of efficient 3D multigrid schemes. The
use of segment based plane relaxation, implemented on the basis of 2D multigrid solvers,
is one option for achieving an effective method. Of course, LFA can be used to provide
guidelines on designing an efficient 3D relaxation. If the anisotropies are not too strong,
suitable ω-GS-RB relaxations can be applied efficiently. �

Remark 10.1.3 (icosahedral grids) The problems of the singularities caused by the poles
and the anisotropies introduced by the grid are avoided if another type of grid is used. The
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Figure 10.3. A sequence of spherical triangular grids.

so-called icosahedral grid, consisting of spherical triangular grid cells (see Fig. 10.3) [35]
is of special interest for weather forecast models.

Depending on the place on the sphere, the grid points are surrounded by five or six
triangular cells. A finite element or finite volume discretization can easily be applied on this
icosahedral grid. Due to the regularity of cells and the hierarchical structure of the grids,
shown in Fig. 10.3, multigrid can be applied in a natural way. Moreover, the need for line
relaxation disappears and pointwise relaxation can be used [41]. Furthermore, the grid is
well-suited for adaptive and parallel versions of multigrid. �

10.2 MULTIGRID AND CONTINUATION METHODS

In this section, we outline how multigrid methods can be used for the solution of nonlinear
bifurcation problems of the form

N(u, λ) = 0. (10.2.1)

Here N is a nonlinear differential operator and λ a parameter ∈ R.
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10.2.1 The Bratu Problem

As an example, we consider the classical 2D Bratu problem on the unit square

N(u, λ) = −�u− λeu = 0 (� = (0, 1)2)

u = 0 (∂�)
(10.2.2)

and look for solutions (u, λ), λ ≥ 0. The structure of the solutions for the above problem is
well known (see Fig. 10.4). Solutions exist only for certain values of λ, actually for λ ≤ λ∗
(≈ 6.8). For λ = 0 only the trivial solution exists. For 0 < λ < λ∗, there are two solutions,
and for λ = λ∗ we have a “turning point” with only one solution.

We assume that the above problem is discretized using the standard second-order five-
point stencil �h on the square grid �h

Nhuh = −�huh − λeuh = 0 (�h)

uh = 0 (∂�h).
(10.2.3)

In principle, for fixed λ, we can either employ the nonlinear FAS multigrid approach or
globally linearize the problem with an outer Newton-type iteration and use linear multigrid
in each Newton step. Indeed, the straightforward FAS, for example, has been successfully
used without any difficulties for finding the lower solution branch for λ up to λ ≈ 6.5. In
this case, FAS is particularly efficient in combination with FMG, starting from a zero initial
approximation on the coarsest grid, which may consist of only one interior point.

However, if λ approaches the crucial value λ∗, standard multigrid methods fail to con-
verge [350]. One reason is rather fundamental and will cause problems to any solver. At the
turning point λ∗, the fundamental matrix

∂Nh(u
∗
h, λ

∗
h)

∂uh

~1.4
2

~

4

6

8

2 3 4 5 6 7 81

turning point

||u||

6.8~

Figure 10.4. Bifurcation diagram for the Bratu problem, showing ||u||∞ as a function of λ.
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becomes singular. A second reason is specific for multigrid: if λh is close to λ∗, certain low
frequency error components are not reduced by coarse grid corrections.

This effect is also observed if the (linear) indefinite Helmholtz equation is solved by a
multigrid method for a Helmholtz constant which is close to an eigenvalue of the discrete
Laplacian (see also, for example, [84] and Appendix A, Section A.8.5). Thefine grid problem
is not approximated well on very coarse grids if standard multigrid is applied for these
values of λ.

Remark 10.2.1 (local Kaczmarz relaxation) On very coarse grids, additional difficulties
arise due to the fact that the diagonal elements of the corresponding coarse grid discrete
operator may be close to 0 or may even change sign. When using one of the pointwise
relaxation schemes, one has to divide by these very small coefficients. This difficulty can
be overcome by a modification of the relaxation method used on these coarse grids. For
example, a combination of the nonlinear Gauss–Seidel method with the Kaczmarz relaxation
(see Section 4.7) method is suitable here [350]. �

10.2.2 Continuation Techniques

The question that now arises is how to find solutions on the upper branch in Fig. 10.4 or
near the turning point.

A well-known process to deal with such problems is to apply a so-called continuation
technique. This means that a sequence of auxiliary problems is constructed that converge
towards the target problem. The auxiliary problems are constructed in such a way that a
major difficulty of the original problem is overcome. This can be, for example, a small
attraction basin for strongly nonlinear problems, for which a sequence of problems with a
less strong nonlinear term can be used to provide a series of approximations for the actual
problem to be solved.

In our example, we have a similar problem with multiple solutions (for one value of λ,
two solutions may exist). One solution can usually be obtained easily, the other one can be
obtained by a special continuation technique described in the following.

If we want to solve (10.2.3) on the upper solution branch or near λ∗ with a multigrid
method, we have several choices and options. A first (naive) continuation idea is to apply
multigrid for a fixed λ, for which multigrid converges well and to vary λ systematically.
We can increase λ step-by-step and for example use the solution corresponding to the
previous λ as a first approximation for the next value of λ. This approach, however, has
some deficiencies.

First, it is not known how to prescribe new values of λ such that the problem still has
a solution. (λ∗ is not known in more general situations.) Moreover, it is not clear how one
can pass the turning point, i.e. switch the solution branch, with this approach. In addition,
the multigrid convergence problems described in Section 10.2.1 will arise near λ∗ due to
the singularity of the fundamental matrix.

A more sophisticated way to overcome these problems is to change the parametrization
of the problem and of the continuation process. The problem parameter λ is replaced by
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a new independent variable, s, in terms of which the solution is unique, u and λ are then
regarded as unknowns. In other words, we form an augmented (extended) problem

N(u(s), λ(s)) = 0 (�)

u(s) = 0 (∂�) (10.2.4)

C(u(s), λ(s), s) = 0.

Here, the last equation gives an (implicit) definition of the relation between u, s and λ. The
procedure discussed above corresponds to the (inappropriate) choiceC(u, λ, s) = λ−s. The
operator C(u, λ, s) can be interpreted as a constraint to the original system. A reasonable
choice which works very well for many problems is given by the arc-length continuation
method [101, 209] where the arc length is used for s, leading with the || · ||2 norm to

C(u, λ, s) := ||du/ds||22 + |dλ/ds|2 − 1 = 0.

If we assume a solution (u0, λ0) = (u(s0), λ(s0)) and additionally (u̇(s0), λ̇(s0)) =
((du/ds)(s0), (dλ/ds)(s0)) to be known (exactly or approximately), we can use

C(u, λ, s) := 〈u̇(s0), u(s)− u(s0)〉2 + λ̇(s0)(λ(s)− λ(s0))− (s − s0) = 0 (10.2.5)

instead of the arc length itself (for sufficiently small |s − s0|). Here 〈·, ·〉2 denotes the
Euclidean inner product.

In [119] it is proved, under general conditions, that a unique solution (u(s), λ(s), s)
of (10.2.4) with (10.2.5) exists on a curve through (u(s0), λ(s0)) for all |s − s0| < δ (δ
sufficiently small) if (u(s0), λ(s0)) is a regular solution or a simple turning point ofN(u, λ).
An important property of this continuation method is that along this curve, the derivative(

∂N(u(s), λ(s))/∂u ∂N(u(s), λ(s))/∂λ

∂C(u(s), λ(s), s)/∂u ∂C(u(s), λ(s), s)/∂λ

)
(10.2.6)

is not singular (not even at the turning point).

Remark 10.2.2 In the case of the above Bratu problem, for which the numerical solution
is known for all values of λ, simpler constraints are available. It is, for example, also
possible to prescribe ||uh||2 or uh(1/2, 1/2) as the additional constraint, i.e. one may set
C(u, λ, s) = ||uh||2 − s or C(u, λ, s) = uh(0.5, 0.5)− s. �

10.2.3 Multigrid for Continuation Methods

In this section, we briefly describe one approach of how the FAS multigrid method (in
particular the relaxation) can be modified in order to solve the augmented system (10.2.4)
(for other approaches, see [19, 44, 269]).

Let us assume that a discretization of (10.2.4), (10.2.5) on �� is given by

N�(u�, λ�) = f� (��)

u� = 0 (∂��)

C�(u�, λ�, s) = δ�

(10.2.7)
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with

C�(u�, λ�, s) = 〈u�(s0)− u�(s−1), u�(s)− u�(s0)〉2

+ (λ�(s)− λ�(s0))(λ�(s0)− λ�(s−1))

where 〈·, ·〉2 is the discrete Euclidean inner product and

δ� = (s − s0)(s0 − s−1).

Here, we assume that (uk(s0), λk(s0)) and (uk(s−1), λk(s−1)) are obtained solutions.
For the continuation along the curve of the solution, we prescribe the distance (size

s − s0) on the secant with |s − s0| sufficiently small [350].
On the coarse grids �k, k �= �, we have (10.2.7) with � replaced by k. These coarse

grid systems (Nk, fk, Ck, δk) are defined as usual in the FAS process.
Note that δk is just a number, not a grid function and that a first approximation to the

coarse grid λk-value can be obtained by straight injection.
One smoothing step on �k for the augmented system consists of two parts, since both

λ and u have to be updated.

(1) Apply one (nonlinear) “standard ” relaxation step to the current approximation of
uk(s) with a fixed λ(s). This gives ũk(s).

(2) Modify the relaxed approximation in such a way that the constraint is satisfied after-
wards. This can be achieved by the corrections

ūk(s) ← ũk(s)+ β(ũk(s)− uk(s0))
λ̄k(s) ← λk(s)+ α(λk(s)− λk(s0)),

(10.2.8)

where the parameters α and β are obtained from the 2 × 2 system

Ck(ūk(s), λ̄k(s)) = δk∑̃
�k
(Nk(ūk(s), λ̄k(s)) =

∑̃
�k
fk.

Here,
∑̃

characterizes an average over all equations. The 2×2 system can be approx-
imately solved, for instance, by a few (even just one) steps of a Newton-type method.

Employing the FAS with such a relaxation procedure on all grids, one can march along the
curve in Fig. 10.4 starting somewhere on the lower branch. Taking the previous solution
(and the corresponding value of λ) as a first approximation and updating δ, one can pass the
turning point without any difficulty provided that local Kaczmarz relaxations are applied
on coarse grids (as mentioned in Remark 10.2.1) if necessary.

Remark 10.2.3 In general it is sufficient to update λ (Step (2)) in the above relaxation only
on the coarsest grid (or on a few very coarse grids). In this way, the cost of the relaxation
can be reduced. �
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Remark 10.2.4 (embedding continuation into FMG) An efficient variant of this multi-
grid solution method is obtained by incorporating the continuation process in a nested
iteration process (in FMG): s is increased already on the coarse grids in such a way that the
target value of s is already obtained when the finest grid is reached. �

10.2.4 The Indefinite Helmholtz Equation

If the Bratu problem is globally linarized, one obtains a Helmholtz-type equation of the
form

−�u+ cu = f (c = c(x, y) < 0).

Different from the harmless case c(x, y) ≥ 0 (discussed in Section 2.8.1), the multigrid
treatment of the case c < 0 can become rather involved and will be a real difficulty if −c
gets very large.

We will not describe these complications here. The situation and the typical phenomena
are discussed in Appendix A (Section A.8.5). What is said there with respect to the AMG
convergence of the (indefinite) Helmholtz equation is similarly valid for the standard multi-
grid treatment: Difficulties occur if −c is close to one of the eigenvalues of the discrete
Laplacian since the discrete equation becomes singular there (see [84, 386]).

If −c is larger than the first eigenvalue, smoothers like Gauss–Seidel relaxation will no
longer be convergent. But since their smoothing properties are still satisfactory, the multigrid
convergence will deteriorate gradually for −c increasing (see Figure A.8.22), provided that
a direct solver is employed on the coarsest grid. However, if −c gets larger and larger, the
coarsest grid has to be chosen finer and finer (explained in A.8). Finally, if −c → ∞ the
h-ellipticity Eh(Lh) → 0.

An efficient multigrid approach that is nevertheless feasible in this situation is the wave-
ray multigrid [79]. Another multigrid treatment is proposed in [136].

10.3 GENERATION OF BOUNDARY FITTED GRIDS

A common way to generate boundary fitted grids is to solve quasilinear elliptic systems of
PDEs, i.e. to solve transformed systems of Poisson or biharmonic equations [135, 354, 391].
Efficient multigrid solvers have been developed for such problems [244]. In the following,
we will describe typical situations which may occur in grid generation and discuss the
proper multigrid treatment. We start with a brief review of second- and fourth-order elliptic
grid generation equations. Several aspects that have been discussed separately in previous
sections in this book (like systems of equations, mixed derivatives, first-order derivatives
etc.) come together here. For convenience, we restrict ourselves to 2D. The generalization
to 3D is straightforward.
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10.3.1 Grid Generation Based on Poisson’s Equation

For a simply connected domain � in the (x, y)-plane with boundary ∂�, boundary fitted
coordinates ξ = ξ(x, y) and η = η(x, y) can be defined as the solution of the decoupled
system of Poisson equations

�ξ = s1(x, y), �η = s2(x, y) on �

ξ = f (x, y), η = g(x, y) on ∂�.
(10.3.1)

With pointsA,B,C andD on ∂� and constants ξ0 < ξ1 and η0 < η1, the boundary values
are of the form (see Fig. 10.5)

f ≡ ξ0 (∂�AD), f ≡ ξ1 (∂�BC), g ≡ η0 (∂�AB) and g ≡ η1 (∂�DC).

On the remainder of the boundary, f and g are assumed to be monotonically increasing
(surjective) functions. By choosing proper boundary values f and g and right-hand sides
s1 and s2, one has a flexible control over the resulting (ξ, η)-coordinate system near the
boundary and in the interior, respectively. (However, nonzero right-hand sides s1 and s2
have to be chosen with care in order to avoid overlapping coordinate lines.)

The required boundary fitted grid is finally defined by the discrete contour lines of ξ
and η. These are most conveniently obtained by considering the inverse transformation
functions x = x(ξ, η) and y = y(ξ, η) which are the solutions of the following Dirichlet
problem on the rectangle �̂ = [ξ0, ξ1] × [η0, η1] in the (ξ, η)-plane:

αxξξ − 2βxξη + γ xηη + J 2(s1xξ + s2xη) = 0

αyξξ − 2βyξη + γyηη + J 2(s1yξ + s2yη) = 0,
(10.3.2)

where x = f̂ (ξ, η), y = ĝ(ξ, η) on ∂�̂ and

α = x2
η + y2

η, β = xξyη + yξ xη, γ = x2
ξ + y2

ξ

and the Jacobian J = xξyη − xηyξ .

The boundary values are such that, for example, (f̂ (ξ, η0), ĝ(ξ, η0)) (ξ0 ≤ ξ ≤ ξ1) is a
parametric representation of ∂�AB (see Fig. 10.5). The system (10.3.2) is the system of
interest here.

10.3.2 Multigrid Solution of Grid Generation Equations

An efficient multigrid treatment for (10.3.2) is guided by many of the considerations already
touched on in this book, some of which we will list here. Two properties can immediately
be seen. First, (10.3.2) is a system of differential equations and second, it is nonlinear. The
nonlinearity does not lead to any essential problems if we apply the FAS (see Section 5.3)
and use nonlinear variants of standard relaxation methods for smoothing. A straightforward
generalization of Gauss–Seidel relaxation (pointwise, linewise, etc.) to systems of PDEs is
the corresponding collective Newton–Gauss–Seidel relaxation.
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Figure 10.5. (Left) The physical domain; (right) the transformed rectangular computational domain.

Remark 10.3.1 Note that, for (10.3.2) and collective point relaxation, both the Newton
and Picard iteration (freezing of α, β, γ, J ) coincide if central differencing is used. At
each point the corresponding systems of equations within the relaxation scheme are linear
and the different unknowns are decoupled. The situation is different, however, if one-sided
differencing is used for the first-order derivatives, and also in the case of collective line
relaxation. �

Another issue is the occurrence of mixed derivatives in (10.3.2). In Section 7.6.1, we
have seen that, if mixed derivatives become too large (i.e. if β2 − αγ = −J 2 ≈ 0), the
problem is close to being nonelliptic and special multigrid components (e.g. a specific
smoother) need to be chosen for fast convergence.

The choice of a proper smoothing procedure depends essentially on the relative size
of the (solution dependent) coefficients of the principle terms, i.e. on the ratio α/γ . It is
important to know how this ratio behaves asymptotically. As long as it is between 1/2 and
2, say, we may safely use (collective) point Gauss–Seidel relaxation for smoothing with
standard grid coarsening. Geometrically, this is the case if ξ and η are, roughly, arc-length
parameters of the corresponding (x, y)-curves (up to a scaling factor). Reasonable boundary
fitted grids, however, should not be too far away from being orthogonal grids (at least not
globally). Consequently, for relevant situations, the mixed derivative coefficient β can be
expected to be relatively small and should not have any negative influence on the multigrid
convergence.

However, any kind of essential grid line concentration in the physical domain will cause
anisotropies in the principal parts of the equations. For large anisotropies, line relaxation
is required in combination with standard coarsening, or, alternatively, point relaxation with
semicoarsening.

The first-order derivatives are usually discretized with central differences [391]. Even
if this does not cause any difficulties on the finest grid, this discretization may still become
unstable on some coarser grids and may even lead to divergence (see the discussion in
Section 7.1.2). This is likely to happen if significant inhomogeneous source terms s1 and
s2 are used. However, even for s1 ≡ s2 ≡ 0, the discretization of the first-order derivatives
(in α, β, γ ) may become important. By linearizing (10.3.2) around a solution (x, y), we
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see that a perturbation ε = (ε1, ε2) of the right-hand side causes a change δ = (δ1, δ2) of
(x, y) which is approximately the solution of the linear differential system(

L1(x, y) L2(x, y)

L2(y, x) L1(y, x)

)(
δ1
δ2

)
=
(
ε1
ε2

)
(10.3.3)

where L1 and L2 are the differential operators

L1(x, y) = α∂ξξ − 2β∂ξη + γ ∂ηη + 2(xξ xηη − xηxξη)∂ξ + 2(xηxξξ − xξxξη)∂η
L2(x, y) = 2(yξ xηη − yηxξη)∂ξ + 2(yηxξξ − yξxξη)∂η.

The discretization of the first-order terms can be oriented to the stability properties of this
linear system, i.e. the discretization of (10.3.2) has to be such (central, first-order upwind
or higher order upwind, see Section 7.3.2) that the corresponding discretization of (10.3.3)
is stable for all mesh sizes used in the corresponding multigrid process.

10.3.3 Grid Generation with the Biharmonic Equation

Often, in grid generation, control of the grid point distribution and of the angle of intersecting
grid lines at the boundary ∂� is desirable, especially when separately generated grids are
to be patched (in order to obtain smooth interfaces). Moreover, one would often like to
generate grids that are orthogonal to the boundary. This, for example, simplifies the correct
numerical treatment of boundary conditions. The approach (10.3.2) uses a system of second-
order equations. In that case, it is impossible to control both the grid point distribution
and the angle of intersecting grid lines at the same time because this would lead to an
overdetermination: two boundary conditions per boundary for each grid function cannot be
prescribed for a 2 × 2 system of Poisson-type equations.

One way to construct such grids is to use the biharmonic equations

��ξ = s1(x, y), ��η = s2(x, y) on � (10.3.4)

instead of Poisson equations [36, 349, 370]. As discussed in Section 8.4, it is convenient
to write the above pair of biharmonic equations as two systems, each consisting of two
Poisson equations:

�ξ = p, �p = s1 and �η = q, �q = s2. (10.3.5)

By transforming the dependent to independent variables as in the previous section, the
quasilinear system

αxξξ − 2βxξη + γ xηη + J 2(pxξ + qxη) = 0

αyξξ − 2βyξη + γyηη + J 2(pyξ + qyη) = 0

αpξξ − 2βpξη + γpηη + J 2(ppξ + qpη)− J 2s1 = 0

αqξξ − 2βqξη + γ qηη + J 2(pqξ + qqη)− J 2s2 = 0

(10.3.6)

is derived from (10.3.5). Apart from specifying x and y at the boundary ∂�̂, two additional
boundary conditions can now be imposed along ∂�̂. In terms of the physical domain, an
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(a) (b)

Figure 10.6. Grids around a cylinder on a two-block domain, with (a) a second-order (10.3.2) and
(b) a fourth-order (10.3.6) grid generation process.

obvious possibility is to prescribe the slope of the intersecting grid lines at the boundary
and the mesh size orthogonal to the boundary.

Equation (10.3.6) can be discretized and solved by multigrid methods with a similar
efficiency to (10.3.2) because all the equations have essentially the same structure as before.
All remarks made in the previous section on the proper choice of the multigrid components
carry over to this system. However, the peculiarity that is discussed in Section 8.4.2 for the
biharmonic system has to be taken into account. We actually have two boundary conditions
for x and y, respectively, but no boundary condition for p and q. These boundary condi-
tions have to be handled with care especially when using V-cycles (see Section 8.4.2 and
Remark 8.4.3).

10.3.4 Examples

We conclude this section with two examples of grid generation. Figure 10.6 presents grids
generated in a two-block domain (with an upper and a lower block) around a cylinder. The
left figure shows the grid generated with a straightforward application of the Poisson-type
system (10.3.2), the grid in the right figure is generated with the biharmonic system (10.3.6).
In this situation the biharmonic grid generator generates a smoother and more homogeneous
grid. Near the physical and “interior” block boundaries the size and the shape of the grid
cells are more suitable for numerical computations. Both grids are generated by solving
discretizations of the respective equations (10.3.2) and (10.3.6) with standard multigrid
solvers using alternating zebra line smoothers. A decoupled smoothing is sufficient here.

10.4 LISS: A GENERIC MULTIGRID SOFTWARE PACKAGE

In this and the following section, we will discuss two, in some sense typical, multigrid-based
software packages. Thefirst is theLiSS package, which has been designed to develop robust
and efficient multigrid components for various applications. The second is the FLOWer code
(developed by the German Aerospace Center DLR, Institute of Design Aerodynamics,
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Braunschweig) which has been designed to solve complicated industrial aerodynamic flow
problems and which also uses multigrid techniques.

Both codes are based on block-structured grids. The general procedure for solving a
problem on block-structured grids can be summarized as follows: first, one starts with the
definition of the problem geometry, i.e. one defines the computational domain. This domain
is subdivided into subdomains (also called blocks), in each of which a logically rectangular
boundary-fitted grid is generated (for example, by solving a system of transformed PDEs
by a multigrid algorithm as described in Section 10.3).

The next step is the discretization of the PDE to be solved, and correspondingly the
boundary conditions are discretized. After this, the problem description is finished and the
solution process of the problem can start.

The PDE is then solved by a fast (iterative) solution method. Typically, the iterations are
terminated if the defects are sufficiently small. In an advanced solution process, adaptivity is
included so that an error indicator determines refinement regions and additional grid points
are automatically added in these regions. After the solution process, the output is analyzed.
In particular, the solution is visualized.

These steps of a solution process for PDEs are realized in theLiSS package [248, 322],
which is a general tool for solving PDEs with multigrid. It combines the use of (optionally
adaptive) multigrid with block-structured grids in a grid partitioning environment. Both
sequential and parallel versions are included in a single code. The multigrid solver is portable
among sequential and parallel architectures.
LiSS is designed for the solution of a system of linear or nonlinear PDEs

Nu = f

on a general bounded 2D domain� together with boundary conditions on ∂�. It also allows
to solve time-dependent problems

ut = Nu − f

with initial and boundary conditions.
For the solution of a new system of PDEs, only a few interface subroutines of LiSS

have to be provided by the user, for example those describing the discretization of a new
application. Some example sets, containing all necessary interface routines are available in
the package. These example sets currently include

– Poisson’s equation,
– the incompressible Navier–Stokes equations using Dick’s flux difference splitting for

discretization [125] (see also Section 8.8.4),
– the Euler equations using Dick’s or Osher’s flux difference splitting for discretization

[99, 124, 145].

10.4.1 Pre- and Postprocessing Components

Preprocessing
Definition of the geometry The user has to specify the contour of the domain, its block
structure and the boundary point distribution which is used by the grid generator to create
the block-structured grid.



406 MULTIGRID

Grid generation Grid generators are available which solve a system of transformed
Poisson equations or, alternatively, of biharmonic equations with multigrid as described in
Section 10.3.

Subdivision of the block structure Often the user-defined block structure of an appli-
cation consists of a possibly small number of blocks. The number of blocks required for
a parallel computation is, however, typically larger, at least if many processors have to be
employed. An interactive tool produces a further subdivision of the user-defined blocks in
order to allow a full and load-balanced utilization of the available processors.

Postprocessing
Postprocessing tools provide plots of the domain, the block structure and the corresponding
grid and contour plots of all components of the discrete solution. For flow problems, the
velocity of the flow and streamlines can be visualized and particle tracing is an option for
time-dependent solutions.

10.4.2 The Multigrid Solver

The solver for a given PDE (system) is the kernel of the LiSS package. It is designed for
vertex-centered discretizations.

Subroutines to be provided by the user define the discretization of the PDE and the
boundary conditions.

The resulting (nonlinear) system of algebraic equations is solved by the FAS version
of multigrid. The relaxation schemes implemented are GS-LEX, GS-RB and various
line relaxations of Gauss–Seidel type. Nonlinear relaxation methods are also supported.
Furthermore, the relaxation is performed collectively when dealing with systems of
equations.

A defect correction iteration with a high order accurate discretization (as described in
Section 5.4.1) is optional. High order discretization can also be dealt with directly using
smoothers based on the defect correction idea (KAPPA smoothers, see Section 7.4.1).

Concerning the discretization in time, the user has the choice between the (implicit)
backward Euler and the Crank–Nicolson scheme. The program supports a time marching
method in which the time steps are determined by fixed time steps or by a time step size
control.

Grid partitioning (see Section 6.3), where the subgrids (corresponding to the blocks)
are mapped to different processes, is used as the parallelization strategy.

The complicated communication tasks in the parallel solution of grid-partitioned block-
structured applications are independent of the PDE to be solved. In LiSS, all the com-
munication tasks are performed by routines of the GMD Communications Library [191]
for block-structured grids. This library is based on the portable message-passing interface
MPI [190]. Thus, it is portable among all parallel machines on which this interface is
available.

For problems whose solution only requires a high resolution in parts of the domain,
which may be solution-dependent and unknown in advance, fixed block-structured grids
may still be too restrictive. Dynamic locally refined grids are adequate for such problems.
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The adaptive multigrid approach (see Section 9.2) is used for these problems in LiSS.
Here, the locally refined grids are determined in such a way that they form a block structure
themselves, so that the advantages of block-structured grids can be maintained on refinement
levels. Since the different levels are treated sequentially, load balancing is an important issue
at each level. In order to achieve a satisfactory load balancing, the blocks of a refined level
are distributed to all processes (processors).

From the user’s point of view, a locally refined level is created as follows. In each block,
the user or the program determines point sets in which a locally refined grid should be intro-
duced. This information is passed to the communications library. From then on, the library
takes over: transparent for the user, it embeds the point sets in logically rectangular blocks,
processes the local (blockwise) information, creates a new block structure and maps the
blocks to the processors in a load-balanced way. The necessary data transfer is kept to a min-
imum. All necessary communication between different levels of the hierarchy is supported
by the library. The use of the library for adaptive grids essentially reduces the programming
effort to what one would have to do for a single block grid on a sequential machine.

Remark 10.4.1 (generalization to 3D) The current features ofLiSS have been developed
for the solution of 2D systems of PDEs. One ongoing activity is to generalize LiSS to 3D
block-structured grids (see Section 9.6.2 for an example). �

10.5 MULTIGRID IN THE AERODYNAMIC INDUSTRY

In this section, we will give an example for multigrid in industrial practice. We would like
to emphasize that a solver for industrial applications has to take into account many specific
conditions. For example, in industry the requirements on robustness andflexibility of a solver
with respect to grid structures, the number of equations in a PDE system, the complexity of
the model etc. are often very important. Instead of an optimal method for one application, a
satisfactory method for many applications is usually preferred. We will outline this for the
particular case of the development of modern aircraft. Here, the numerical simulation is of
high economic importance. Objectives in the design of an aircraft are, for example: drag
minimization, minimization of energy consumption and noise reduction. Many aerodynamic
phenomena are too expensive and too time consuming to be dealt with experimentally, if
they can be treated at all. The numerical simulation of the full flow around an aircraft is a
way out. This was recognized many years ago; it is thus not surprising that (theoretical and)
computational fluid dynamics has a long history.

Corresponding to the development of modern computer hardware and fast numerical
algorithms during recent decades, increasingly complicatedflow problems have been solved
numerically. Having started in the 1950s with simple flow models around circles and 2D
airfoils and having continued with the Euler equations, it is now possible to solve the com-
pressible Reynolds-averaged Navier–Stokes equations (RANS) for the 3D flow around a
full aircraft with complicated geometry. This has become feasible because of the develop-
ment of appropriate parallel multigrid methods and the use of high performance parallel
computers. Typically, the grids required for such numerical computations consist of many
millions of grid points.
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For such computations, the German aircraft industry and others use the FLOWer code,
a parallel 3D multigrid program [224].

10.5.1 Numerical Challenges for the 3D Compressible Navier–Stokes
Equations

Before we report on some results obtained with the FLOWer code, we will list some prob-
lems, which have to be tackled when solving the compressible Navier–Stokes equations for
the flow around an aircraft.

• The PDE systems are nonlinear.
• The derivation of an appropriate set of boundary conditions, their discretization and

multigrid treatment requires a careful study.
• The operator determinant of the PDE system is, in general, a product of several scalar

operators, each with different properties. For a fully efficient multigrid solver, each of
these properties should, in principle, be taken into account (see also Appendix C).

• Realistic geometries are very complicated. The generation of suitable grids for
such geometries becomes crucial. One possibility is to use block-structured grids
(see Fig. 10.7 for a wing–body–engine aircraft configuration). In practical aircraft

Figure 10.7. Block-structured boundary fitted grid around a DLR-F6 wing–body–engine configu-
ration (courtesy of DLR).



SOME MORE MULTIGRID APPLICATIONS 409

simulations, these grids often have singularities: whole edges (or even faces) of the
blocks may collapse into one single geometrical point.

• Boundary layers may require the use of extremely fine and anisotropic grids near certain
boundaries of the computational domain. As a consequence, the discrete systems may
have large anisotropies (see Sections 5.1 and 5.2).

• The number of grid points required is so large that only with highly parallel computers
does one have a chance to solve the problem. Therefore, parallel multigrid is needed
(see Chapter 6), preferably combined with a robust adaptive grid approach.

• Conservative discretization is needed. Appropriate discretizations can be achieved with
finite volumes (similar to Sections 8.8.4 and 8.9).

• Dominance of convection and corresponding singular perturbations are common features
of many flow problems. They require special treatment (see Sections 7.1–7.4). Sonic
lines and recirculation phenomena should also be taken into account (see Appendix C).

• The properties of the PDE systems and the appropriate multigrid treatment depend
strongly on the amount of viscosity (added artificially).

• Typically, second-order accuracy is necessary to obtain sufficiently accurate approxi-
mations. If first-order discretizations were used, the grids would have to be so fine that
the computing times would become unacceptable.

Second-order discretizations for systems like the Euler or the Navier–Stokes equa-
tions require the development of advanced multigrid components. Reliable defect correc-
tion techniques or the development of special smoothers are necessary (see Sections 5.4.1
and 7.4).

• The development of optimal multigrid algorithms for turbulent flow, in particular for
advanced turbulence models such as the so-called two-equation models (e.g. k − ε or
k − ω) or even large eddy simulation (LES), is a topic of current research.

• A further area which requires special numerical treatment is that of chemically reacting
flows (e.g. in hypersonic cases).

• One finally wants to design the aircraft and not just calculate the flow around it. There-
fore, one is interested in optimizing certain parameters (design variables), which leads
to (possibly ill-posed) problems of differential optimization [382–384].

10.5.2 FLOWer

The combination of the numerical problems listed above makes it very difficult to develop
an optimized multigrid solver. Correspondingly, various of the above problems and their
optimal multigrid treatment are still topics of current research (see Appendix C). However,
quite robust multigrid techniques have been developed and are in practical use. The FLOWer
code [224], which is used to compute the compressible viscous flow around complex 3D
aircraft configurations based on RANS, is a parallel multigrid code for 3D block-structured
grids and finite volume discretization using standard coarsening. Jameson’s multistage
Runge–Kutta schemes are employed as smoothers [202–205] (see also Section 8.9.4), and
are improved by various techniques (for details, see [224, 225]). We refer to [348], for a
detailed description of FLOWer and its performance.
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Figure 10.8. Block-structured boundary fitted grid around a generic DLR-F4 wing–body configu-
ration (courtesy of DLR).

Example 10.5.1 As an example, we want to cite a result [42] for the viscous flow around
a generic DLR-F4 wing–body configuration (see Fig. 10.8).

A grid consisting of 6.64 million grid points has been used for the computation of the
flow. The memory required for this calculation is over 5 Gbytes. Using four levels, 800
multigrid cycles have been carried out (see the left picture in Fig. 10.9 for the convergence
history). For the parallel solution, the whole grid has been partitioned into 128 equally
sized blocks. This calculation takes about 3 hours on an IBM-SP2 with 128 Thin2-nodes
(or 1.25 hours on 16 processors of a NEC-SX-4 with the grid partitioned into 16 equally sized
blocks).

The relatively large number of 800 multigrid cycles indicates that an “optimal” multigrid
treatment of all the difficulties described in Section 10.5.1 is not yet available. Nevertheless,
FLOWer is by far more efficient than any known single grid solver for such applications
and has thus become an important design tool in industrial aerodynamics.

The right picture in Figure 10.9 shows how the computed lift coefficient CL depends on
the grid size. Grid 4 denotes the finest grid. The coarser grids (Grids 3, 2, 1) are obtained by
standard coarsening. The necessity for fine grid resolution is obvious if the lift coefficient
has to be predicted to within 2% accuracy. Here, the scale 1/N2/3 has been chosen since
on this scale a linear behavior of cL is expected for N → ∞ (i.e. 1/N2/3 → 0). Note that
h = 1/N1/3 and we have O(h2) accuracy. �

10.5.3 Fluid–Structure Coupling

Above, we have reported that the computation of the compressible flow around a full aircraft
is possible within a few hours. Implicitly, we have assumed a steady flow and a fixed, i.e. a
nonflexible geometry of the aircraft.
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Figure 10.9. Multigrid convergence history and “grid convergence”.

However, such a steady-state flow around a rigid aircraft configuration describes the real
flight behavior of the aircraft only to some degree. This assumption neglects, in particular,
the interaction of air flow and structure.

In reality, wings are not rigid but flexible to some extent. This can easily be observed.
While the wings hang down before the start of an aircraft due to their own weight, they bend
themselves upward during the flight because of the lift. Moreover, the air flow produces
forces which influence the position of the wings and, in particular, the effective angle of
attack of the flow. A modification of the angle of attack, however, causes a change in the
flow, a change of forces acting on the wing and, thus, a further change of the wing position
and of the angle of attack, and so on.

The knowledge of the precise situation during the flight is important for aircraft design.
Even relatively small changes in the angle of attack can lead to reduced flight performance
with larger drag and larger fuel consumption.

In order to solve the complete problem, the dynamic interaction of the wing structure and
the aerodynamics has to be taken into account. This is a typical, but still simple, example of
a coupled or multidisciplinary application. (For example, the propulsion and corresponding
interactions may also have to be considered.) Similar multidisciplinary problems have to
be solved in many other fields, e.g. in the design of artificial heart valves, which also has to
take a dynamic interaction of structural mechanics and fluid dynamics into account.

Multidisciplinary applications are, of course, much more involved and time-consuming
than the underlying monodisciplinary subproblems. The development of optimal multigrid
solvers for multidisciplinary applications is a new challenge for scientific computing. Some
software tools for this purpose are already available (e.g. the MpCCI coupling interface,
see http://www.mpcci.org).

10.6 HOW TO CONTINUE WITH MULTIGRID

As seen in the above example, the typical multigrid efficiency has not yet been reached for all
of the difficulties listed in Section 10.5.1. In Appendix C, A. Brandt sketches some ideas for
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tackling such difficulties and the status of current research. The general strategy is to study
each of the difficulties separately and to develop specific multigrid components to handle
each complication. For real-life problems where several complication occur simultaneously,
an appropriate combination of the specific components is then expected to lead to multigrid
algorithms with the typical multigrid efficiency for a large class of problems. This approach
is in accordance with the general philosophy of this book.

In typical real-life applications, one may not be free to choose optimal components for
multigrid since, for example, grids and discretization approaches are typically predefined
(like in most numerical simulation codes). For such reasons, practitioners are often very
interested in robust multigrid approaches which work well for large classes of applications.
The AMG approach is systematically introduced in Appendix A of this book. The aim for
robustness is fundamental to AMG. In many applications, an acceleration of existing pro-
grams can often be achieved by using AMG as a black-box solver, replacing a conventional
solver.

In our view, multigrid will remain an interesting topic for future research. The develop-
ment of robust and efficient multigrid, multilevel and multiscale solvers is still a challenge
in some of the traditional application fields, but even more in new areas. The combination
of multigrid with adaptivity and parallelism still has a large potential for breakthroughs in
numerical simulation.
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A.1 INTRODUCTION

In contrast to geometrically based multigrid, algebraic multigrid (AMG) does not require a
given problem to be defined on a grid but rather operates directly on (linear sparse) algebraic
equations

Au = f or
n∑
j=1

aij uj = fi (i = 1, 2, . . . , n). (A.1.1)

If one replaces the terms grids, subgrids and grid points by sets of variables, subsets of
variables and single variables, respectively, one can describe AMG in formally the same
way as a geometric multigrid method. In particular, coarse-grid discretizations used in
geometric multigrid to reduce low-frequency error components now correspond to certain
matrix equations of reduced dimension. However, no multigrid1 hierarchy needs to be
known a priori. In fact, the construction of a (problem-dependent) hierarchy—including
the coarsening process itself, the transfer operators as well as the coarse-grid operators—is
part of the AMG algorithm, based solely on algebraic information contained in the given
system of equations.

Although the central ideas behind AMG and its range of applicability are more general, in
this introduction, the focus is on the solution of scalar elliptic partial differential equations of

1We should actually use the term multilevel rather than multigrid. For historical reasons we use the term
multigrid.
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Figure A.1. Unstructured finite element mesh (see also Fig. A.31).

second-order. Moreover, we mostly consider symmetric, positive (semi-) definite problems.
This is because AMG is best developed for such problems. Various recent research activities
aim to apply AMG to systems of partial differential equations (such as Navier–Stokes
equations or structural mechanics problems). However, although important progress has
been achieved for different types of systems, major research is still ongoing and there is no
well-settled approach.

We will see that AMG provides very robust solution methods. However, the real practical
advantage of AMG is that it can be applied directly to structured as well as unstructured grids
(see Fig. A.1), in 2D as well as in 3D. In order to point out the similarities and differences
of geometric and algebraic multigrid, we will first give a brief review of some major steps
in the development of robust geometric approaches.

A.1.1 Geometric Multigrid

In the early days of multigrid, coarse-grid correction approaches were based on simple
coarsening strategies (typically by doubling the mesh size in each spatial direction, that
is, by h → 2h coarsening), straightforward geometric grid transfer operators (standard
interpolation and restriction) and coarse-grid operators being natural analogs of the one
given on the finest grid. Later, it was realized that such simple “coarse-grid components”
were not appropriate for various types of more complex problems such as diffusion equations
with strongly varying or even discontinuous coefficients. The so-called Galerkin operator
[184] was introduced as an alternative to the “natural” selection of the coarse-grid operators
mentioned before. From a practical point of view, it is advantageous that this operator can
be constructed purely algebraically. This makes it very convenient for the treatment of, for
instance, differential operators with strongly varying coefficients. From a theoretical point
of view, the major advantage of Galerkin-based coarse-grid correction processes is that they
satisfy a variational principle (for symmetric and positive definite problems). This opened
new perspectives for theoretical convergence investigations.
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The introduction of operator-dependent interpolation [3, 439], interpolation which
directly relies on the discretization stencils, was equally important. Together with the
Galerkin operator, this kind of interpolation allowed the treatment of larger classes of prob-
lems including problems with strongly discontinuous coefficients. The main trouble with
such problems is that, after applying a typical smoothing process (relaxation), the error is no
longer geometrically smooth. The smoothed error exhibits the same discontinuous behavior
across discontinuities as the solution itself. Galerkin-based coarsening, however, requires
interpolation which correctly operates on such error. While geometric interpolation (which
can be accurately applied only to corrections with continuous first derivatives) does not
correctly transfer such corrections to finer levels, the discretization stencils themselves do
reflect the discontinuities and, if used for interpolation, also correctly transfer the discon-
tinuities. These Galerkin-based coarse-grid correction processes with operator-dependent
interpolation have become increasingly popular.

All geometric multigrid approaches operate on predefined grid hierarchies. That is,
the coarsening process itself is fixed and kept as simple as possible. Fixing the hierarchy,
however, puts particular requirements on the smoothing properties of the smoother used
in order to ensure an efficient interplay between smoothing and coarse-grid correction.
Generally speaking, error components which cannot be corrected by appealing to a coarser-
grid problem, must be effectively reduced by smoothing (and vice versa). For instance,
assuming the coarser levels to be obtained by h → 2h coarsening, pointwise relaxation
is very efficient for essentially isotropic problems. For anisotropic problems, however,
pointwise relaxation exhibits good smoothing properties only “in the direction of strong
couplings” (cf. Section A.1.3). Consequently, more complex smoothers, such as alternating
line-relaxation or ILU-type smoothers, are required in order to maintain fast multigrid
convergence. Multigrid approaches for which the interplay between smoothing and coarse-
grid correction works efficiently for large classes of problems are often called “robust”.

While the implementation of efficient and robust smoothers was not difficult in 2D model
situations, for 3D applications on complex meshes their realization tended to become rather
cumbersome. For instance, the robust 3D analog of alternating line relaxation is alternating
plane relaxation (realized by 2D multigrid within each plane) which, in complex geometric
situations, becomes very complicated, if possible at all. ILU smoothers, on the other hand,
lose much of their smoothing property in general 3D situations.

It is therefore not surprising that a new trend arose which aimed to simplify the
smoother without sacrificing convergence. However, in order to maintain an efficient inter-
play between smoothing and coarse-grid correction, this required putting more effort into
the coarse-grid correction process. More sophisticated coarsening techniques were devel-
oped, for example, employing more than one coarser grid on each level of the multigrid
hierarchy such as the multiple semicoarsening technique (semicoarsening in multiple direc-
tions) [122, 275, 277, 411].

A.1.2 Algebraic Multigrid

Regarding the interplay between smoothing and coarse-grid correction, AMG can be
regarded as the most radical attempt to maintain simple smoothers but still achieve robust
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convergence. Its development started in the early 1980s [67, 80, 81] when Galerkin-based
coarse-grid correction processes and, in particular, operator-dependent interpolation were
introduced into geometric multigrid (see previous section). One of the motivations for AMG
was the observation that reasonable operator-dependent interpolation and the Galerkin oper-
ator can be derived directly from the underlying matrices, without any reference to the
grids. To some extent, this fact had already been exploited in the first “black-box” multigrid
code [120]. However, regarding the selection of coarser levels, this code was still geomet-
rically based. In a purely algebraic setting, the coarsening process itself also needs to be
defined solely on the basis of information contained in the given matrix.

This leads to the most important conceptual difference between geometric and alge-
braic multigrid (cf. Fig. A.2). Geometric approaches employ fixed grid hierarchies and,
therefore, an efficient interplay between smoothing and coarse-grid correction has to be
ensured by selecting appropriate smoothing processes. In contrast to this, AMG fixes the
smoother to some simple relaxation scheme such as plain point Gauss–Seidel relaxation,
and enforces an efficient interplay with the coarse-grid correction by choosing the coarser
levels and interpolation appropriately. Geometrically speaking, AMG attempts to coarsen
only in directions in which relaxation really smoothes the error for the problem at hand.
However, since the relevant information is contained in the matrix itself (in terms of size
and sign of coefficients), this process can be performed based only on matrix information,
producing coarser levels which are locally adapted to the smoothing properties of the given
smoother. The guiding principle in constructing the operator-dependent interpolation is to
force its range to approximately contain those “functions” which are unaffected by relax-
ation. It will turn out that this is the crucial condition for obtaining efficient coarse-grid
correction processes.

The coarsening process is fully automatic. This automation is the major reason for
AMG’s flexibility in adapting itself to specific requirements of the problem to be solved and
is the main reason for its robustness in solving large classes of problems despite using very

Fix coarsening
adjust smoother

Fix smoother
adjust coarsening

Algebraic
multigrid

Geometric
multigrid

Requirement for any multilevel approach:

Efficient interplay between
smoothing + coarse-grid correction

ah
ij uh

j
= f h

ij

Algebraic systems

(no hierarchy given)

L h uh = f h

Grid equations

(hierarchy given)

Figure A.2. Geometric versus algebraic multigrid.
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Figure A.3. Standard AMG coarsening.

simple pointwise smoothers. There is no need for something like multiple semicoarsened
grids. Figure A.3 visualizes the hierarchy of grids created by AMG if applied to a diffusion
equation discretized on the grid depicted in Fig. A.1. See Section A.1.3 for an explanation
of this type of picture and a more detailed example of AMG’s coarsening strategy.

The flexibility of AMG and its simplicity of use, of course, have a price: A setup
phase, in which the given problem (A.1.1) is analyzed, the coarse levels are constructed
and all operators are assembled, has to be concluded before the actual solution phase can
start. This extra overhead is one reason why AMG is usually less efficient than geometric
multigrid approaches (if applied to problems for which geometric multigrid can be applied
efficiently). Another reason is that AMG’s components can, generally, not be expected
to be “optimal”, they will always be constructed on the basis of compromises between
numerical work and overall efficiency. Nevertheless, if applied to standard elliptic test
problems, the computational cost of AMG’s solution phase (ignoring the setup cost) is
typically comparable to the solution cost of a robust geometric multigrid solver. However,
AMG should not be regarded as a competitor to geometric multigrid. The strengths of AMG
are its robustness, its applicability in complex geometric situations, and its applicability to
solving certain problems which are out of the reach of geometric multigrid, in particular,
problems with no geometric or continuous background at all (as long as the given matrix
satisfies certain conditions). That is, AMG provides an attractive multilevel variant whenever
geometric multigrid is either too difficult to apply or cannot be used at all. In such cases,
AMG should be regarded as an efficient alternative to standard numerical methods such
as conjugate gradient accelerated by typical (one-level) preconditioners. We will see that
AMG itself also provides a very efficient preconditioner. In fact, we will see that simplified
AMG variants, used as preconditioners, are often better than more complex ones applied
as stand-alone solvers.

The first fairly general algebraic multigrid program was described and investigated
in [333, 334, 376], see also [109]. Since the resulting code, AMG1R5, was made publically
available in the mid 1980s, there had been no substantial further research and development
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in algebraic multigrid for many years. However, since the early 1990s, and even more
since the mid 1990s, there has been a strong increase of interest in algebraically oriented
multilevel methods. One reason for this is certainly the increasing geometrical complexity of
applications which, technically, limits the immediate use of geometric multigrid. Another
reason is the steadily increasing demand for efficient “plug-in” solvers. In particular, in
commercial codes, this demand is driven by increasing problem sizes which clearly exhibit
the limits of the classical one-level solvers which are still used in most packages. Millions
of degrees of freedom in the underlying numerical models require hierarchical approaches
for efficient solution and AMG provides a possibility of obtaining such a solution without
the need to completely restructure existing software packages.

As a consequence of this development, there now exist various different algebraic
approaches [377], all of which are hierarchical but some of which differ substantially from
the original AMG ideas as outlined above. It is beyond the scope of this introduction to
AMG to discuss all these approaches. For completeness, we will indicate the relevant lit-
erature in Section A.10. This introduction stays close to the original AMG ideas described
in [334]. In particular, AMG as we understand it, is structurally completely analogous to
standard multigrid methods in the sense that algorithmic components such as smoothing and
coarse-grid correction play a role in AMG similar to the one they play in standard multigrid.
Nevertheless, there is no unique AMG algorithm and one may think of various modifica-
tions and improvements in the concrete realization of AMG’s coarsening strategy. We here
refer to an approach which, in our experience, has turned out to be very flexible, robust and
efficient in practice. It has been implemented in the code RAMG052, which is a successor
of the original code AMG1R5. However, RAMG05 is completely new and, in particular,
incorporates more efficient and more flexible interpolation and coarsening strategies.

A.1.3 An Example

The flexibility of AMG in adjusting its coarsening process locally to the requirements of
a given problem is demonstrated in Fig. A.4. The underlying problem is the differential
equation

−(aux)x − (buy)y + cuxy = f (x, y) (A.1.2)

defined on the unit square (with Dirichlet boundary conditions). We set a = b = 1 every-
where except in the upper left quarter of the unit square (where b = 103) and in the lower
right quarter (where a = 103). The coefficient c is zero except for the upper right quarter
where we set c = 2.

The diffusion part is discretized by the standard fine-point stencil and the mixed deriva-
tive by the (left-oriented) seven-point stencil (A.8.23). The resulting discrete system is
isotropic in the lower left quarter of the unit square but strongly anisotropic in the remain-
ing quarters. In the upper left and lower right quarters we have strong connections in the
y- and x-directions, respectively. In the upper right quarter strong connectivity is in the
diagonal direction. Figure A.4(a) shows what a “smooth” error looks like on the finest level

2The development of RAMG05 has partly been funded by Computational Dynamics Ltd., London.
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Figure A.4. (a) “Smooth” error in case of problem (A.1.2); (b) finest and three consecutive levels
created by standard AMG coarsening algorithm.

after applying a few point relaxation steps to the homogeneous problem, starting with a ran-
dom function. The different anisotropies as well as the discontinuities across the interface
lines are clearly reflected in the picture.

It is heuristically clear that such error can only be effectively reduced by means of a
coarser grid if that grid is obtained by essentially coarsening in directions in which the
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error really changes smoothly in the geometric sense and if interpolation treats the dis-
continuities correctly. Indeed, as outlined before, this is exactly what AMG does. First,
the operator-based interpolation ensures the correct treatment of the discontinuities. Sec-
ondly, AMG coarsening is in the direction of strong connectivity, that is, in the direction of
smoothness.

Figure A.4(b) depicts the finest and three consecutive grids created by using standard
AMG coarsening and interpolation (cf. Section A.7). The smallest dots mark grid points
which are contained only on the finest grid, the squares mark those points which are also
contained on the coarser levels (the bigger the square, the longer the corresponding grid
point stays in the coarsening process). The picture shows that coarsening is uniform in the
lower left quarter where the problem is isotropic. In the other quarters, AMG adjusts itself
to the different anisotropies by locally coarsening in the proper direction. For instance, in
the lower right quarter, coarsening is in the x-direction only. Since AMG takes only strong
connections in coarsening into account and since all connections in the y-direction are weak,
the individual lines are coarsened independently of each other. Consequently, the coarsening
of neighboring x-lines is not “synchronized”; it is actually a matter of “coincidence” where
coarsening starts within each line. This has to be observed in interpreting the coarsening
pattern in the upper right quarter: within each diagonal line, coarsening is essentially in the
direction of this line.

A.1.4 Overview of the Appendix

The intention of this appendix is to give an elementary, self-contained introduction to an
algebraic multigrid approach which is suited, in particular, for the treatment of large classes
of scalar elliptic differential equations and problems whose matrices have a similar structure.
Although the theoretical considerations are in the framework of positive definite problems,
the algorithm presented does not exploit symmetry and can, to some extent, also be applied
to certain nonsymmetric and indefinite problems.

We assume that readers will have some basic knowledge of standard (geometric) multi-
grid. In particular, they should be familiar with the basic principles (smoothing and coarse-
grid correction) and with the recursive definition of multigrid cycles (such as V- or F-cycles).
This is because, for simplicity, we limit all our descriptions to just two levels. Accordingly,
whenever we talk about the efficiency of a particular approach, we always implicitly assume
the underlying two-level approach to be recursively extended to full cycles. (Clearly, a mere
two-level method is hardly ever practical.)

Section A.2 describes our notation and contains basic theoretical aspects. In particular,
it summarizes well-known properties of Galerkin-based coarse-grid correction approaches
and shows that AMG, in certain limit cases, degenerates to direct solvers (Section A.2.3).
Although, generally, these direct solvers are extremely inefficient in terms of computational
work and memory requirement, they can be approximated by more realistic (iterative)
approaches in various ways, indicating the formal generality of the approach.

The AMG method as efficiently used in practice, is largely heuristically motivated.
However, under certain assumptions, in particular symmetry and positive definiteness, a
two-level theory is available showing that convergence can be expected to be independent
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of the size of the problem and as fast (and expensive) as we wish. Actually, the convergence of
AMG is not generally the problem (in fact, AMG can always be forced to converge rapidly)
but rather the trade-off between convergence and numerical work which is also directly
related to the memory requirements. Note that this is, in a sense, the opposite of standard
multigrid approaches where the numerical work per cycle is known and controllable but the
convergence may not be satisfactory.

This appendix covers both theoretical and practical aspects. While the theoretical
investigations are contained in Sections A.3–A.6, practical aspects (a concrete algorithm
and a discussion of its performance for various types of problems) are presented in
Sections A.7–A.8. Although the theoretical results form the basis for the details of the
algorithm presented, we have tried to keep the practically oriented sections as independent
from the theoretical sections as possible. Readers not interested in the theory may thus
decide to skip the corresponding sections. Whenever necessary, we will make reference to
relevant theoretical aspects.

In Section A.3, we first introduce the basic concept of algebraic smoothness [67]. This
will be used in Section A.4 to prove the convergence of two-level methods using postsmooth-
ing. While the main approach is the same as in [67, 334], the definition of interpolation
has been modified and extended. The case of presmoothing is considered in Section A.5.
In both cases, it turns out that it is crucial to define coarsening and interpolation so that the
“interpolation error”, in some algebraic sense, is uniformly bounded. A realistic extension
of the two-level theory to complete V-cycles is not yet available (cf. Section A.6). Moreover,
while the underlying AMG code has been successfully applied to various nonsymmetric
problems, there is no comparable theory to date for the nonsymmetric case.

The algorithm used in the code RAMG05 mentioned above is described in some
detail in Section A.7. Although one can imagine several modifications and improvements,
the approach presented has turned out to be very flexible, robust and efficient in prac-
tice. Various applications and a discussion of RAMG05’s performance are presented in
Section A.8. We investigate standard model cases and some industrially relevant cases, for
instance, from computational fluid dynamics.

Section A.9 outlines so-called “aggregation-based” AMG variants and points out their
relation to the “standard” approach considered in the other parts of this appendix. Finally, in
Section A.10, we summarize important further developments and draw some conclusions.
Although we try to cover the most important references, the list is certainly not complete
in this rapidly developing field of research.

Remark A.1.1 Many considerations in the theoretical parts of this appendix refer to a
given matrixA. However, it should be clear that we are not really interested in, for instance,
convergence estimates for one particularA only but rather in having uniform convergence if
A ranges over some reasonable class of matrices, A. A typical class is the class consisting of
all M-matrices. However, a reasonable class may also consist of the discretization matrices
of a particular elliptic differential equation discretized on a series of grids with mesh size
h → 0. Uniform convergence for A ∈ A then means that AMG convergence does not
depend on the mesh size (a typical property of geometric multigrid methods). In this sense,
we sometimes say that convergence does not depend on the size of the matrix. �
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Remark A.1.2 All results which refer to positive definite matrices carry over also to
the semidefinite zero row-sum case. One just has to exclude the constant vectors from all
considerations. Of course, besides treating the coarsest level properly, it is crucial to transfer
constants exactly between levels. Since this will be ensured by all the interpolation processes
discussed, we will not discuss the semidefinite case explicitly any further. �
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A.2 THEORETICAL BASIS AND NOTATION

As mentioned in the introduction, AMG is based on the Galerkin approach. The formal struc-
ture of AMG, with all its components, is described in Section A.2.1, some additional notation
is contained in Section A.2.2. The remainder of the section summarizes fundamental aspects
related to Galerkin-based coarse-grid correction processes. This includes the discussion of
certain limit cases in Section A.2.3 for which AMG degenerates to a direct solver. Since
these (unrealistic) limit cases are presented mainly for reasons of motivation—in particular,
to indicate the formal generality of the overall approach—this section may well be skipped
in first reading. Section A.2.4, which recalls the variational principle of Galerkin-based
coarse-grid correction processes for symmetric and positive definite matrices A, is more
important for the concrete approaches investigated in this appendix.

A.2.1 Formal Algebraic Multigrid Components

Since the recursive extension of any two-level process to a real multilevel process is formally
straightforward, we describe the components of AMG only on the basis of two-level methods
with indices h andH distinguishing the fine and coarse level, respectively. In particular, we
rewrite (A.1.1) as

Ahu
h = f h or

∑
j∈�h

ahij u
h
j = f hi (i ∈ �h) (A.2.1)

with �h denoting the index set {1, 2, . . . , n}. We implicitly assume always that Ah corre-
sponds to a sparse matrix. The particular indices, h and H , have been chosen to have a
formal similarity to geometric two-grid descriptions. In general, they are not related to a
discretization parameter.

In order to derive a coarse-level system from (A.2.1), we first need a splitting of �h

into two disjoint subsets �h = Ch ∪ Fh with Ch representing those variables which are
to be contained in the coarse level (C-variables) and Fh being the complementary set
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(F-variables). Assuming such a splitting to be given and defining �H = Ch, coarse-level
AMG systems,

AHu
H = fH or

∑
l∈�H

aHkl u
H
l = fHk (k ∈ �H), (A.2.2)

will be constructed based on the Galerkin principle, i.e. the matrix AH is defined as the
Galerkin operator

AH := IHh Ah I
h
H (A.2.3)

where IhH and IHh denote interpolation (or prolongation) and restriction operators, respec-
tively, mapping coarse-level vectors into fine-level ones and vice versa. We always assume
that both operators have full rank.

Finally, as with any multigrid method, we need a smoothing process with a corresponding
linear smoothing operator Sh. That is, one smoothing step is of the form

uh −→ ūh where ūh = Shu
h + (Ih − Sh)A−1

h f
h (A.2.4)

(Ih denotes the identity operator). Consequently, the error eh = uh� − uh (uh� denotes the
exact solution of (A.2.1)) is transformed according to

eh −→ ēh where ēh = She
h. (A.2.5)

Note that we normally use the letter u for solution quantities and the letter e for correction
or error quantities.

As mentioned before, AMG employs simple smoothing processes. In this introduction
to AMG, we consider only plain Gauss–Seidel relaxation (i.e. Sh = (Ih−Q−1

h Ah)withQh
being the lower triangular part of Ah, including the diagonal) or ω-Jacobi relaxation (i.e.
Sh = Ih−ωD−1

h Ah withDh = diag(Ah)). Clearly, unlessAh is positive definite (which we
assume most of the time), the use of such variablewise relaxation methods implicitly requires
additional assumptions onAh, in particular, its diagonal elements should be sufficiently large
compared to the off-diagonal elements.

For completeness, we want to mention that, particularly in connection with theoretical
investigations, we also consider partial relaxation steps, namely, Gauss–Seidel and Jacobi
relaxation applied only to F-variables (with frozen values for the C-variables). Since such
partial relaxation will then formally play the role of smoothing, we will refer to it as
F-smoothing. Note, however, that F-smoothing by itself has no real smoothing properties
in the usual sense.
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Remark A.2.1 The coarse-level system (A.2.2) formally plays the same role as
coarse-grid correction equations in geometric multigrid. In particular, fH and uH

actually correspond to residuals (i.e. defects) and corrections, respectively. More
precisely, one two-level correction step is defined as

uhnew = uhold + IhH eH where AHe
H = IHh (r

h
old) = IHh (f

h − Ahuhold). (A.2.6)

For the corresponding errors, this means

ehnew = Kh,H e
h
old with Kh,H := Ih − IhHA−1

H I
H
h Ah, (A.2.7)

Kh,H being the so-called coarse-grid correction operator. Consequently, error
reduction by one complete two-grid iteration step, including ν1 and ν2 pre- and
postsmoothing steps, respectively, is described by the two-grid iteration operator
(cf. (A.2.5)):

ehnew = Mh,H e
h
old with Mh,H (ν1, ν2) = S

ν2
h Kh,H S

ν1
h . �

Summarizing, the C/F-splitting and the transfer operators IhH and IHh need to be explicitly
constructed in order to formally set up a two-level (and by recursive application a multilevel)
process. The construction of these components, which forms the major task of AMG’s setup
phase, involves closely related processes and, whenever we talk about transfer operators,
we always implicitly assume a suitable C/F-splitting to be given. These components need
to be selected so that an efficient interplay between smoothing and coarse-grid correction,
and consequently good convergence, is achieved. It is equally important that the splitting
and the transfer operators are such thatAH is still reasonably sparse and much smaller than
Ah. In Section A.7, we will describe a practical algorithm. From a more theoretical point
of view, we consider AMG components in Sections A.3–A.5.

Except for Section A.2.3, the theoretical parts of this appendix refer to symmetric and
positive definite matrices Ah for which we always define the restriction as the transpose of
interpolation,

IHh = (IhH )
T . (A.2.8)

It then immediately follows that AH is also symmetric and positive definite, independent
of the concrete choice of IhH (as long as it has full rank):

(AHu
H , uH )E = (IHh AhI

h
Hu

H , uH )E = (AhI
h
Hu

H , IhHu
H )E = (uH ,AHu

H )E

where (., .)E denotes the Euclidean inner product. (Unless explicitly stated otherwise, the
terms symmetric and positive definite as well as the transpose of a matrix always refer to
the Euclidean inner product.) Moreover, the coarse-grid correction operatorKh,H turns out
to satisfy a variational principle (cf. Section A.2.4).
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Finally, all interpolations eh = IhH e
H considered in this appendix are of the form

ehi = (IhH e
H )i =

{
eHi if i ∈ Ch∑
k∈Phi w

h
ike
H
k if i ∈ Fh (A.2.9)

where Phi ⊂ Ch is called the set of interpolatory variables. Clearly, for reasons of effi-
ciency, Pi should be a reasonably small subset of C-variables “near” i. Note that any such
interpolation has full rank.

Remark A.2.2 According to the above description, we regard the set of coarse-level
variables as a subset of the fine-level ones. In particular, (A.2.9) expresses the fact that
the coarse-level correction eHk is used to directly correct the corresponding fine-level vari-
able, uhk . Note that this is formally different from algebraic multigrid approaches based on
“aggregation” [51, 104, 250, 398]. However, we will see in Section A.9 that aggregation-
type approaches can be regarded as a special case of the approach considered here. �

A.2.2 Further Notation

AMG is set up in an algebraic environment. However, rather than using vector–matrix
terminology, it is often convenient to formally stick to the grid terminology by introducing
fictitious grids with grid points being simply the nodes of the directed graph which can
be associated with the given matrix. In this sense, we identify each i ∈ �h with a point
and define connections between points in the sense of the associated graph. That is, point
i ∈ �h is defined to be (directly) coupled (or connected) to point j ∈ �h if ahij �= 0.
Correspondingly, we define the (direct) neighborhood of a point i by

Nhi = {j ∈ �h: j �= i, ahij �= 0} (i ∈ �h). (A.2.10)

Referring to a point i ∈ �h means nothing other than referring to the variable uhi . Using grid
terminology, we can formally interpret the equations Ahuh = f h as grid equations on the
fictitious grid �h. Analogously, coarser level equations AHuH = fH can be interpreted
as grid equations on subgrids �H ⊂ �h.

In the course of this appendix, we will use both grid and vector–matrix terminology
whichever is more convenient for the given purpose. Moreover, we will usually omit the
indices h and H , writing for instance, A, e, C and K instead of Ah, eh, Ch and Kh,H ,
respectively. We only use these indices if we explicitly need to distinguish between two
consecutive levels.

For theoretical investigations, it is often convenient to assume vectors and matrices to
be reordered so that, w.r.t. a given C/F-splitting, the set of equations (A.2.1) can be written
in block form,

Ahu =
(
AFF AFC
ACF ACC

)(
uF
uC

)
=
(
fF
fC

)
= f. (A.2.11)
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Correspondingly, the intergrid transfer operators are then written as

IhH =
(
IFC

ICC

)
, IHh = (ICF , ICC) (A.2.12)

with ICC being the identity operator. Instead of eh = IhH e
H and (A.2.10) we simply write

eF = IFCeC and
ei =

∑
k∈Pi

wikek (i ∈ F), (A.2.13)

respectively. This is for simplicity and should not lead to any confusion.
We finally list some more specific notation. The range and null space of any operatorQ

are denoted by R(Q) and N (Q), respectively. For any square matrixQ, its spectral radius
is denoted by ρ(Q). At several places in this appendix, we make use of the fact that, for
any two matrices,Q1 andQ2, we have

ρ(Q1Q2) = ρ(Q2Q1). (A.2.14)

We write A > 0 if A is symmetric and positive definite. Correspondingly, A > B stands
forA−B > 0. For vectors, u > 0 and u ≥ 0 mean that the corresponding inequalities hold
componentwise.

If Ah > 0, we use the following three inner products in addition to the Euclidean one:

(u, v)0 = (Dhu, v)E, (u, v)1 = (Ahu, v)E and (u, v)2 = (D−1
h Ahu,Ahv)E,

(A.2.15)
along with their associated norms ‖.‖i (i = 0, 1, 2). Here, Dh = diag(Ah). (., .)1 is the
so-called energy inner product and ‖.‖1 the energy norm. Moreover, given any C/F-splitting,
we will use the analogs of the first two inner products applied to AFF (A.2.11) instead
of Ah,

(uF , vF )0,F = (DFF uF , vF )E and (uF , vF )1,F = (AFF uF , vF )E, (A.2.16)

and the associated norms ‖.‖i,F (i = 0, 1) where DFF = diag(AFF ). (Note that AFF is
positive definite.)

Important parts of our theoretical discussion refer to the model class of symmetric
M-matrices, where a symmetric matrix is defined to be an M-matrix if it is positive definite
and off-diagonally nonpositive. Such matrices often arise from second-order discretizations
of scalar elliptic differential equations. If a matrix A contains both negative and positive
off-diagonal entries, we use the notation

a−
ij =

{
aij (if aij < 0)

0 (if aij ≥ 0)
and a+

ij =
{

0 (if aij ≤ 0)

aij (if aij > 0).
(A.2.17)

Correspondingly, we write

N−
i = {j ∈ Ni: ahij < 0} and N+

i = {j ∈ Ni: ahij > 0}. (A.2.18)
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A.2.3 Limit Case of Direct Solvers

In this section, we will see that, for very specific (impractical) definitions of the smoothing
and transfer operators, the two-level methods corresponding to pre- and postsmoothing
degenerate to direct solvers, that is, we have either Kh,HSh = 0 or ShKh,H = 0. This is
true under the mere assumption thatAh is nonsingular. In order to show this, let us first state
some basic properties of the coarse-grid correction operator, Kh,H . The transfer operators
IhH and IHh are required to have full rank but are not required to be the transpose of each other.

Lemma A.2.1 Let Ah be any nonsingular matrix and assume the C/F-splitting and the
transfer operators to be given such that A−1

H exists. We then have

Kh,H I
h
H e

H ≡ 0, K2
h,H = Kh,H and IHh AhKh,H e

h ≡ 0

which implies N (Kh,H ) = R(IhH ) and R(Kh,H ) = N (IHh Ah). Consequently, given any
smoothing operator Sh, the following holds:

Kh,HSh = 0 ⇐⇒ R(Sh) ⊆ R(IhH ) and ShKh,H = 0 ⇐⇒ N (IHh Ah) ⊆ N (Sh).

Proof. All statements are immediate consequences of the fact that AH is the Galerkin
operator (A.2.3). For instance, the first identity holds because

Kh,H I
h
H = IhH − IhHA−1

H I
H
h AhI

h
H = IhH − IhH = 0

which, in turn, implies N (Kh,H ) ⊇ R(IhH ). The reverse relation, N (Kh,H ) ⊆ R(IhH ),
follows directly from the definition (A.2.7) ofKh,H . The proof of the remaining statements
is similarly straightforward.

In the following, we use the notation (A.2.11) and (A.2.12) and, for the purpose of this
section, define a very specific “smoothing process” as follows:

u −→ ū where AFF ūF + AFCuC = fF , ūC = uC. (A.2.19)

(Although this is not a practical smoothing process, we formally stick to the standard
multigrid terminology.) In terms of the error, e = u� − u, this means

e −→ ē where AFF ēF + AFC eC = 0, ēC = eC (A.2.20)

and the “smoothing operator” is seen to be

Ŝh =
(

0 −A−1
FFAFC

0 ICC

)
(A.2.21)

which has the properties

R(Ŝh) = {e: eF = −A−1
FFAFC eC} and N (Ŝh) = {e: eC = 0}. (A.2.22)

In addition, we define very specific transfer operators by

ÎFC = −A−1
FFAFC and ÎCF = −ACFA−1

FF . (A.2.23)
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We then obtain the following theorem:

Theorem A.2.1 [222] Let Ah be nonsingular and let a C/F-splitting be given such that
A−1
FF exists. Furthermore, use (A.2.19) as “smoothing process”. Then the following state-

ments hold:

(1) For IFC = ÎFC and arbitrary ICF , A−1
H exists and Kh,H Ŝh = 0.

(2) For ICF = ÎCF and arbitrary IFC , A−1
H exists and ŜhKh,H = 0.

(3) In either of the two cases, the Galerkin operator (A.2.3) is just the Schur complement
corresponding to (A.2.11), that is, AH = CH where

CH := ACC − ACFA−1
FFAFC. (A.2.24)

Proof. If IFC = ÎFC , a straightforward computation shows that, independent of ICF , the
Galerkin operator equals the Schur complement:

AH = IHh AhI
h
H = ( ICF , ICC ) (AFF AFC

ACF ACC

)(−A−1
FFAFC
ICC

)
= ( ICF , ICC ) ( 0

ACC − ACFA−1
FFAFC

)
= CH .

Since both Ah and AFF are assumed to be nonsingular, CH is also nonsingular. Hence,
A−1
H exists. By definition, we have R(IhH ) = R(Ŝh) which, according to Lemma A.2.1,

impliesKh,H Ŝh = 0. Regarding the second statement, one can see by analogous arguments
as above that AH equals the Schur complement also in this case. Because of

IHh Ah =
(

−ACFA−1
FF , ICC

)(
AFF AFC
ACF ACC

)
= (0, AH

)
we have IHh Ahe = AHeC for all e. Hence, N (IHh Ah) = {e: eC = 0} = N (Ŝh) which,
according to Lemma A.2.1, implies ŜhKh,H = 0.

According to the theorem, only one of the transfer operators has to be explicitly defined
in order to obtain a direct method. For the two-level method to be a direct solver independent
of whether pre- or postsmoothing is used, both operators have to be specified accordingly.

Remark A.2.3 Note that interpolation eF = ÎFCeC is defined by exactly solving the
homogeneous F-equations

AFF eF + AFC eC = 0. (A.2.25)

That is, interpolation and “smoothing” (A.2.20) are based on the same set of equations. Note
furthermore that, for symmetric matrices Ah, we have ÎCF = Î TFC , that is, the restriction is



AN INTRODUCTION TO ALGEBRAIC MULTIGRID 429

just the transpose of interpolation. In contrast to this, for nonsymmetric matrices, ÎCF = Ĩ TFC
where ĨFC = −(A−1

FF )
T ATCF which is related to solving

ATFF eF + ATCF eC = 0 (A.2.26)

instead of (A.2.25). Thus, ÎCF is just the transpose of another interpolation, namely, the
one corresponding to ATh . �

The specific two-level approaches defined above can be extended to full V-cycles
in a straightforward way by recursively applying the same strategy to the coarse-
level Galerkin problems (A.2.2). Assuming the coarsest level equations to be solved
exactly, the resulting V-cycles then also converge in just one iteration step. However,
such cycles are far from being practical, the obvious reason being that A−1

FF is
involved in computing both the smoothing and the transfer operators. Generally,
the explicit computation of A−1

FF is much too expensive and, moreover, a recursive
application in a multilevel context would be prohibitive due to fill-in on coarser
levels.

Of course, the complexity of the matrix AFF strongly depends on the selected
C/F-splitting, and by just choosing the splitting appropriately, one may forceAFF to become
simple and easy to invert. For instance, on each level, the splitting can be selected so that all
corresponding matricesAFF simply become diagonal (assuming nonzero diagonal entries).
In some exceptional situations, this indeed leads to an efficient method. For instance, if Ah
corresponds to a tridiagonal matrix, the resulting V-cycle can easily be seen to coincide
with the well-known method of total reduction [342]. Nevertheless, in general, the result-
ing method will still become extremely inefficient: although the selection of such special
C/F-splittings often makes sense in constructing the second level, further coarsening rapidly
becomes extremely slow causing the corresponding Galerkin matrices to become dense very
quickly. This is illustrated in the following example.

Example A.2.1 Consider any standard five-point discretization on a rectangular mesh, for
instance, the five-point discretization of the 2D Poisson equation. Then, obviously, AFF
becomes diagonal if we select the C/F-splitting so that, for each i ∈ F , all of its neighbors
are in C, that is, if we select red–black coarsening, yielding a grid coarsening ratio of
0.5. The coarse-grid operator on the second level (consisting of the black points, say) can
be seen to correspond to nine-point stencils. That is, although the reduction of points is
substantial, the overall size of the second-level matrix is still close to the finest-level one.
Proceeding analogously in creating the third level, will now reduce the grid size only by
a factor of 3/4. At the same time, the Galerkin operator grows further: the largest matrix
rows on level 3 correspond to 21-point stencils. Clearly, continuing this process will lead to
a completely impractical coarsening. For corresponding 3D problems, the situation is even
more dramatic. �



430 MULTIGRID

The above V-cycles actually correspond to specific variants of Gauss elimination rather
than real multigrid processes. Clearly, in order to obtain more practical iterative approaches,
the explicit inversion of AFF has to be avoided. From the multigrid point of view, it is
most natural to approximate the operators ÎFC and Ŝh by more realistic interpolation and
smoothing operators, IFC and Sh, respectively (and similarly ÎCF by some ICF if Ah is
nonsymmetric). According to Remark A.2.3, all e ∈ R(IhH ) and all e ∈ R(Sh) should
approximately satisfy equation (A.2.25). We do not want to quantify this here any further
but rather refer to Sections A.4 and A.5.

A.2.4 The Variational Principle for Positive Definite Problems

In the following, we will summarize the basic properties of Galerkin-based coarse-grid cor-
rection processes for symmetric, positive definite matricesAh. For symmetric matrices, we
always assume (A.2.8). We have already mentioned that the Galerkin operator AH (A.2.3)
is then also symmetric and positive definite. Moreover, a variational principle for the coarse-
grid correction operator Kh,H (A.2.7) is implied (see the last statement of Corollary A.2.1
below) which simplifies theoretical investigations substantially. This principle follows from
well-known facts about orthogonal projectors which, for completeness, are summarized in
the following theorem.

Theorem A.2.2 Let (.,.) be any inner product with corresponding norm ‖.‖ and let the
matrix Q be symmetric w.r.t. (.,.). Furthermore, let Q2 = Q. Then Q is an orthogonal
projector. That is, we have

(1) R(Q)⊥ R(I −Q).
(2) For u ∈ R(Q) and v ∈ R(I −Q) we have ‖u+ v‖2 = ‖u‖2 + ‖v‖2.
(3) ‖Q‖ = 1.
(4) For all u: ‖Qu‖ = minv∈R(I−Q) ‖u− v‖.

Proof. The first statement follows immediately sinceQ is symmetric andQ2 = Q:

(Qu, (I −Q)v) = (u,Q(I −Q)v) = (u, 0) = 0.

This, in turn, implies the second statement. Regarding the third statement, we obtain by
decomposing u = Qu+ (I −Q)u,

‖Q‖2 = sup
u�=0

‖Qu‖2

‖u‖2
= sup
u�=0

‖Qu‖2

‖Qu‖2 + ‖(I −Q)u‖2
≤ 1

which shows ‖Q‖ ≤ 1. Selecting any u ∈ R(Q), proves that ‖Q‖ = 1. Regarding the last
statement, again by decomposing u as before, we obtain

min
v∈R(I−Q)

‖u− v‖2 = min
...

‖Qu+ (I −Q)u− v‖2 = min
...

‖Qu− v‖2

= min
...
(‖Qu‖2 + ‖v‖2) = ‖Qu‖2.
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To apply this theorem to Kh,H , we observe that AhKh,H corresponds to a symmetric
matrix, that is, Kh,H itself is symmetric w.r.t. the energy inner product (A.2.15):

(Kh,Hu
h, vh)1 = (AhKh,Hu

h, vh)E = (uh,AhKh,H v
h)E = (uh,Kh,H v

h)1 .

Since we also have K2
h,H = Kh,H (see Lemma A.2.1), Kh,H is an orthogonal projector.

By finally observing that
R(Ih −Kh,H ) = R(IhH ), (A.2.27)

we obtain the following corollary.

Corollary A.2.1 Let Ah > 0 and let any C/F-splitting and any full rank interpolation IhH
be given. Then the coarse-level correction operator Kh,H is an orthogonal projector w.r.t.
the energy inner product (.,.)1. In particular, we have:

(1) R(Kh,H )⊥1 R(IhH ), i.e. (AhKh,Huh, IhH v
H )E = 0 for all uh, vH .

(2) For uh ∈ R(Kh,H ) and vh ∈ R(IhH ) we have ‖uh + vh‖2
1 = ‖uh‖2

1 + ‖vh‖2
1.

(3) ‖Kh,H ‖1 = 1.
(4) For all eh: ‖Kh,H eh‖1 = mineH ‖eh − IhH eH ‖1 .

The last statement of the corollary expresses the variational principle mentioned above:
Galerkin-based coarse-grid corrections minimize the energy norm of the error w.r.t. all
variations in R(IhH ). As a trivial consequence, a two-level method can never diverge if the
smoother satisfies ‖Sh‖1 ≤ 1 (e.g. Gauss–Seidel relaxation or ω-Jacobi relaxation with a
suitably selected underrelaxation parameter ω). That this also holds for complete V-cycles,
assuming any hierarchy of C/F-splittings and (full rank) interpolation operators to be given,
follows immediately by a recursive application (replacing exact coarse-grid corrections by
V-cycle approximations with zero initial guess) of the following lemma.

Lemma A.2.2 Let the exact coarse-level correction eH in (A.2.6) be replaced by any
approximation ẽH satisfying ‖eH − ẽH ‖1 ≤ ‖eH ‖1 (where ‖. ‖1 is taken w.r.t. AH ). Then
the approximate two-level correction operator still satisfies ‖K̃h,H ‖1 ≤ 1.

Proof. For the approximate two-level correction operator

K̃h,H e
h = eh − IhH ẽH = Kh,H e

h + IhH (eH − ẽH )
we obtain

‖K̃h,H eh‖2
1 = ‖Kh,H eh‖2

1 + ‖IhH (eH − ẽH )‖2
1 .

Since ‖IhH vH ‖1 = ‖vH ‖1 holds for all vH , we have

‖IhH (eH − ẽH )‖2
1 = ‖eH − ẽH ‖2

1 ≤ ‖eH ‖2
1 = ‖IhH eH ‖2

1.

Hence,
‖K̃h,H eh‖2

1 ≤ ‖Kh,H eh‖2
1 + ‖IhH eH ‖2

1 = ‖eh‖2
1

and, therefore, ‖K̃h,H ‖1 ≤ 1.
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Although this does not say anything about the efficiency of a V-cycle, from a prac-
tical point of view, it ensures at least some kind of minimum robustness. Based on the
properties in Corollary A.2.1, one can easily formulate concrete conditions which imply
V-cycle convergence at a rate which is independent of the size of Ah (see, for exam-
ple, Theorem 3.1 in [334]). Since, unfortunately, these conditions are not suited for the
explicit construction of realistic AMG processes, we here just refer to related discussions
in [334].

Remark A.2.4 In our final algorithm (see Section A.7), we will employ cer-
tain truncation mechanisms in order to limit the growth of the Galerkin operators
towards increasingly coarser levels. According to the variational principle and the
above remarks, the truncation of interpolation (before computing the correspond-
ing Galerkin operator) is a “safe process”: in the worst case, overall convergence
may slow down, but no divergence can occur. On the other hand, a truncation of
the Galerkin operators themselves may be dangerous since this violates the validity
of the variational principle and, if not applied with great care, may cause strong
divergence in practice. �

A.3 ALGEBRAIC SMOOTHING

In algebraic multigrid, smoothing and coarse-grid correction play formally the same role
as in geometric multigrid. However, the meaning of the term “smooth” is different.

• In a geometric environment, the term “smooth” is normally used in a restrictive (viz.
the “natural”) way. Moreover, in the context of multigrid, an error is regarded as smooth
only if it can be approximated on some predefined coarser level. That is, smoothness
in geometric multigrid has always to be seen relative to a coarser level. For example,
an error may be smooth with respect to a semicoarsened grid but not with respect to a
standard h → 2h coarsened grid. Correspondingly, the “smoothing property” of a given
smoother always involves two consecutive levels.

• In contrast to this, in algebraic multigrid, there are no predefined grids and a smoothing
property in the geometric sense becomes meaningless. Instead, we define an error e to
be algebraically smooth if it is slow to converge with respect to Sh, that is, if She ≈ e. In
other words, we call an error “smooth” if it has to be approximated by means of a coarser
level (which then needs to be properly constructed) in order to speed up convergence.
From an algebraic point of view, this is the important point in distinguishing smooth
and nonsmooth errors.

In this section, assuming Ah to be symmetric and positive definite (Ah > 0), we will
consider algebraic smoothing by relaxation and introduce a concept [67] of how to char-
acterize it. For typical types of matrices, we give some heuristic interpretation of algebraic
smoothness which is helpful in finally constructing the coarsening and interpolation.
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A.3.1 Basic Norms and Smooth Eigenvectors

In investigating the smoothing properties of relaxation, we use the inner products and
norms defined in (A.2.15). The following lemma (omitting the index h) summarizes some
basic relations which will be needed later. Note that we can assume ρ(D−1A) to be uni-
formly bounded for all important classes A of matrices under consideration.

Lemma A.3.1 Let A > 0. Then the following inequalities hold for all e:

‖e‖2
1 ≤ ‖e‖0 ‖e‖2, ‖e‖2

2 ≤ ρ(D−1A) ‖e‖2
1, ‖e‖2

1 ≤ ρ(D−1A) ‖e‖2
0.

(A.3.1)
Applying these norms to the eigenvectors of D−1A, we have

D−1Aφ = λφ =⇒ ‖φ‖2
2 = λ ‖φ‖2

1 and ‖φ‖2
1 = λ ‖φ‖2

0. (A.3.2)

Proof. The first inequality in (A.3.1) follows from Schwarz’ inequality:

‖e‖2
1 = (Ae, e)E = (D−1/2Ae,D1/2e)E ≤ ‖e‖2 ‖e‖0.

The other inequalities follow from the equivalence

(B1e, e)E ≤ c (B2e, e)E ⇐⇒ ρ(B−1
2 B1) ≤ c (A.3.3)

which holds for all B1 > 0 and B2 > 0. The verification of (A.3.2) is straightforward.

Remark A.3.1 The eigenvectors φ of D−1A play a special role. In particular,
eigenvectors corresponding to the smallest eigenvalues λ are those which typi-
cally cause slowest convergence of relaxation and, therefore, correspond to what
we defined as an algebraically smooth error. This can most easily be verified for
ω-Jacobi relaxation (using proper underrelaxation) by observing that small λs cor-
respond to eigenvalues of the ω-Jacobi iteration operator S = (I −ωD−1A) close
to one. This is also true for related schemes such as Gauss–Seidel relaxation, but is
not so easy to see.
Clearly, for all relevant applications, we can assume the smallest eigenvalues λ to
approach zero (otherwise, standard relaxation methods converge rapidly on their
own and no multilevel improvement is required). For instance, for standard elliptic
problems of second-order, discretized on a square grid with mesh sizeh, the smallest
eigenvalues satisfy λ = O(h2) and, for isotropic (e.g. Poisson-like) problems,
correspond to just those eigenfunctions φ which are very smooth geometrically in
all spatial directions. On the other hand, the largest eigenvalues satisfy λ = O(1)
and correspond to geometrically nonsmooth eigenvectors. For an illustration, see
Example A.3.1 below.
Generally, however, whether or not slow-to-converge error really corresponds to
geometrically smooth error (assuming a geometric background to exist), depends
on A (see Example A.3.2 in the next section). �
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ExampleA.3.1 To illustrate the previous remark, consider the matrixAwhich corresponds
to the Laplace operator, discretized on the unit square with mesh size h = 1/N ,

1

h2

⎡⎣ −1
−1 4 −1

−1

⎤⎦
h

. (A.3.4)

Assuming Dirichlet boundary conditions, the eigenvalues and eigenfunctions of D−1A =
h2A/4 are known to be

λn,m = (2 − cos nπh− cosmπh)/2 and φn,m = sin(nπx) sin(mπy) (A.3.5)

where n,m = 1, 2, . . . , N − 1. Obviously, we have

λmin = λ1,1 = 1 − cosπh = O(h2)

and
λmax = λN−1,N−1 = 1 + cosπh = O(1),

corresponding to the lowest and highest frequency eigenfunctions, respectively,

φmin = sin(πx) sin(πy) and φmax = sin((N − 1)πx) sin((N − 1)πy). �

The previous discussion on λ and the corresponding eigenvectors φ ofD−1A, together
with the relations (A.3.2), motivate the significance of the above norms, in particular, in the
context of algebraic smoothing: if applied to a slow-to-converge error e = φ (λ close to
zero), all three norms are largely different in size,

‖φ‖2 � ‖φ‖1 and ‖φ‖1 � ‖φ‖0. (A.3.6)

On the other hand, if applied to algebraically nonsmooth error, all three norms are compa-
rable in size. This different behavior makes it possible to identify slow-to-converge error
by simply comparing different norms and gives rise to the characterization of algebraic
smoothness in the next section.

A.3.2 Smoothing Property of Relaxation

We say that a relaxation operator S satisfies the smoothing property w.r.t. a matrix A > 0 if

‖Se‖2
1 ≤ ‖e‖2

1 − σ ‖e‖2
2 (σ > 0) (A.3.7)

holds with σ being independent of e. This implies that S is efficient in reducing the error e
as long as ‖e‖2 is relatively large compared to ‖e‖1. However, it will generally become very
inefficient if ‖e‖2 � ‖e‖1. In accordance with the motivations given before, such error is
called algebraically smooth. We say that S satisfies the smoothing property w.r.t. a class A
of matrices if (A.3.7) holds uniformly for all A ∈ A, that is, with the same σ .

Below, we will show that Gauss–Seidel and ω-Jacobi relaxation satisfy (A.3.7) uni-
formly for all matrices which are of interest here. First, however, we want to make some
further remarks on algebraic smoothness.
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Remark A.3.2 Note that σ ‖e‖2
2 ≤ ‖e‖2

1 is necessary for (A.3.7) to hold which, because of
(A.3.3), is equivalent to ρ(D−1A) ≤ 1/σ . Consequently, a necessary condition for (A.3.7)
to hold uniformly for all A ∈ A is the uniform boundedness of ρ(D−1A) in A which, as
mentioned before, is satisfied for all important classes A under consideration. �

We have already indicated that the term “algebraically smooth” in the above sense is
not necessarily related to what is called smooth in a geometric environment. In order to
illustrate this, we give two examples.

Example A.3.2 As an extreme case, consider the matrix Â > 0 which corresponds to the
(somewhat artificial) stencil

1

h2

⎡⎣ 1
1 4 1

1

⎤⎦
h

(A.3.8)

with Dirichlet boundary conditions and h = 1/N . That is, Â is similar to A in Example
A.3.1 (Poisson equation) except that the sign of all off-diagonal entries has changed from
negative to positive. As a consequence of this, compared to the Poisson case, the role
of geometrically smooth and nonsmooth error is completely interchanged: algebraically
smooth error is actually highly oscillatory geometrically and algebraically nonsmooth error
is very smooth geometrically. In order to see this more clearly, observe that

Â = −(A− cI) with c = 8/h2.

That is, the eigenvalues and eigenfunctions of D̂−1Â = (h2/4)Â are directly related to
those of D−1A = (h2/4)A (cf. Example A.3.1), namely,

λ̂n,m = −λn,m + 2 and φ̂n,m = φn,m

where n,m = 1, 2, . . . , N − 1. A straightforward computation shows that the smallest and
largest eigenvalues of D̂−1Â and D−1A are the same,

λ̂min = λ̂N−1,N−1 = −λmax + 2 = λmin

and
λ̂max = λ̂1,1 = −λmin + 2 = λmax,

but the corresponding eigenfunctions are interchanged. �

Example A.3.3 For certain matrices, there is no algebraically smooth error at all. For
instance, assume A to be strongly diagonally dominant, that is, aii −∑j �=i |aij | ≥ δaii

with δ > 0. The latter immediately implies ρ(A−1D) ≤ 1/δ which, because of (A.3.3),
is equivalent to ‖e‖2

2 ≥ δ ‖e‖2
1 for all e. That is, if δ is of significant size, there is no

algebraically smooth error. Clearly, such cases are not really interesting here since they do
not require any multilevel improvement. In fact, (A.3.7) implies rapid convergence for all
e. In the following, we will tacitly exclude such cases. �
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As seen from the above considerations, the term “smooth” is sometimes misleading
and should better be replaced by, for instance, “slow-to-converge”. However, for
historical reasons, we stick to the term “smooth”.

The following lemma is used for proving the subsequent theorems which refer to the
smoothing properties of Gauss–Seidel and Jacobi relaxation, respectively.

Lemma A.3.2 [334] Let A > 0 and let the smoothing operator be of the form S = I −
Q−1Awith some nonsingular matrixQ. Then the smoothing property (A.3.7) is equivalent to

σ QTD−1Q ≤ Q+QT − A.

Proof. Using the particular form of S, a straightforward calculation shows

‖Se‖2
1 = ‖e‖2

1 − ((Q+QT − A)Q−1Ae,Q−1Ae)E.

Hence, (A.3.7) is equivalent to

σ ‖e‖2
2 ≤ ((Q+QT − A)Q−1Ae,Q−1Ae)E

which, in turn, is equivalent to

σ (D−1Qe,Qe)E ≤ ((Q+QT − A)e, e)E.

Theorem A.3.1 [67, 334] Let A > 0 and define, with any vector w = (wi) > 0,

γ− = max
i

{ 1

wiaii

∑
j<i

wj |aij |
}
, γ+ = max

i

{ 1

wiaii

∑
j>i

wj |aij |
}
.

Then Gauss–Seidel relaxation satisfies (A.3.7) with σ = 1/(1 + γ−)(1 + γ+).

Proof. Gauss–Seidel relaxation satisfies the assumptions of Lemma A.3.2 with Q being
the lower triangular part of A (including the diagonal) and we have Q + QT − A = D.
Thus, (A.3.7) is equivalent to σ (QT D−1Qe, e)E ≤ (De, e)E which, because of (A.3.3),
is equivalent to σ ≤ 1/ρ(D−1QTD−1Q). A sufficient condition for the latter inequality is
given by

σ ≤ 1/|D−1QT | |D−1Q|
where |. | stands for an arbitrary matrix norm which is induced by a vector norm (i.e., which
is the corresponding operator norm). For the special choice

|L| = |L|w = max
i

{ 1

wi

∑
j

wj |lij |
}

(A.3.9)

we have |D−1Q| = 1 + γ− and |D−1QT | = 1 + γ+ which proves the theorem.
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From this theorem we conclude that Gauss–Seidel relaxation satisfies the smoothing
property uniformly for all important classes A of matrices under consideration.

• For all symmetric M-matrices, the smoothing property is satisfied with σ = 1/4.
This can be seen by observing that, for any such matrix, there exists a vector
z > 0 with Az > 0 [341]. By choosing w = z in Theorem A.3.1, we obtain

γ− = max
i

{ 1

ziaii

∑
j<i

zj |aij |
}

= max
i

{
1 − 1

ziaii

∑
j≤i

zj aij

}
< 1.

Similarly, we obtain γ+ < 1.
• The previous result, trivially, carries over to all A > 0 which are obtained from

a symmetric M-matrix by symmetrically flipping some or all off-diagonal signs.
• For any A > 0 with ≤ � nonvanishing entries per row, the smoothing property

is satisfied with σ = 1/�2. This can be seen by selectingwi = 1/
√
aii . Because

of a2
ij < aiiajj (j �= i), it follows that γ−, γ+ < �− 1.

• From a practical point of view, the previous result is far too pessimistic. We
typically have

∑
j �=i |aij | ≈ aii , which means that, by selecting wi ≡ 1, we

can expect γ− and γ+ to be close to or even less than 1. That is, σ ≈ 1/4 is
typical for most applications we have in mind here.

Theorem A.3.2 [67, 334] Let A > 0 and η ≥ ρ(D−1A). Then Jacobi relaxation with
relaxation parameter 0 < ω < 2/η satisfies (A.3.7) with σ = ω(2 − ωη). In terms of η,
the optimal parameter (which gives the largest value of σ ) is ω� = 1/η. For this optimal
parameter, the smoothing property is satisfied with σ = 1/η.

Proof. Jacobi relaxation satisfies the assumptions of Lemma A.3.2 with Q = (1/ω)D.
Hence, (A.3.7) is equivalent to (Ae, e)E ≤ (2/ω − σ/ω2) (De, e)E which, because of
(A.3.3), is equivalent to ρ(D−1A) ≤ 2/ω−σ/ω2. Replacing ρ(D−1A) by the upper bound
η, leads to the sufficient condition η ≤ 2/ω − σ/ω2, or, in terms of σ , σ ≤ ω(2 − ωη).
Obviously, σ is positive if 0 < ω < 2/η. This proves the theorem.

This theorem shows that Jacobi relaxation has smoothing properties similar to
Gauss–Seidel relaxation. However, as in geometric multigrid, some relaxation
parameter, ω, is required. Using η = |D−1A|w as an upper bound for ρ(D−1A)

(see (A.3.9)), one obtains, for instance, η = 2 for all symmetric M-matrices. More
generally, for all typical scalar PDE applications satisfying

∑
j �=i |aij | ≈ aii we

have η ≈ 2. That is, using the relaxation parameter ω = 1/2, we have σ ≈ 1/2.

Finally we note that Gauss–Seidel and ω-Jacobi relaxation also satisfy the following
variant of the smoothing property (A.3.7),

‖Se‖2
1 ≤ ‖e‖2

1 − σ̃ ‖Se‖2
2 (σ̃ > 0). (A.3.10)
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Regarding the proof, we refer to [334]. Further discussions on smoothing properties of
different relaxation schemes can be found in [67].

A.3.3 Interpretation of Algebraically Smooth Error

We have seen in the previous section that, in the sense of (A.3.7), Gauss–Seidel and
ω-Jacobi relaxation have smoothing properties for all matrices A > 0 under consideration.
This smoothness needs to be exploited in order to finally construct reasonable C/F-splittings
and interpolation (see Section A.4.2). Therefore, in this section, we (heuristically) interpret
algebraic smoothness for some typical cases.

Algebraically smooth error is characterized by Se ≈ e which, according to (A.3.7),
implies ‖e‖2 � ‖e‖1 (see also (A.3.6)). In terms of the residual, r = Ae, this means

(D−1r, r)E � (e, r)E

which indicates that, on the average, algebraically smooth error is characterized by (scaled)
residuals which are much smaller than the error itself. This can also be seen directly. For
instance, Gauss–Seidel relaxation, performed at point i, corresponds to replacing ui by ūi
where

ūi = 1

aii

(
fi −

∑
j �=i

aij uj

)
= 1

aii

(
aiiui + fi −

∑
j

aij uj

)
= ui + ri

aii

or, in terms of the corresponding error,

ēi = ei − ri

aii
.

Here, ri denotes the residual before relaxation at point i. From this we can heuristically
conclude that, for algebraically smooth error (i.e. ēi ≈ ei),

|ri | � aii |ei |.
That is, although the error may still be quite large globally, locally we can approximate ei
as a function of its neighboring error values ej by evaluating

(ri =) aiiei +
∑
j∈Ni

aij ej = 0 . (A.3.11)

In this sense, algebraically smooth error provides some rough approximation to the solution
of the basic equations (A.2.25).

The fact that (scaled) residuals are much smaller than the errors themselves, is, alge-
braically, the most important characteristic of smooth error. However, for some specific
classes of matrices, we can give algebraic smoothness a more intuitive interpretation.

A.3.3.1 M-matrices
An algebraically smooth error e satisfies ‖e‖2 � ‖e‖1 which, because of the first inequality
in (A.3.1), implies ‖e‖1 � ‖e‖0 (see also (A.3.6)) or, equivalently,

1

2

∑
i,j

(−aij )(ei − ej )2 +
∑
i

sie
2
i �

∑
i

aii e
2
i . (A.3.12)
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This follows immediately from the equality

‖e‖2
1 = (Ae, e)E =

∑
i,j

aij ei ej = 1

2

∑
i,j

(−aij )(ei − ej )2 +
∑
i

sie
2
i (A.3.13)

which can easily be seen to hold for all symmetric matrices A. Here and in the sequel,
si = ∑j aij denotes the i-th row sum of A.

For symmetric M-matrices (see Section A.2.2), we have aij ≤ 0 (j �= i) and, in the
most important case of si ≈ 0, (A.3.12) means that, on the average for each i,∑

j �=i

|aij |
aii

(ei − ej )2
e2
i

� 1 . (A.3.14)

That is, algebraically smooth error varies slowly in the direction of large (negative)
connections, i.e., from ei to ej if |aij |/aii is relatively large. In other words, relax-
ation schemes which satisfy the smoothing property (A.3.7), smooth the error along
strong (negative) connections.

Example A.3.4 The most typical example which illustrates the previous statement is given
by matrices derived from the model operator −εuxx − uyy , discretized on a uniform mesh.
While, for ε ≈ 1, algebraically smooth error changes slowly in both spatial directions, for
ε � 1 (the anisotropic case) this is true only for the y-direction (cf. Fig. A.4 in Section
A.1.3 for an example with varying directions of anisotropies).

Another example is illustrated in Fig. A.5. Here A is derived by discretizing

−(εux)x − (εuy)y = f (x, y) (A.3.15)

on the unit square with mesh size h and using Dirichlet boundary conditions. The coefficient
function ε is piecewise constant and defined as indicated in Fig. A.5(a). Using standard five-
point differencing (for the definition, see Section A.8.4), we obtain uniform stencils away
from the interface of discontinuity and, consequently, in this area, algebraically smooth
error changes smoothly in both coordinate directions. At the interface itself, however, the
discretization stencil (depicted in Fig. A.5(a)) clearly shows that the inner subsquare is
virtually decoupled from the rest of the domain: εout is negligible compared to εin. Conse-
quently, the error inside the subsquare is unaffected by the error in the rest of the domain and
we cannot expect an algebraically smooth error to change smoothly across the interface. In
fact, it generally exhibits a sharp discontinuity. This is depicted in Fig. A.5(b) which shows
a typical algebraically smooth error obtained after the application of a few Gauss–Seidel
relaxation steps to the homogeneous equations (A.3.15). �
A.3.3.2 Essentially positive-type matrices
A positive definite matrix is of essentially positive type [67] if there exists a constant c > 0
such that, for all e, ∑

i,j

(−aij )(ei − ej )2 ≥ c
∑
i,j

(−a−
ij )(ei − ej )2. (A.3.16)
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Figure A.5. (a) Coefficient ε for problem (A.3.15) and discretization stencil at the inner interface;
(b) algebraically smooth error obtained after a few Gauss–Seidel relaxation steps.

(Here and further below, we make use of the notation a−
ij and a+

ij as defined in (A.2.17).)
The main conclusion for M-matrices carries over to essentially positive type matrices. In
particular, instead of (A.3.12), algebraically smooth error satisfies

c

2

∑
i,j

(−a−
ij )(ei − ej )2 +

∑
i

sie
2
i �

∑
i

aii e
2
i (A.3.17)
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which still leads to the conclusion that an algebraically smooth error varies slowly in the
direction of large (negative) connections.

Higher order difference approximations to second-order elliptic problems or problems
involving mixed derivatives often lead to essentially positive-type matrices. Such and similar
matrices have the property that, for each aij > 0, there exist paths of length two (or more)
from i to j corresponding to relatively large negative connections (we call such paths “strong
negative paths”). For instance, we may have aik < 0 and akj < 0 with |aik|, |akj | being
sufficiently large compared to aij . In such cases, (A.3.16) can explicitly be verified by using
simple estimates like

αβ

α + β (a + b)2 ≤ αa2 + βb2 (α, β > 0). (A.3.18)

Example A.3.5 Ignoring boundary conditions, the fourth order discretization of −�u
leads to the stencil

1

12h2

⎛⎜⎜⎜⎜⎝
1

−16
1 −16 60 −16 1

−16
1

⎞⎟⎟⎟⎟⎠ .
Using (A.3.18) with α = β = 1, one can easily verify (A.3.16) with c = 3/4. Similarly,
the nine-point discretization of −�u+ uxy ,

1

h2

⎛⎜⎝−1/4 −1 +1/4

−1 4 −1

+1/4 −1 −1/4

⎞⎟⎠ , (A.3.19)

satisfies (A.3.16) with c = 1/2. �

Figure A.6 compares algebraically smooth error corresponding to (A.3.19) with that
corresponding to the standard five-point Poisson stencil (A.3.4), obtained after the same
number of Gauss–Seidel relaxation steps and starting with the same random function. The
result is virtually the same, indicating that the positive matrix entries do not significantly
influence the smoothing behavior of Gauss–Seidel.

Remark A.3.3 Note that, for an essentially positive-type matrix, each row containing off-
diagonal elements has at least one negative off-diagonal entry. For the k-th row, this follows
immediately by applying (A.3.16) to the special vector e = (ei) with ei = δik (Kronecker
symbol). �

A.3.3.3 Large positive connections
For essentially positive-type matrices, positive off-diagonal entries are relatively small. If
there exist strong negative paths as in the previous examples, algebraically smooth error
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Figure A.6. (a) Algebraically smooth error for the stencil (A.3.19) and (b) standard five-point
Poisson stencil (A.3.4), respectively.

still varies slowly even in the direction of positive connections. However, this cannot be
expected to be true any more if positive connections exceed a certain size, in particular not,
if aij > 0 and there exist no strong negative paths from i to j . We demonstrate this for
matrices A > 0 which are close to being weakly diagonally dominant [200].

To characterize algebraically smooth error analogously as before, observe first that
si = ti + 2

∑
j �=i a

+
ij where ti := aii −∑j �=i |aij |. Using this, one can evaluate (A.3.13)
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further:

(Ae, e)E = 1

2

∑
i,j

|a−
ij |(ei − ej )2 − 1

2

∑
i,j

a+
ij (ei − ej )2 +

∑
i

sie
2
i

= 1

2

∑
i,j

|a−
ij |(ei − ej )2 +

∑
i

∑
j �=i

a+
ij (2e

2
i − (ei − ej )2/2)+

∑
i

tie
2
i

= 1

2

∑
i,j

|a−
ij |(ei − ej )2 + 1

2

∑
i

∑
j �=i

a+
ij (2e

2
i + 2e2

j − (ei − ej )2)+
∑
i

tie
2
i

= 1

2

∑
i

(∑
j �=i

|a−
ij |(ei − ej )2 +

∑
j �=i

a+
ij (ei + ej )2

)
+
∑
i

tie
2
i . (A.3.20)

Assuming ti ≈ 0 (approximate weak diagonal dominance), ‖e‖1 � ‖e‖0 now leads to the
conclusion that, on the average for each i, algebraically smooth error satisfies

∑
j �=i

|a−
ij |
aii

(ei − ej )2
e2
i

+
∑
j �=i

a+
ij

aii

(ei + ej )2
e2
i

� 1 (A.3.21)

instead of (A.3.14).

Consequently, as before, algebraically smooth error can be expected to change
slowly in the direction of strong negative directions. However, ej tends to approx-
imate −ei (relative to the size of ei) if aij is positive and aij /aii is relatively large.
In other words, algebraically smooth error tends to oscillate along strong positive
connections.

Example A.3.6 If A corresponds to the following stencil⎡⎣ +1
−1 4 −1

+1

⎤⎦ , (A.3.22)

the algebraically smooth error is geometrically smooth only in the x-direction but strongly
oscillatory in the y-direction. This is depicted in Fig. A.7(a). Note that the situation here
is completely different from the anisotropic case −uxx − εuyy with ε � 1. While, in
the latter case, the error between any two horizontal gridlines (y ≡ const) is virtually
unrelated, it is strongly related in case of (A.3.22). According to the oscillatory behavior
in the y-direction, the error is actually rather smooth globally, if one considers only every
other horizontal gridline.

As an example which is more typical for differential problems, consider the standard
discretization of Poisson equation with antiperiodic boundary conditions. Compared to the
corresponding periodic case (only negative off-diagonal entries), here certain off-diagonal
entries have changed sign near the boundary. As a consequence, algebraically smooth error
will generally exhibit a jump across the boundary. This is illustrated in Fig. A.7(b). Note
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Figure A.7. Algebraically smooth error in case of problem (A.3.22) and the five-point Laplace
operator with anti-periodic boundary conditions.

that AMG will not be able to detect the boundary: all equations with positive off-diagonals
look like interior equations to AMG. �

A.4 POSTSMOOTHING AND TWO-LEVEL CONVERGENCE

In this section, we investigate the two-level convergence for symmetric and positive
definite problems. As mentioned before, using transfer operators satisfying (A.2.8), the
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corresponding Galerkin operators (A.2.3) are also symmetric and positive definite and
the coarse-grid correction operators, K = Kh,H (A.2.7), satisfy the variational principle
described in Section A.2.4.

We here consider the case of postsmoothing, adopting the theoretical approach intro-
duced in [67], also see [334]. For simplicity, we assume that only one smoothing step is
performed per cycle, that is, the two-grid operator to be considered is SK . In Section A.4.1,
we will derive a simple algebraic requirement on interpolation (which implicitly includes
also a requirement on the C/F-splitting), in terms of a bound for its “error”, which implies
uniform two-level convergence w.r.t. the energy norm. In Sections A.4.2 and A.4.3, we will
discuss concrete interpolation approaches satisfying this requirement for relevant classes
of matrices. Compared to [334], interpolation has been modified and generalized.

Throughout this section and Section A.5 (which covers the case of presmoothing), we
employ the inner products and norms defined in (A.2.15) and (A.2.16). Indices h and H
will be used only if absolutely necessary.

A.4.1 Convergence Estimate

For SKe to become small, it is important that the smoothing operator S efficiently reduces
all vectors contained in R(K). Loosely speaking, the error after a coarse-grid correction
step has to be “relaxable”. Since, assuming property (A.3.7) to be satisfied, error reduction
by smoothing becomes the less efficient the smaller ‖e‖2 is relative to ‖e‖1, the least we
have to require is that, for all e ∈ R(K), ‖e‖2 is bounded from below by ‖e‖1. This leads
to the following theorem.

Theorem A.4.1 [334] Let A > 0 and let S satisfy the smoothing property (A.3.7). Fur-
thermore, assume the C/F-splitting and interpolation to be such that

‖Ke‖2
1 ≤ τ ‖Ke‖2

2 (A.4.1)

with some τ > 0 being independent of e. Then τ ≥ σ and ‖SK‖1 ≤ √
1 − σ/τ .

Proof. By combining (A.3.7) and (A.4.1) one immediately obtains

‖SKe‖2
1 ≤ ‖Ke‖2

1 − σ ‖Ke‖2
2 ≤ (1 − σ/τ) ‖Ke‖2

1 ≤ (1 − σ/τ) ‖e‖2
1

which proves the theorem.

Condition (A.4.1) is not very practical. The following theorem gives a sufficient condi-
tion directly in terms of “accuracy” of interpolation.

Theorem A.4.2 [334] If the C/F-splitting and interpolation IFC are such that, for all e,

‖eF − IFCeC‖2
0,F ≤ τ ‖e‖2

1 (A.4.2)

with τ being independent of e, then (A.4.1) is satisfied.
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Proof. Let any e ∈ R(K) be given. Then, for arbitrary eH , the orthogonality properties of
K (Corollary A.2.1) imply

‖e‖2
1 = (Ae, e − IhH eH )E

and a straightforward application of Schwarz’ inequality yields

‖e‖2
1 = (D−1/2Ae,D1/2(e − IhH eH ))E ≤ ‖e‖2 ‖e − IhH eH ‖0 . (A.4.3)

By selecting eH to be just the straight projection of e to the coarse level, we obtain

‖e − IhH eH ‖0 = ‖eF − IFCeC‖0,F .

Hence, assumption (A.4.2) implies ‖e‖2
1 ≤ τ ‖e‖2

2 for all e ∈ R(K) which proves
(A.4.1).

We have already noted (Remark A.1.1) that we are not interested in convergence for one
particular A only but rather in having uniform convergence if A ranges over some reason-
able class of matrices, A. Since, according to Section A.3.2, standard relaxation schemes
satisfy the smoothing property (A.3.7) uniformly for all problems under consideration,
Theorem A.4.1 actually implies uniform two-level convergence for A ∈ A if we can show
that an (operator-dependent) interpolation can be constructed so that (A.4.2) holds uni-
formly for all suchA (i.e. with the same τ ). That this is possible for relevant classes A, will
be shown in the following section. First, however, we want to make some general remarks
on the requirement (A.4.2).

Remark A.4.1 In the limit case of zero row sum matrices, the right-hand side of
(A.4.2) is zero for all constant vectors e. Hence, constants necessarily have to be
interpolated exactly (cf. Remark A.1.2). Note that this is not necessary for nonsin-
gular matrices. In fact, one may be able to satisfy (A.4.2) with smaller τ -values if
one does not force constants to be interpolated exactly (see the related discussion
in Section A.4.2). �

Remark A.4.2 Although (A.4.2) has to hold for all e, it implies a nontrivial
condition only if e is algebraically smooth. This is most easily seen by writing
(A.4.2) in terms of the eigenvectors φ of D−1A and using (A.3.2),

‖φF − IFCφC‖2
0,F ≤ λ τ ‖φ‖2

0. (A.4.4)

Requiring this to be uniformly satisfied within a relevant class A of matrices implies
a nontrivial condition only for those φ = φA which correspond to the small eigen-
values λ = λA, in particular, those which approach zero ifA varies in A. According
to Remark A.3.1, these are just the algebraically smooth eigenvectors. If A consists
of the h-discretization matrices corresponding to a standard and isotropic elliptic
problem, we know that algebraically smooth eigenvectors are also geometrically
smooth and their eigenvalues satisfy λ = O(h2). In such cases, obviously, (A.4.2)
is closely related to the requirement of first-order interpolation. �
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We finally note that the two-level approach considered here can be regarded as an
approximation to the direct solver (postsmoothing variant) described in Section A.2.3.
In particular, the requirement that the error after a coarse-grid correction step has to be
“relaxable” (see beginning of this section) corresponds to the property of the direct solver
that all vectors in R(K) are annihilated by smoothing (cf. Lemma A.2.1).

A.4.2 Direct Interpolation

In the following, we consider basic approaches to automatically construct (operator-
dependent) interpolation which, for relevant classes A, can be shown to uniformly satisfy
(A.4.2). For ease of motivation, we start with the class of M-matrices in Section A.4.2.1.
Generalizations are given in Sections A.4.2.2 and A.4.2.3. A realization in practice, is given
in Section A.7.

In order to motivate the general approach in constructing interpolation, we recall that
(A.4.2) is a nontrivial condition only for algebraically smooth error (see Remark A.4.2).
For such error, however, we have heuristically seen in Section A.3.3 that the basic equa-
tions (A.2.25) are approximately satisfied (cf. (A.3.11)). Consequently, the definition of
interpolation will be based on the same equations.

That is, given a C/F-splitting and sets Pi ⊆ C (i ∈ F) of interpolatory points, the
goal is to define the interpolation weights wik in

ei =
∑
k∈Pi

wik ek (i ∈ F) (A.4.5)

so that (A.4.5) yields a reasonable approximation for any algebraically smooth e
which approximately satisfies

aiiei +
∑
j∈Ni

aij ej = 0 (i ∈ F). (A.4.6)

Of course, the actual construction of the C/F-splitting and the interpolation itself are
closely related processes. Generally, the splitting has to be such that each F-point has a
“sufficiently strong connection” to the set of C-points. Although this connectivity does
not necessarily have to be via direct couplings, in the following sections we only consider
“direct” interpolation, that is, we assume the sets of interpolatory points to satisfy Pi ⊆
C ∩ Ni where, as before, Ni denotes the direct neighborhood (A.2.10) of point i. This is
for simplicity; some remarks on more general “indirect” interpolations are contained in
Section A.4.3.

Remark A.4.3 Variables which are not coupled to any other variable (corresponding to
matrix rows with all off-diagonal entries being zero) will always become F-variables which,
however, do not require any interpolation. For simplicity, we exclude such trivial cases in
the following. �
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A.4.2.1 M-matrices
We have seen in Section A.3.3.1 that, for symmetric M-matrices, algebraically smooth error
varies slowly in the direction of strong couplings. That is, the error at a point i is essen-
tially determined by a weighted average of the error at its strong neighbors. Consequently,
assuming ∅ �= Pi ⊆ C ∩Ni , the more strong connections of any F-variable i are contained
in Pi , the better will

1∑
k∈Pi aik

∑
k∈Pi

aikek ≈ 1∑
j∈Ni aij

∑
j∈Ni

aij ej (A.4.7)

be satisfied for smooth error. This suggests approximating (A.4.6) by

aiiei + αi
∑
k∈Pi

aikek = 0 with αi =
∑
j∈Ni aij∑
k∈Pi aik

(A.4.8)

which leads to an interpolation formula (A.4.5) with matrix-dependent, positive weights:

wik = −αiaik/aii (i ∈ F, k ∈ Pi). (A.4.9)

Note that the row sums of (A.4.6) and (A.4.8) are equal and we have

aii

(
1 −

∑
k∈Pi

wik

)
= si :=

∑
j

aij (A.4.10)

showing that
∑
k∈Pi wik = 1 if si = 0. Consequently, in the limit case of zero row sum

matrices, constants are interpolated exactly (cf. Remark A.4.1). For regular matrices, how-
ever, this is not the case. Instead, the weights are chosen so that IFC1C is an approximation
to ÎFC1C (see Section A.2.3). More precisely, IFC1C equals the result of one Jacobi step
applied to the equations (A.4.6) with the vector e = 1 as the starting vector. (Here 1 denotes
the vector with all components being ones.)

The above interpolation approach can formally be applied to any M-matrix and any
C/F-splitting provided that C ∩ Ni �= ∅ for each i ∈ F . The following theorem shows
that (A.4.2) can be satisfied uniformly within the class of weakly diagonally dominant
M-matrices whenever the sets C ∩Ni are reasonably large.

Theorem A.4.3 Let A be a symmetric M-matrix with si = ∑j aij ≥ 0. With fixed τ ≥ 1
select a C/F-splitting so that, for each i ∈ F , there is a set Pi ⊆ C ∩Ni satisfying∑

k∈Pi
|aik| ≥ 1

τ

∑
j∈Ni

|aij |. (A.4.11)

Then the interpolation (A.4.5) with weights (A.4.9) satisfies (A.4.2).

Proof. We first note that, according to Remark A.4.3, Pi �= ∅ for all i ∈ F . Because of
(A.3.13), we can estimate for all e

‖e‖2
1 = (Ae, e)E ≥

∑
i∈F

(∑
k∈Pi

(−aik)(ei − ek)2 + sie2
i

)
. (A.4.12)
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On the other hand, employing Schwarz’ inequality, we can estimate

‖eF − IFCeC‖2
0,F =

∑
i∈F

aii

(
ei −

∑
k∈Pi

wikek

)2

=
∑
i∈F

aii

(∑
k∈Pi

wik(ei − ek)+
(

1 −
∑
k∈Pi

wik

)
ei

)2

(A.4.13)

≤
∑
i∈F

aii

(∑
k∈Pi

wik(ei − ek)2 +
(

1 −
∑
k∈Pi

wik

)
e2
i

)
. (A.4.14)

Observing (A.4.10), the previous two estimates imply (A.4.2) if aiiwik ≤ τ |aik| holds for
i ∈ F, k ∈ Pi . According to the definition of the interpolation weights (A.4.9), this is
equivalent to αi ≤ τ (i ∈ F) which, in turn, is equivalent to assumption (A.4.11).

The requirement of weak diagonal dominance in the previous theorem is sufficient but
not necessary. The following generalization applies to the class of M-matrices whose row
sums are uniformly bounded from below and whose eigenvalues are uniformly bounded
away from zero.

Theorem A.4.4 Let the symmetric M-matrix A satisfy si = ∑
j aij ≥ −c with some

c ≥ 0 and assume (Ae, e)E ≥ ε(e, e)E for all e with some ε > 0. With fixed τ ≥ 1, select
a C/F-splitting as in Theorem A.4.3. Then the interpolation (A.4.5) with weights (A.4.9)
satisfies (A.4.2) with τ replaced by some τ̃ = τ̃ (ε, c, τ ). As a function of ε and c, we have
τ̃ → ∞ if either c → ∞ or ε → 0.

Proof. Let us assume that si < 0 for (at least) one i. Instead of (A.4.12) we employ the
following estimate with Ã = A+ cI :

(Ãe, e)E ≥
∑
i∈F

( ∑
k∈Pi

(−aik)(ei − ek)2 + (c + si)e2
i

)
.

In order to estimate the interpolation error, we proceed as in the proof of the previous
theorem. However, we need to modify the estimation of (A.4.13) for those i ∈ F for which
si < 0 (because 1 −∑k∈Pi wik < 0, see (A.4.10)) by, for instance, inserting an additional
estimate of the form (a+b)2 ≤ 2(a2 +b2) for each such i. A straightforward computation,
exploiting that |si | ≤ c and aii ≥ ε, then yields an estimate of the form

‖eF − IFCeC‖2
0,F ≤ τ1(Ãe, e)E + τ2(e, e)E ≤ τ̃ ‖e‖2

1

with τ̃ = τ̃ (ε, c, τ ). The rest of the theorem follows from the explicit form of τ̃ .
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While the smoothing property (A.3.7) is uniformly satisfied in the class of all
symmetric M-matrices, the previous theorem indicates that (A.4.2) cannot be
expected to uniformly hold in this class. In particular, the smaller the first eigen-
value of A (i.e. the smaller ε) is, the higher is the required accuracy in interpolat-
ing the corresponding eigenvector. However, unless this eigenvector is constant
(cf. Remark A.1.2), this cannot be achieved by the above interpolation. The follow-
ing example illustrates this situation.

Example A.4.1 Consider the class of matrices Ac (0 ≤ c < λ0) defined by discretizing
the Helmholtz operator −�u− cu on the unit square with fixed mesh size h and Dirichlet
boundary conditions. Here λ0 > 0 denotes the smallest eigenvalue of the corresponding
discrete Laplace operator, A0. If we select e = φ0 as the corresponding eigenfunction
(normalized so that ‖e‖E = 1), we have for each A = Ac that ‖e‖2

1 = λ0 − c. Thus, for
(A.4.2) to hold independently of c,

‖eF − IFCeC‖2
0,F ≤ τ (λ0 − c)

is required which means that the first eigenfunction of the Laplace operator has to be
approximated with increasing accuracy if c → λ0. However, this is generally not true unless
the interpolation formula is improved by special techniques (e.g. based on an approximate
knowledge of φ0 [334]). Numerical results for this case, are given in Section A.8.5.3. �

According to the above theorems, the C/F-splitting should be selected so that, for each
i ∈ F , a fixed fraction of its total strength of connection is represented in C (and used
for interpolation). However, given any τ , this leaves quite some freedom in realizing a
concrete splitting algorithm. Although specific realizations cannot be distinguished within
the framework of this algebraic two-level theory, the convergence that finally results may
substantially depend on the details of this realization. We make some basic remarks.

Remark A.4.4 The concrete choice of τ is crucial. Clearly, the larger τ is, the
weaker is the assumption (A.4.11). In particular, for large τ , (A.4.11) allows
for rapid coarsening, but the two-level convergence will be very slow (see
Section A.4.1). On the other hand, the choice τ = 1 gives best convergence, but
will force all neighbors of i ∈ F to be in C. In fact, since the latter means that
the submatrix AFF becomes diagonal, this results in a direct solver as described
in Section A.2.3 (if combined with F-relaxation for smoothing) and we have
already seen that this approach, if applied recursively, will be extremely inefficient
(cf. Example A.2.1). A reasonable compromise is τ = 2 which means that about
50% of the total strength of connections of every F-point has to be represented on
the next coarser level. However, from a practical point of view, coarsening may still
be too slow, in particular, for matrices which have many row entries of similar size.
We will return to a practical algorithm in Section A.7. �
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Remark A.4.5 To satisfy (A.4.11) with as few C-points as possible, one should
arrange the splitting so that C-points are only chosen from the strongest connections
of every F-point. This just means coarsening “in the direction of smoothness”. �

Remark A.4.6 Given an application with geometrical background, the algebraic
condition (A.4.11) does not take the geometric locations of C-points relative to
the F-points into account. In fact, this is the main reason for the limited accuracy
of purely algebraically defined interpolation as mentioned in Remark A.4.2. In
practice, however, the accuracy of interpolation, and through this the resulting con-
vergence, can often be substantially improved by just arranging the C/F-distribution
carefully. As a rule, it has been beneficial to arrange the C/F-splitting so that the set
of C-points builds (approximately) a maximal set with the property that the C-points
are not strongly coupled among each other (“maximally independent set”) and that
the F-points are “surrounded” by their interpolatory C-points. This can be ensured
to a large extent by merely exploiting the connectivity information contained in the
matrix. For an illustration, see the following example. �

Example A.4.2 A careful arrangement of the C/F-splitting in the sense of the previous
remark is particularly beneficial if the matrixA corresponds to a geometrically posed prob-
lem with many off-diagonal entries being of essentially the same size. Consider, for instance,
the nine-point discretization of the Poisson operator

1

3h2

⎡⎣−1 −1 −1
−1 8 −1
−1 −1 −1

⎤⎦
h

. (A.4.15)

Figure A.8 illustrates some local C/F-arrangements all of which are admissible (in the sense
of (A.4.11)) if we set τ = 4. Clearly, interpolation given by the left-most arrangement is
worst: it just gives first-order accuracy, the best we can really ensure by purely algebraic
means (cf. Remark A.4.2). Following the rule mentioned in Remark A.4.6, we would obtain
a C/F-splitting for which the two right-most arrangements are characteristic. Both of them
correspond to second-order interpolation which, as we know from geometric multigrid,

C F F

F F F

C F F

C F F

F F C

C F F

C F C

F F F

C F C

F F F

C F C

F F F

wik 1 2/ wik 1 3/ wik 1 4/ wik 1 2/

Figure A.8. Different C/F-arrangements and corresponding interpolation formulas.
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gives a much better performance for such balanced stencils as considered in this example.
The second arrangement does not give second-order, but is still better than the first one.

This illustrates that a proper arrangement of the splitting may substantially enhance con-
vergence. Ignoring this, may, in the worst case, not only cause relatively slow convergence
of the two-level method, but also an h-dependent convergence behavior of full V-cycles. For
an extreme example of such a situation, see Example A.6.1. Clearly, in general, there is no
way to strictly ensure optimal interpolation and convergence by exploiting only algebraic
information contained in the matrix. In practice, however, it is usually sufficient to avoid
extreme one-sided interpolation (see the related discussion in Sections A.6 and A.9). �

For completeness, we want to briefly mention a few other typical approaches to define
interpolation which are, however, not in the focus of this appendix and may well be skipped
in reading. In each case, we briefly discuss requirements which, instead of (A.4.11), ensure
(A.4.2) for weakly diagonally dominant M-matrices. Note that any interpolation (A.4.5)
with Pi ⊆ C ∩Ni satisfies (A.4.2) if the following two inequalities hold:

0 ≤ aiiwik ≤ τ |aik|, 0 ≤ aii

(
1 −

∑
k∈Pi

wik

)
≤ τ si . (A.4.16)

This follows immediately from the proof of Theorem A.4.3 and will be used below.

Variant 1 One variant, considered in [334], starts from the assumption∑
j /∈Pi

aij ej ≈
( ∑
j /∈Pi

aij

)
ei

instead of (A.4.7). This corresponds to adding all noninterpolatory connections to the diag-
onal, leading to the weights

wik = −aik
/∑
j /∈Pi

aij . (A.4.17)

A certain drawback of this approach is that the denominator in (A.4.17) may, in principle,
become zero or even negative for matrices which contain rows with si < 0. Apart from
this, however, this variant performs very comparably to the interpolation (A.4.9) (in fact,
in the limit case of zero row sums, si ≡ 0, both interpolations are identical). For weakly
diagonally dominant M-matrices, the requirement∑

j /∈Pi
aij ≥ 1

τ
aii (i ∈ F). (A.4.18)

can be seen to imply (A.4.16) and, hence, also (A.4.2).

Variant 2 The interpolation weights

wik = aik

/∑
j∈Pi

aij
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are constructed so that
∑
k∈Pi wik ≡ 1 which forces constants to be always interpolated

exactly. Compared to (A.4.9), no essential difference in behavior is expected as long as
si ≈ 0. However, if this is strongly violated for some i (e.g. near boundaries), the approxi-
mation of algebraically smooth error (which is not constant) becomes less accurate which,
in turn, may cause a certain reduction in convergence speed. According to (A.4.16), (A.4.2)
is satisfied if ∑

k∈Pi
|aik| ≥ 1

τ
aii (i ∈ F). (A.4.19)

This also indicates that, in cases of strongly diagonally dominant rows, (A.4.19) may unnec-
essarily slow down the coarsening process compared to (A.4.11), or, alternatively, lead to
worse bounds for the interpolation error.

Variant 3 As an alternative to the previous interpolation, it is sometimes proposed to
simply use equal weightswik = 1/ni where ni = |Pi | just denotes the number of neighbors
used for interpolation. Then (A.4.2) is satisfied if

ni |aik| ≥ 1

τ
aii (i ∈ F, k ∈ Pi). (A.4.20)

Obviously, for this interpolation to be reasonable it is particularly crucial to interpolate
only from strong connections (otherwise, ni has to be too large). Unless all interpolatory
connections are of approximately the same size, this interpolation will be substantially
worse than the previous ones.

Variant 4 Aggregation-based AMG approaches (see Section A.9) can be interpreted to
use interpolation to any F-point from exactly one C-point only (with weight 1), that is,
|Pi | = 1. This interpolation allows for a rapid coarsening and, moreover, the computation
of the coarse-level Galerkin operators becomes extremely simple. On the other hand, this
interpolation is the crudest possible by definition, leading to rather bad bounds for the
interpolation error. In fact, (A.4.2) is satisfied only if

|aik| ≥ 1

τ
aii (i ∈ F, k ∈ Pi). (A.4.21)

Consequently, the smaller the (significant) off-diagonal entries are compared to the diagonal,
the larger τ will be. In particular, (A.4.2) cannot be satisfied uniformly within the class
of weakly diagonally dominant M-matrices any more. Generally, using this most simple
interpolation, convergence will be rather poor (and h-dependent for complete V-cycles; see
the related discussion in Section A.6).

In spite of this, aggregation-based AMG approaches have become quite popular, one
reason being their simplicity and ease in programming. However, to become practical, they
require additional acceleration by means of various techniques, for instance, by smoothing
of interpolation (“smoothed aggregation”). In addition, aggregation-based AMG is typically
used as a preconditioner rather than a stand-alone. We will return to such approaches in
Section A.9.
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A.4.2.2 Essentially positive-type matrices
In the previous section we considered off-diagonally nonpositive matrices. However, the
essential estimates carry over to certain matrices with relatively small positive off-diagonal
entries such as the essentially positive-type matrices considered in Section A.3.3.2. The
theorem below shows that, for such matrices, it is sufficient to base the splitting on the
connectivity structure induced by the negative off-diagonal entries only. Accordingly, inter-
polation needs to be done only from neighbors with negative coefficients. In the following,
we make use of the notation a+

ij , a−
ij and N+

i , N−
i as defined in Section A.2.2.

Using interpolatory points ∅ �= Pi ⊆ C ∩N−
i and recalling the heuristic considerations

on algebraically smooth error in Section A.3.3.2, we might define interpolation exactly as
before (A.4.8). However, for reasons explained in Remark A.4.8 below, we prefer to extend
the interpolation to the case of positive entries by adding all such entries to the diagonal (to
preserve row sums). That is, we use

ãiiei + αi
∑
k∈Pi

a−
ikek = 0 with ãii = aii +

∑
j∈Ni

a+
ij , αi =

∑
j∈Ni a

−
ij∑

k∈Pi a
−
ik

(A.4.22)

instead of (A.4.8), yielding positive interpolation weights

wik = −αia−
ik/ãii (i ∈ F, k ∈ Pi). (A.4.23)

Note that the row sums of (A.4.6) and (A.4.22) are equal and we have

ãii

(
1 −

∑
k∈Pi

wik

)
= si . (A.4.24)

Theorem A.4.5 Let A > 0 be essentially positive-type (A.3.16) with si = ∑
j aij ≥ 0.

With fixed τ ≥ 1, select a C/F-splitting such that, for each i ∈ F , there is a setPi ⊆ C∩N−
i

satisfying ∑
k∈Pi

|a−
ik| ≥ 1

τ

∑
j∈Ni

|a−
ij | . (A.4.25)

Then the interpolation (A.4.5) with weights (A.4.23) satisfies (A.4.2) with τ/c rather than τ .

Proof. The proof runs analogously to that of Theorem A.4.3. We first note again thatPi �= ∅
for all i ∈ F (cf. Remark A.3.3). Since c ≤ 1 and si ≥ 0, (A.3.13) and (A.3.16) imply

(Ae, e)E ≥ c
2

∑
i,j

(−a−
ij )(ei − ej )2 +

∑
i

sie
2
i

≥c
∑
i∈F

(∑
k∈Pi

(−aik)(ei − ek)2 + sie2
i

)
.

Using (A.4.14) and observing that ãii ≥ aii , we see that (A.4.2) is satisfied with τ/c rather
than τ if αi ≤ τ (i ∈ F) which is equivalent to (A.4.25).
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Remark A.4.7 There is a straightforward generalization of this theorem to the case of
negative row sums which is analogous to Theorem A.4.4. �

Remark A.4.8 The reason for adding positive entries to the diagonal (rather than using
the same formula as in the previous section) is mainly practical. In practice, we want to
implement an interpolation which (at least formally) can also be employed to matrices
which are not of strictly essentially positive type, for instance, which contain some particu-
larly large positive entries. However, in such cases,

∑
j∈Ni aij might become zero or even

positive for certain i ∈ F and, using (A.4.8), we would obtain zero or even negative inter-
polation weights. This is avoided by adding positive entries to the diagonal. Nevertheless,
the approximation (A.4.22) is, obviously, only reasonable if we can assume that, for each
i ∈ F , an algebraically smooth error satisfies∑

j

a+
ij ej ≈

∑
j

a+
ij ei (A.4.26)

which, for j �= i, either requires ej ≈ ei or a+
ij to be small (relative to aii). According to the

heuristic considerations in Section A.3.3, this can be assumed for essentially positive-type
matrices as considered here. However, we will see in the next section that (A.4.22) becomes
less accurate (in the sense of (A.4.2)) if (A.4.26) is strongly violated. �

A.4.2.3 General case
Although the previous interpolation can, formally, always be used (provided each i has, at
least, one negative connection), it is well suited only if (A.4.26) can be assumed to hold
for an algebraically smooth error. To demonstrate this, let us consider a problem already
mentioned in Section A.3.3.3 (Example A.3.6).

Example A.4.3 Consider the matrix A which corresponds to the stencil⎡⎣ +1
−1 4 −1

+1

⎤⎦ , (A.4.27)

applied on an N ×N grid with mesh size h = 1/N and Dirichlet boundary conditions.
We select the particular error vector e with components defined by +1 (−1) along even

(odd) horizontal grid lines. For this vector, we have e2
i = 1 for all i, (ei − ej )

2 = 0 if
aij < 0 and (ei − ej )2 = 4 if aij > 0. Using (A.3.13), we therefore see that

(Ae, e)E = −2
∑
i,j

a+
ij +

∑
i

si =
∑
i

(
si − 2

∑
j

a+
ij

)
=
∑
i

ti

with ti := aii −∑j �=i |aij |. Since ti = 0 in the interior and ti = 1 along the boundary, we
obtain

(Ae, e)E = O(N). (A.4.28)
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Assume now any C/F-splitting and any interpolation IFC with Pi ⊆ C ∩ N−
i to be given.

Using (A.4.13), we then see that

‖eF − IFCeC‖2
0,F =

∑
i∈F

aii

(
1 −

∑
k∈Pi

wik

)2

. (A.4.29)

If IFC is the particular interpolation from the previous section, (A.4.24) implies that each
term of the sum in (A.4.29) is nonzero and we obtain

‖eF − IFCeC‖2
0,F = O(N2). (A.4.30)

Because of this and (A.4.28), inequality (A.4.2) cannot hold independently of N . �

The problem seen in this example is that an algebraically smooth error is geometrically
smooth only in the x-direction but highly oscillatory in the y-direction (cf. Section A.3.3.3).
(The particular error vector considered in the example is actually algebraically smooth.)
That is, we have ej ≈ −ei if aij > 0 and j �= i. Consequently, (A.4.26) is strongly violated
which explains the high interpolation error observed above. A redefinition of ãii in (A.4.22)
by subtracting all positive connections from the diagonal (rather than adding them), is a
way out for situations such as the one considered here (in fact, this would give O(N) in
(A.4.30) rather than O(N2)) but it is the wrong thing to do in other cases.

This indicates that the correct treatment of positive connections in interpolation is, in
general, more critical than that of negative connections. We have seen in Section A.3.3 that,
assuming aij > 0, algebraically smooth error e can still be expected to change slowly from
i to j for essentially positive-type matrices, in particular, if there exist strong negative paths
from i to j . On the other hand, for matrices which are approximately weakly diagonally
dominant, we have to expect an oscillatory behavior (which is the stronger the larger aij
is relative to aii , see (A.3.21)). In both cases, however, we may expect that those ek which
correspond to positive connections aik > 0, change slowly among each other (unless aik
is very small in which case we can ignore its influence). This gives rise to the following
generalization of the interpolation approach (A.4.8) (M-matrix case) which is completely
symmetric in the treatment of negative and positive connections.

Let us assume that some i ∈ F has both negative and positive connections, that is,
N−
i �= ∅ and N+

i �= ∅. Then, assuming the C/F-splitting to be such that at least one
connection of either sign is contained in C, we can select two sets of interpolation points,
∅ �= P−

i ⊆ C ∩N−
i and ∅ �= P+

i ⊆ C ∩N+
i . Setting Pi = P−

i ∪ P+
i , we then use

aiiei + αi
∑
k∈Pi

a−
ikek + βi

∑
k∈Pi

a+
ikek = 0 (A.4.31)

instead of (A.4.8) with

αi =
∑
j∈Ni a

−
ij∑

k∈Pi a
−
ik

and βi =
∑
j∈Ni a

+
ij∑

k∈Pi a
+
ik

.

At this point, we have assumed that, for an algebraically smooth error, approximations
analogous to (A.4.7) hold separately for the negative and the positive connections. This
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leads to the following interpolation weights:

wik =
⎧⎨⎩−αi aik/aii (k ∈ P−

i )

−βi aik/aii (k ∈ P+
i ).

(A.4.32)

Note that wik > 0 (k ∈ P−
i ) and wik < 0 (k ∈ P+

i ). If either N+
i = ∅ or N−

i = ∅,
these definitions are to be modified in a straightforward way by setting P+

i = ∅, βi = 0
and P−

i = ∅, αi = 0, respectively. In particular, for M-matrices, the above interpolation is
identical to the one in (A.4.8). In any case, the row sums of (A.4.6) and (A.4.31) are equal
and we have

aii

(
1 −

∑
k∈Pi

wik

)
= si . (A.4.33)

Formally, this approach can always be applied even in cases where most, or even all,
entries are positive. The following theorem, a direct generalization of Theorem A.4.3, shows
that (A.4.2) can be uniformly satisfied in the class of weakly diagonally dominant matrices
A under completely symmetric conditions for positive and negative entries. Note that the
above example belongs to this class. A more realistic application arises, for instance, in
connection with antiperiodic boundary conditions (see also Section A.3.3.3).

Theorem A.4.6 Let A > 0 and ti = aii −∑j∈Ni |aij | ≥ 0. With fixed τ ≥ 1, select
a C/F-splitting such that the following holds for each i ∈ F . If N−

i �= ∅, there is a set
P−
i ⊆ C ∩N−

i satisfying ∑
k∈P−

i

|aik| ≥ 1

τ

∑
j∈N−

i

|aij | (A.4.34)

and, if N+
i �= ∅, there is a set P+

i ⊆ C ∩N+
i satisfying∑

k∈P+
i

aik ≥ 1

τ

∑
j∈N+

i

aij . (A.4.35)

Then the interpolation (A.4.5) with weights (A.4.32) satisfies (A.4.2).

Proof. Using (A.3.20), we can estimate

(Ae, e)E ≥
∑
i∈F

⎛⎝∑
k∈P−

i

|aik|(ei − ek)2 +
∑
k∈P+

i

aik(ei + ek)2 + tie2
i

⎞⎠ . (A.4.36)

To obtain an estimate for ‖eF − IFCeC‖2
0,F , we start from (A.4.13). We first note that

aii

(
1 −

∑
k∈Pi

wik

)
= si = 2

∑
j∈N+

i

aij + ti = 2βi
∑
k∈P+

i

aik + ti

= 2aii
∑
k∈P+

i

|wik| + ti
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which implies

∑
k∈P+

i

wik(ei − ek)+
(

1 −
∑
k∈Pi

wik

)
ei =

∑
k∈P+

i

|wik|(ei + ek)+ ti/aii ei .

The latter, inserted into (A.4.13), gives the following estimate by applying Schwarz’s
inequality

‖eF − IFCeC‖2
0,F =

∑
i∈F

aii

( ∑
k∈P−

i

wik(ei − ek)+
∑
k∈P+

i

|wik|(ei + ek)+ ti/aii ei
)2

≤
∑
i∈F

aii

( ∑
k∈P−

i

wik(ei − ek)2 +
∑
k∈P+

i

|wik|(ei + ek)2 + ti/aii e2
i

)
.

(A.4.37)

Regarding this estimate, note that
∑
k∈Pi |wik| + ti/aii = 1. The estimates (A.4.36) and

(A.4.37) imply (A.4.2) if aii |wik| ≤ τ |aik| (i ∈ F, k ∈ Pi) which is equivalent to the
assumptions of the theorem.

Remark A.4.9 We note that there is a straightforward extension of this theorem to the
case ti ≥ −c with some c ≥ 0 which is analogous to Theorem A.4.4. �

Although the above theorem applies only to weakly diagonally dominant matrices, it is
heuristically clear that the approach (A.4.31) is also reasonable in other cases. In particular,
if we can assume algebraically smooth error to vary slowly even along positive connections
(as in the essentially positive-type case), (A.4.31) is as good an approximation as (A.4.22).
In fact, replacing ek (k ∈ P+

i ) in (A.4.31) by ei gives exactly (A.4.22).
The latter indicates that, in practice, there is no need to use the approach (A.4.31) for

all i ∈ F but rather only for those for which oscillatory behavior has to be expected. This
simplifies the coarsening algorithm substantially in case of elliptic differential problems,
where the largest couplings will usually be negative. In such cases, we will use the full
interpolation as described above only when there really exist large positive couplings (com-
parable in size to the largest negative connection, say). Otherwise, we proceed as described
in the previous section, that is, we do not interpolate from positive connections but rather
add them to the diagonal (for more details, see Section A.7).

Remark A.4.10 A different interpolation has been considered in [200] (which is actually
a direct generalization of the one used in [334]). Compared to (A.4.31), αi = βi = 1 has
been selected and all noninterpolatory connections are used to modify the diagonal element:

aii −→ ãii = aii −
∑

j /∈Pi, j �=i
|aij |. (A.4.38)
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The resulting interpolation is limited to (and actually has been developed for) weakly diag-
onally dominant matrices where algebraically smooth error really oscillates along positive
connections (note that positive matrix entries are subtracted from the diagonal element
rather than added; see the related comment further above). It is not suited for other applica-
tions. In particular, (A.4.38) does not preserve row sums and, consequently, constants are
not interpolated exactly if si ≡ 0. Also, the denominator in (A.4.38) may become zero or
negative. �

Finally we note that interpolation from positive connections is not always necessary
even if an algebraically smooth error tends to oscillate in certain directions. We just have
to ensure that the C/F-splitting is such that the C-variables can represent the oscillations
sufficiently well and that interpolation along negative couplings is “accurate enough”. We
do not want to discuss this aspect any further but rather refer to Example A.4.3 where the
situation is particularly simple. If we do not perform coarsening in the y-direction (i.e. in
the direction of strong positive connections), we may, for instance, use

wik = aik/
∑
j∈Pi

aij with k ∈ Pi ⊆ C ∩N−
i

for interpolation (cf. Variant 2 in Section A.4.2.1).

A.4.3 Indirect Interpolation

In the previous sections, we considered approaches to construct interpolation based on
direct connections, that is, interpolation to an F-point i only from its direct neighbors.
Correspondingly, the C/F-splittings had to be such that each i ∈ F is sufficiently strongly
connected to the set of C-points via direct connections.

Although a strong F-to-C connectivity is indeed crucial, it does not necessarily have
to be via direct connections. In practice, this may limit the speed of coarsening. Too slow
coarsening, however, may cause high memory requirements, which are often unacceptably
high. Clearly, a faster coarsening will typically imply a slower convergence. However, the
advantages in terms of less memory requirement and lower computational cost per cycle and
for the setup, in many cases outweigh the disadvantage of slower convergence. Moreover,
the use of AMG as a preconditioner (rather than stand-alone) is usually a very efficient
means to bring the speed of convergence back up again. This will be seen in Section A.8.

In order to permit more rapid coarsening, one has to allow that F-points may be inter-
polated via sufficiently many of their strong F-neighbors. For an illustration, consider the
typical geometric scenario of (isotropic) five-point discretizations on regular meshes. Inter-
polation based only on direct connections would not allow for the h → 2h coarsening
which is typically used in geometric multigrid methods, the reason being that those F-points
i located in the center of a coarse-grid cell have no direct connection to the C-points (see
Fig. A.9, left picture). However, all their direct F-neighbors, j , do have strong connections
to the C-points and, thus, can interpolate directly.

This simple scenario gives rise to a straightforward generalization of interpolation. First
interpolate the j -variables and then, via the resulting interpolation formulas, the i-variable



460 MULTIGRID

C F C

F F F

C F C

C F C

F F F

C F C

C F C

F F F

C F C

i i i
j j j

Figure A.9. Illustration of indirect interpolation in case of five-point stencils.

(see Fig. A.9, right picture). Since the details of a corresponding generalization of the
theorems in the previous sections are elementary but rather involved, we here just outline
the main additional step required for the generalization of Theorem A.4.3 (M-matrix case).
We have a scenario in mind which is analogous to the one described above.

Assuming a given C/F-splitting to be such that there is some i ∈ F which has no (strong)
connection to any C-point, we select a set of points PFi ⊆ F ∩Ni satisfying (A.4.11) with
Pi replaced by PFi . With the same arguments as at the beginning of Section A.4.2.1 we
approximate in an intermediate step

ei =
∑
j∈PFi

wFij ej with wFij = −αiaij /aii , αi ≤ τ. (A.4.39)

Assume now that each of the neighboring points j ∈ PFi can be interpolated, that is,
we have

ej =
∑
k∈Pj

wjkek with wjk = −αjajk/ajj , αj ≤ τ . (A.4.40)

Inserting (A.4.40) into (A.4.39), yields

ei =
∑
j∈PFi

∑
k∈Pj

wFijwjkek =:
∑
k∈Pi

wikek with Pi =
⋃
Pj . (A.4.41)

If, for simplicity, we finally assume that the pairwise intersection of all Pj s is empty (oth-
erwise there will be several terms of the following form), we can estimate for k ∈ Pi

aiiwik(ei − ek)2 = aiiw
F
ijwjk(ei − ek)2

≤ 2aiiw
F
ijwjk((ei − ej )2 + (ej − ek)2)

= 2αiαj
aij ajk

ajj
((ei − ej )2 + (ej − ek)2)

≤ c1 |aij |(ei − ej )2 + c2 |ajk|(ej − ek)2,
where c1 and c2 depend only on τ and not on the given matrix.

By means of such simple estimates and by using the full representation (A.3.13) of ‖e‖2
1

in (A.4.12), one can immediately extend the proof of Theorem A.4.3 showing that (A.4.2)
holds with some τ̃ which is larger than τ but does not depend on A. Practical aspects will
be considered in Section A.7.2.2 (“multipass interpolation”).
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A.5 PRESMOOTHING AND TWO-LEVEL CONVERGENCE

In this section, we investigate two-level convergence if presmoothing is used rather
than postsmoothing, that is, we consider the (energy) norm of the two-level operator KSν

with some ν ≥ 1. Post- and presmoothing are treated separately because the immedi-
ate interaction between coarse-grid correction and smoothing is different for these cases.
Clearly, regarding the asymptotic two-level convergence, it does not matter whether pre- or
postsmoothing is used. In this sense, the conclusions for either of the two cases carry over
to the other one. (In practice, we usually employ post- and presmoothing anyway.)

The theoretical approach used in this section is quite different from the one used in the
previous section. In particular, it does not use the smoothing property (A.3.7) but is directly
based on the following equivalence which is an immediate consequence of the variational
principle (last statement in Corollary A.2.1):

Corollary A.5.1 The two-level estimate ‖KSν‖1 ≤ η holds if and only if, for all e, there
exists an eH such that

‖Sνe − IhH eH ‖1 ≤ η ‖e‖1. (A.5.1)

The interpretation of (A.5.1) is that the speed of convergence depends solely on the
efficient interplay between smoothing and interpolation. To this end, S does not necessarily
have to satisfy the smoothing property as long as Sνe is represented in R(IhH ) sufficiently
well. The better this is satisfied, the faster the convergence will be.

In fact, we will see in Section A.5.1 that we can force η to be small (independently
of A ∈ A for relevant classes A) by smoothing only at F-points. Interpolation can be
constructed as described in Section A.4.2. Additional Jacobi relaxation steps, applied to
the interpolation operator, can be used to speed up convergence further. In Section A.5.2
we make some remarks on the use of complete (rather than just F-) relaxation steps for
smoothing.

A.5.1 Convergence using Mere F-Smoothing

In order to motivate our theoretical approach, let us briefly recall the results on direct
solvers (presmoothing variant) described in Section A.2.3. The very specific smoothing and
interpolation operators introduced there, Ŝ and Î hH (see (A.2.21) and (A.2.23), respectively),
have the property

R(Ŝ) = R(Î hH ) = E := {e: eF = −A−1
FFAFC eC} (A.5.2)

which, obviously, implies that the left-hand side of (A.5.1) is identically zero (for ν = 1).
This suggests trying to approximate Ŝ and Î hH by some more realistic operators, S and IhH .

One can imagine various ways to do this. Recalling that Ŝ and Î hH have been defined by
exactly solving the F-equations (A.2.19) and (A.2.25), respectively, we will here define S
and IhH by solving these equations only approximately. This becomes particularly easy, if
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one assumes the submatrix AFF to be strongly diagonally dominant,

aii −
∑

j∈F, j �=i
|aij | ≥ δaii (i ∈ F) (A.5.3)

with some fixed, predefined δ > 0. This assumption is very natural for large classes
of problems, in particular those considered in this appendix. It essentially means that a
strong F-to-C connectivity is required which, however, has to be ensured by a reasonable
C/F-splitting anyway (cf. Section A.4.2 and Remark A.5.3).

All of the following is based on the assumption of strong diagonal dominance
(A.5.3) and we consider the simplest means to approximate the solutions of the
F-equations (A.2.19) and (A.2.25), namely, by straightforward relaxation involving
only F-variables (“F-relaxation”, either Gauss–Seidel or Jacobi).

Remark A.5.1 Note that strong diagonal dominance (A.5.3) is assumed for simplicity.
What we really require is that F-relaxation converges at a rate which is independent of the
original matrix A. Strong diagonal dominance of AFF , with predefined δ, is sufficient to
ensure this, but it is not necessary. �

Before we derive the main convergence estimate in Section A.5.1.4, we formally define
the smoothing and interpolation operators in Sections A.5.1.2 and A.5.1.3. The following
section contains an auxiliary result.

A.5.1.1 An auxiliary result
In all of the following, the subspace E , defined in (A.5.2), will play an essential role. Given
any e = (eF , eC)

T , we denote its projection onto E by ê,

ê := (êF , eC)
T where êF := ÎFCeC = −A−1

FFAFCeC. (A.5.4)

The following lemma states some basic properties which will be needed below. In particular,
it relates the energy norm of e to that of ê.

Lemma A.5.1 LetA > 0 and any C/F-splitting be given. Then the Schur complementCH
(A.2.24) is also positive definite and satisfies ρ(C−1

H ) ≤ ρ(A−1). For all e, we have

(Ae, e)E = (AFF (eF − êF ), eF − êF )E + (CH eC, eC)E = ‖e − ê‖2
1 + ‖ê‖2

1 (A.5.5)

which immediately implies

‖ê‖1 ≤ ‖e‖1 and ‖eF − êF ‖1,F = ‖e − ê‖1 ≤ ‖e‖1. (A.5.6)

Proof. The left equality in (A.5.5) follows by a straightforward computation. The positive
definiteness of CH then follows from (CH eC, eC)E = (Aê, ê)E . Denoting the smallest
eigenvalue of A by ε > 0, we have (Ae, e)E ≥ ε(e, e)E for all e. We can then estimate
for all eC

(CHeC, eC)E = (Aê, ê)E ≥ ε(ê, ê)E ≥ ε(eC, eC)E.

Hence, ρ(C−1
H ) ≤ 1/ε = ρ(A−1).
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A.5.1.2 F-smoothing
As motivated above, we define ν smoothing steps by applying ν F-relaxation steps to
approximately solve (A.2.19), starting with the most recent approximation u = (uF , uC)

T

(keeping uC fixed). We will refer to this process as F-smoothing.

We here use the term “smoothing” although mere F-relaxation (like any other partial
relaxation) has no real smoothing properties in the usual sense. In particular, the
considerations in Section A.3 on algebraically smooth error do not apply here. In
fact, F-relaxation aims at approximately solving the F-equations (A.2.19) (with
fixed uC) rather than smoothing the error of the full system of equations.

Consequently, a relaxation parameter, ω, may be used to speed up the convergence.
However, since we require AFF to be strongly diagonally dominant, this is not really
necessary and, for simplicity, we only consider the case ω = 1. Having this in mind, one
F-smoothing step consists of

u −→ ū where QFF ūF + (AFF −QFF )uF + AFCuC = fF , ūC = uC. (A.5.7)

QFF is the lower triangular part of AFF (including the diagonal) in case of Gauss–Seidel
relaxation andQFF = DFF in case of Jacobi relaxation. (In practice, we only use Gauss–
Seidel relaxation.) To explicitly compute the corresponding smoothing operator, we rewrite
this as

ūF = SFF uF + (IFF − SFF )A−1
FF (fF − AFCuC), ūC = uC (A.5.8)

or, in terms of the error e = u� − u (with u� denoting the exact solution of Au = f ),

ēF = SFF eF − (IFF − SFF )A−1
FFAFCeC, ēC = eC.

Here, SFF = IFF −Q−1
FFAFF denotes the iteration matrix corresponding to the relaxation

of the F-variables. Consequently, the relaxation operator reads

Sh =
(
SFF (SFF − IFF )A−1

FFAFC
0 ICC

)
(A.5.9)

and a simple calculation shows that

Sνhe =
(
SνFF (eF − êF )+ êF

eC

)
. (A.5.10)

Obviously, we have rapid convergence Sνhe → ê (ν → ∞) for each e.

Remark A.5.2 Note that F-smoothing does not satisfy the smoothing prop-
erty (A.3.7). In fact, (A.5.10) shows that Se = e for all e ∈ E . Hence, (A.3.7)
cannot hold. �
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A.5.1.3 Jacobi interpolation
Given any eC , we define interpolation by applying μ F-relaxation steps to approximately
solve the F-equations (A.2.25). However, in order to keep the resulting operator as “local”
as possible, we only consider Jacobi relaxation. That is, we iteratively define

e
(μ)
F = PFF e

(μ−1)
F −D−1

FFAFCeC (A.5.11)

and set IFCeC = I
(μ)
FC eC := e

(μ)
F . Here PFF denotes the Jacobi iteration operator, PFF =

IFF −D−1
FFAFF . In contrast to the F-smoothing process described in the previous section,

however, here no “natural” first approximation, e(0)F , is available to start the relaxation
process with. Using zero as the first guess is not sufficient as will be seen in Remark A.5.6.
For now, we assume any “first guess interpolation”, I (0)FC , to be given and use e(0)F = I

(0)
FCeC

as the first guess. (In the following section, we will derive a requirement on I (0)FC .)
Since the interpolation operator needs to be known explicitly in order to compute the

Galerkin operator, we rewrite (A.5.11) in operator form,

I
(μ)
FC = PFF I

(μ−1)
FC −D−1

FFAFC (A.5.12)

starting with the first-guess interpolation operator, I (0)FC . (Regarding the practical compu-
tation of the interpolation, see Section A.7.2.3.) By subtracting these equations from the
equality ÎFC = PFF ÎFC −D−1

FFAFC , we obtain

J
(μ)
FC = I

(μ)
FC − ÎFC = P

μ
FF (I

(0)
FC − ÎFC) = P

μ
FF J

(0)
FC (A.5.13)

where JFC = IFC − ÎFC denotes the “interpolation error” of IFC relative to ÎFC .
We will later refer to this relaxation of interpolation as Jacobi interpolation. Clearly,

for any given e = (eF , eC)
T , we have rapid convergence (IhH )

(μ)eC → ê (μ → ∞).

A.5.1.4 Convergence estimate
The following theorem yields a requirement on the first-guess interpolation I (0)FC which is
sufficient to imply uniform two-level convergence. Further below, in Lemma A.5.2, we
will see that this requirement is very much related to the corresponding one (A.4.2) in
Section A.4.1.

Theorem A.5.1 Let A > 0 and assume the C/F-splitting to be such that AFF is
strongly diagonally dominant (A.5.3) with fixed δ > 0. Let smoothing be performed by
ν ≥ 1 F-relaxation steps (A.5.7). Finally, let the interpolation be defined by IFC = I

(μ)
FC

with some μ ≥ 0 (see (A.5.12)) and assume that the first-guess interpolation, I (0)FC ,
satisfies

‖(ÎFC − I (0)FC) eC‖1,F ≤ τ ‖e‖1 (A.5.14)

for all e with some τ ≥ 0 being independent of e. Then the following estimate holds:

‖KSνe‖1 ≤ (‖SFF ‖ν1,F + τ ‖PFF ‖μ1,F ) ‖e‖1. (A.5.15)
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Proof. Because of the variational principle (Corollary A.2.1) and exploiting the represen-
tation (A.5.10) of Sν , we can estimate for all e

‖KSνe‖1 = min
eH

‖Sνe − IhH eH ‖1 ≤ ‖Sνe − IhH eC‖1

= ‖SνFF (eF − êF )+ êF − IFCeC‖1,F .

Recalling that êF = ÎFCeC , the application of the triangular inequality gives

‖KSνe‖1 ≤ ‖SνFF (eF − êF )‖1,F + ‖(IFC − ÎFC)eC‖1,F .

Finally, because of (A.5.13) and (A.5.6), assumption (A.5.14) implies

‖KSνe‖1 ≤ ‖SFF ‖ν1,F ‖eF − êF ‖1,F + ‖PFF ‖μ1,F ‖(I (0)FC − ÎFC) eC‖1,F

≤ (‖SFF ‖ν1,F + τ ‖PFF ‖μ1,F ) ‖e‖1,

which proves the theorem.

Clearly, the norms of SFF andPFF in (A.5.15) are less than one and depend only on
δ, not onA. In particular, the larger δ is, the smaller these norms are. Consequently,
the previous theorem shows that, in principle, we can enforce arbitrarily fast two-
level convergence by selecting ν and μ accordingly. Moreover, the convergence
is uniform for A ∈ A if we can construct the first-guess interpolation, I (0)FC , so
that (A.5.14) is uniformly satisfied for all such A. We will see that this can be
achieved for the same classes of matrices for which the related condition (A.4.2)
can be uniformly satisfied (which has been discussed in detail in Section A.4.2).
Lemma A.5.2 shows that (A.5.14) and (A.4.2) are essentially equivalent.

Lemma A.5.2 Consider the two estimates

(a) ‖eF − IFCeC‖2
0,F ≤ τ1 ‖e‖2

1, (b) ‖(ÎFC − IFC) eC‖2
1,F ≤ τ2 ‖e‖2

1. (A.5.16)

If (a) holds for all e and if η ≥ ρ(D−1A), then (b) holds for all e with τ2 = ητ1. If (b)
holds for all e and if AFF is strongly diagonally dominant (A.5.3), then (a) holds for all e
with τ1 = (1 + √

τ2)
2/δ.

Proof. We first note that ρ(D−1
FFAFF ) ≤ ρ(D−1A):

ρ(D−1
FFAFF ) = sup

eF

(AFF eF , eF )E

(DFF eF , eF )E
= sup
(eF ,0)

(Ae, e)E

(De, e)E

≤ sup
e

(Ae, e)E

(De, e)E
= ρ(D−1A).

Using this and assuming (a) to hold for all e, we obtain because of (A.3.3)

‖eF − IFCeC‖2
1,F ≤ η ‖eF − IFCeC‖2

0,F ≤ ητ1 ‖e‖2
1.
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Applying this to ê rather than e and using (A.5.6), gives

‖êF − IFCeC‖2
1,F = ‖(ÎFC − IFC)eC‖2

1,F ≤ ητ1 ‖ê‖2
1 ≤ ητ1 ‖e‖2

1

which proves the first statement. Regarding the second one, we first estimate for any e

‖eF − IFC eC‖1,F ≤ ‖eF − êF ‖1,F + ‖(ÎFC − IFC) eC‖1,F ≤ (1 + √
τ2)‖e‖1.

By observing that

ρ(A−1
FFDFF ) = 1 /min{λ: λ eigenvalue of D−1

FFAFF } ≤ 1/δ,

we conclude that

‖eF − IFCeC‖2
0,F ≤ ρ(A−1

FFDFF ) ‖eF − IFCeC‖2
1,F ≤ 1

δ
(1 + √

τ2)
2 ‖e‖2

1.

This proves the lemma.

According to this lemma, we can use the same interpolation approaches as described
in Section A.4.2 to define I (0)FC . Regarding the practical realization, we want to make the
following remark:

Remark A.5.3 The requirement of strong diagonal dominance (A.5.3) can eas-
ily be satisfied. If the C/F-splitting and interpolation are constructed according to
Theorems A.4.3 and A.4.6, strong diagonal dominance is automatically satisfied,
namely, with δ = 1/τ . For instance, the assumptions of Theorem A.4.3 imply for
all i ∈ F :

aii −
∑

j∈F, j �=i
|aij | = si +

∑
j∈Pi

|aij | +
∑

j∈C\Pi
|aij |

≥ si + 1

τ

∑
j∈Ni

|aij | = 1

τ
aii +

(
1 − 1

τ

)
si ≥ 1

τ
aii .

A second remark refers to the parameter μ. Although the two-level method con-
verges for allμ ≥ 0, Theorem A.5.1 states fast convergence only ifμ is sufficiently
large. In practice, however, μ > 2 is hardly ever required (at least if δ is not too
small). Nevertheless, each additional relaxation step increases the “radius” of inter-
polation (causing additional fill-in in the resulting Galerkin operator). Most of the
new entries, however, will be relatively small and can be ignored without seriously
sacrificing convergence. Consequently, in order to keep the resulting Galerkin oper-
ator as sparse as possible, relaxation of interpolation should always be combined
with a reasonable truncation, performed before the Galerkin operator is computed
(cf. Remark A.2.4; see also Section A.7.2.4). We also note that, in practice, it is usu-
ally not necessary to perform F-relaxation with the complete matrix AFF . Instead,
one may well ignore all those entries of AFF which are relatively small (and add
them to the diagonal, say, in order to preserve the row sums of interpolation). �
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For completeness, the following remarks summarize some algebraic conditions which
are equivalent to (A.5.14). However, they are not important for the remainder of the
appendix.

Remark A.5.4 Requirement (A.5.14) is equivalent to

‖(ÎFC − I (0)FC) eC‖2
1,F ≤ τ 2 (CH eC, eC)E (A.5.17)

for all eC . This follows immediately by applying (A.5.14) to ê rather than e and using
Lemma A.5.1. (A.5.17), in turn, is equivalent to

ρ(C−1
H J

(0)
CFAFF J

(0)
FC) = ‖A1/2

FF J
(0)
FCC

−1/2
H ‖2

E ≤ τ 2 (A.5.18)

where, as above, J (0)FC = I
(0)
FC − ÎFC and J (0)CF = (J

(0)
FC)

T denote the “errors” of the first-
guess interpolation and restriction, respectively. �

Remark A.5.5 Denoting the Galerkin operator corresponding to the first-guess interpo-
lation by A(0)H , the requirement that (A.5.14) holds uniformly for A ∈ A is equivalent to

the spectral equivalence of CH and A(0)H for A ∈ A,

(CH eC, eC)E ≤ (A
(0)
H eC, eC)E ≤ (1 + τ 2) (CH eC, eC)E. (A.5.19)

In order to see this, one first verifies by a straightforward computation that

A
(0)
H = CH + J (0)CFAFF J (0)FC.

This equality, together with (A.5.17), proves the statement. Note that, because of (A.3.3),
(A.5.19) implies that the related (spectral) condition number is uniformly bounded,

κ
(
(A
(0)
H )

−1 CH
)

:= λmax
(
(A
(0)
H )

−1 CH
)

λmin
(
(A
(0)
H )

−1 CH
) ≤ 1 + τ2. �

We conclude with a remark which stresses the importance of constructing the first-guess
interpolation reasonably.

Remark A.5.6 If we select the first-guess interpolation too simply, in general,
we cannot expect uniform two-level convergence. For instance, if we just select
I
(0)
FC = 0, (A.5.18) is equivalent to

ρ(C−1
H ACFA

−1
FFAFC) = ‖A−1/2

FF AFCC
−1/2
H ‖2

E ≤ τ 2. (A.5.20)

For h-discretized elliptic problems, we typically have ‖A−1
FF ‖E = O(h2) (provided

AFF is strongly diagonally dominant) and ‖AFC‖E = O(h−2). Hence, (A.5.14)
cannot be expected to hold with τ being independent of h → 0; we actually have
τ = O(h−1). In order to still obtain uniform convergence, we would need to select
μ = O(log(h−1)). �
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A.5.2 Convergence using Full Smoothing

The approach discussed in the previous section is not really in the spirit of multigrid since
smoothing in the usual sense is not exploited. Two-level convergence is actually obtained
by purely algebraic means. In fact, as already pointed out before, the role of F-smoothing
is merely to force Sνe ≈ ê rather than to smooth the error of the full system. This, together
with Jacobi interpolation, is a “brute force” approach to make ‖Sνe−IhH eC‖1 small for all e.

Although this brute force approach helps convergence, particularly for “tough prob-
lems”, we will see in Section A.8 that the use of full relaxation steps for smoothing usually
leads to cycles which are considerably more efficient if computational work is taken into
account. The heuristic reason is that, assuming S to satisfy the smoothing property (A.3.7),
relatively simple interpolation of the type derived in Section A.4.2 is usually sufficient
to approximate algebraically smooth error. However, if mere F-smoothing is employed,
approximations of the type (A.4.7), as used in Section A.4.2, are too crude and, generally,
additional effort needs to be invested to “improve” interpolation by Jacobi relaxation in order
to cope with all those error components which are not affected by mere F-smoothing. In
particular, recall that an error e ∈ E is not reduced at all by F-smoothing (cf. Remark A.5.2).

Unfortunately, Theorem A.5.1 does not carry over to the use of general smoothing
processes based on full relaxation steps. This is because the proof is based on an estimate
of ‖Sνe− ê‖1. The latter, however, can most easily be obtained for F-smoothing but not for
smoothing by full relaxation steps, except if we perform relaxation in CF-ordering, that is,
if we first relax all C-variables and afterwards all F-variables. In this case, Theorem A.5.1
trivially carries over, at least for ν = 1, by simply ignoring the C-part of the relaxation. For
completeness, we give this result here although it is unrealistic in the sense that it cannot
explain the better performance mentioned above.

Corollary A.5.2 Under the same assumptions as in Theorem A.5.1, except that smoothing
is replaced by one step of Gauss–Seidel relaxation in CF-order, we obtain the following
estimate

‖KSe‖1 ≤ (‖SFF ‖1,F + τ ‖PFF ‖μ1,F ) ‖e‖1. (A.5.21)

Gauss–Seidel CF-relaxation has turned out to be a very efficient smoother in
practice. In particular, for positive definite problems, it is usually more efficient
than Gauss–Seidel relaxation without any specific order of variables. (Note that
CF-relaxation is related to red–black relaxation in geometric multigrid.)

From a practical point of view, (A.5.21) is too pessimistic since it implies convergence
only ifμ is sufficiently large. However, since the asymptotic two-level convergence does not
depend on whether pre- or postsmoothing is performed, we can conclude from the results
in Section A.4.1 that the above two-level cycle asymptotically converges even for μ = 0
and convergence is uniform for A ∈ A provided (A.5.14) holds uniformly for all such A.

Compared to the results in Section A.4.1, the relevance of Theorem A.5.1 and
Corollary A.5.2 is due to the complementary information. In particular, the fact that Jacobi
interpolation with μ > 0 provides a (purely algebraic) means to improve convergence



AN INTRODUCTION TO ALGEBRAIC MULTIGRID 469

and that (additional) F-smoothing steps can be used in case of “tough” problems. We will
present examples in Section A.8 demonstrating the effect of relaxation of interpolation.
Various numerical experiments employing F-smoothing and Jacobi interpolation can also
be found in [222].

A.6 LIMITS OF THE THEORY

The two-level investigations of the previous sections are the basis for the definition of our
final multilevel method in Section A.7. Various results will be presented in Section A.8,
showing that AMG’s V-cycle convergence is, to a large extent, independent of the size of
the problem, at least for the geometrically posed problems as considered here.

Unfortunately, the latter cannot be proven in a purely algebraic setting. Since the main
reason for this implies some important additional objective which should be taken into
regard in AMG’s coarsening algorithm, already indicated in Remark A.4.6, we want to
briefly discuss the limitations of the theoretical approach.

First, uniform two-level convergence has strictly been proven only for certain “ideal”
classes of positive definite matrices such as M-matrices, essentially positive-type matrices,
weakly diagonally dominant matrices and some perturbations thereof. Although it is plausi-
ble that we can still expect uniform convergence w.r.t. certain larger classes, the uniformity
may get lost if the matrices considered are too far off. A special limit case has already been
discussed in Example A.4.1. It is also clear that we have to expect a degradation if the given
problem is still symmetric and positive definite but corresponds to a system of PDEs (e.g.
from structural mechanics) rather than a scalar PDE. In such cases, generally, the overall
approach requires modification: the specific connectivity between different physical quan-
tities needs to be taken into account (at least, all these quantities should be kept separate)
in order to still obtain an efficient solution method. Since such problems are not within the
focus of this appendix, we will not discuss such modifications here but rather refer to the
preliminary discussion in [334].

However, apart from such limit cases, AMG’s performance in practice turns out to be
fairly insensitive to deviations of the underlying matrices from the ideal types. This is impor-
tant to know, in particular, in recursively extending two-level to real multilevel cycles: even
if the given matrix A belongs to one of the ideal classes mentioned above, the recursively
defined coarse-level Galerkin operators will generally not. It is often possible to avoid this
by particular coarsening strategies. For instance, if A is a weakly diagonally dominant
M-matrix, the corresponding Galerkin operatorAH will also be a weakly diagonally domi-
nant M-matrix if coarsening is performed according to Theorem A.4.3 with τ ≤ 2 (see [334]
for a proof). A similar result can be shown for weakly diagonally dominant matricesA > 0
(cf. [200]). However, these results turned out to be not really relevant in practice since they
put unnecessary restrictions on the coarsening strategy.

From experience, allowing faster coarsening and accepting that the coarse-level
matrices do not exactly remain in the respective classes, typically leads to much
more efficient solution processes.
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However, even if all coarse-level matrices belong to one of the ideal classes (for instance,
if they are all weakly diagonally dominant M-matrices), the two-level theory does not carry
over to a multilevel V-cycle theory. To demonstrate this, we consider the following very
simple but characteristic counter-example.

Example A.6.1 [67, 334] Let Ah be derived from discretizing −u′′ on the unit interval
with mesh size h, i.e., the rows of Ah correspond to the difference stencil

1

h2
[−1 2 − 1]h,

with Dirichlet boundary conditions. (However, since the concrete boundary conditions are
irrelevant for this example, we may ignore the boundary in the following.) One possibility
of satisfying the assumptions of Theorem A.4.3 with τ = 2 is to assume h → 2h coarsening
and define interpolation to each F-point strictly one-sided (with the interpolation weight
being 1), see Fig. A.10.

The corresponding coarse-grid operator, AH , is easily computed to correspond to the
difference stencil

1

(2h)2
[−4 8 − 4]2h

which, after proper scaling of the restriction operator by 1/2, is seen to be off by a factor of
2 compared to the “natural” 2h-discretization of −u′′. Due to this, for a very smooth error
frequency, sin(πx), say, we obtainKe ≈ (1/2)e. Consequently, as smoothing hardly affects
this frequency (if h is very small), we cannot expect the asymptotic two-level convergence
factor to be better than 1/2.

If the same strategy is now used recursively to introduce coarser and coarser levels,
the above arguments carry over to each of the intermediate levels and, in particular, each
coarser-grid operator is off by a factor of 2 compared to the previous one. A simple recursive
argument, applied to the same error frequency as above, shows that errors are accumulated
from grid to grid and the asymptotic V-cycle convergence factor cannot be expected to be
better than 1 − 2−m where m denotes the number of coarser levels. That is, the V-cycle
convergence is h-dependent. �

F F F FC C C C

I eH
h H

h

H

Figure A.10. Strictly one-sided interpolation (piecewise constant).
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The major cause of the problem seen here is that the interpolation is only piecewise
constant (first order) which, obviously, is insufficient to ensure h-independent V-cycle
convergence. (We will consider piecewise constant interpolation again in the context of
aggregation-based AMG in Section A.9, where the basic problem with piecewise constant
interpolation will become clear; see Section A.9.1.) Note that one-sided interpolation has
been artificially introduced in this particular example to demonstrate the consequences. In
practice, each F-point should, of course, be interpolated from both its C-neighbors, leading
to linear interpolation (which, in this 1D case, even gives a direct solver). In any case,
Theorem A.4.3 formally allows such interpolations, and h-dependent V-cycle convergence
always has to be expected whenever essentially one-sided interpolation is employed to solve
analogous problems, in any dimension.

The main hurdle in extending the two-level to a V-cycle theory is due to the fact that the
basic algebraic condition for interpolation, (A.4.2) (and hence also (A.5.14)), is too weak to
imply uniform V-cycle convergence (cf. Remark A.4.2). In [334], the stronger requirement

‖eF − IFCeC‖2
0,F ≤ τ ‖e‖2

2 (A.6.1)

has been discussed which is more suited to an algebraic V-cycle convergence theory. Indeed,
following the same arguments as in Remark A.4.2, one sees that interpolation based on
(A.6.1) is related to second-order interpolation (assuming an adequate geometric problem).
Unfortunately, it hardly seems possible to construct interpolation so that (A.6.1) is satisfied
exactly by using only algebraic information such as the matrix entries.

In practice, however, it turned out that potential problems with interpolation can,
to a large extent, easily be avoided, at least for all applications considered here. In
fact, for geometrically posed applications, a sufficient improvement of the accu-
racy of interpolation (compared to the worst case as considered above) is generally
obtained, by just arranging the C/F-splittings as uniformly as possible (based on the
connectivity information contained in the matrices) so that each F-point is reason-
ably surrounded by its interpolatory neighbors. The importance of this has already
been stressed in Remark A.4.6. Of course, if there is no geometrical background for
a given problem or if the underlying connectivity structure is far from being local,
there is no a priori guarantee of highest efficiency.

The application of one Jacobi relaxation step to a given interpolation is another simple
(but generally more costly) way of improvement. In the above example, for instance, this
would immediately “overwrite” the given piecewise constant interpolation by linear inter-
polation. Although, in general, relaxation of interpolation will not be able to increase the
order of interpolation, it tends to substantially improve it.

The most popular way to overcome h-dependent V-cycle convergence is to use “better”
cycles like F- or W-cycles. However, apart from the fact that such cycles are more expensive
(which may be considerable in AMG, depending on the actual coarsening), they will, at
best, have the same convergence factor as the corresponding two-level method which, in
turn and for the same reasons which may lead to h-dependent V-cycle convergence, might
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not be fully satisfactory. That is, although better cycles may well be a pragmatic way to
overcome a convergence problem, they tend to hide the true reasons for such problems and
should only be considered as a second choice.

Although not needed for the type of applications considered here, we finally want to
mention that one can imagine other strategies to improve interpolation. For instance, one
could exploit a minimum amount of geometric information (e.g. point locations). More
algebraically, local fitting of interpolation weights provides various possibilities to better
approximate smooth error (cf. [334]), for instance,fitting based on some “test vector(s)” pro-
vided by the user upon calling AMG. In general, however, such “sophisticated” techniques
are rather complicated and tend to be computationally expensive.

A.7 THE ALGEBRAIC MULTIGRID ALGORITHM

The application of AMG to a given problem is a two-part process. The first part, a fully
automatic setup phase, consists of recursively choosing the coarser levels and defining the
transfer and coarse-grid operators. The second part, the solution phase, just uses the resulting
components in order to perform normal multigrid cycling until a desired level of tolerance
is reached (usually involving Gauss–Seidel relaxation for smoothing). The solution phase
is straightforward and requires no explicit description.

This section describes algorithmic components used in the setup phase of the
RAMG05 code mentioned in Section A.1.2. According to Section A.2.1, only the
C/F-splitting and the interpolation, IFC , need to be explicitly defined. These definitions
closely follow the approaches suggested by the analysis contained in Sections A.4.2 and
A.4.3. Restriction is taken as the transpose of interpolation (A.2.8) and the computation of
the coarse-level Galerkin operators (A.2.3) is straightforward. There is still much scope for
modifications and further enhancements, but the algorithmical components proposed here
have been tested for a wide variety of problems and have been found to lead to robust and
efficient solution processes. Typical results will be presented in Section A.8.

The algorithm described below does not exploit symmetry, except that restriction is
always taken as the transpose of interpolation (which is not necessarily the best for non-
symmetric problems, see Section A.2.3). Without any modification, the algorithm has been
applied to various nonsymmetric problems. Practical experience indicates that, generally,
the nonsymmetry by itself does not necessarily cause particular problems for AMG. Other
properties of the underlying matrices, such as a strong violation of weak diagonal domi-
nance, seem to influence the performance of AMG (as it stands) to a much larger extent.

In the following, we will first describe the splitting process (Section A.7.1) and after-
wards the interpolation (Section A.7.2). The approach for constructing the splitting and
the interpolation is the same for all levels of the AMG hierarchy. Therefore, the following
description will be for any fixed level. Clearly, all of the following has to be repeated recur-
sively for each level until the level reached contains sufficiently few variables to permit a
direct solution. All quantities occurring will actually depend on the level, but the index will
be omitted for convenience.

To make the current section easier to read and more self-contained, we keep references
to previous sections to a minimum. Instead, we repeat the most relevant aspects.
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A.7.1 Coarsening

In order to achieve fast convergence, algebraically smooth error needs to be approximated
well by the interpolation. As a rule, the stronger the F-to-C connectivity is, the better this
can be achieved. On the other hand, the size of the coarse-level operator (and the time to
compute it) strongly depends on the number of C-variables. Since the overall efficiency
is determined by both the speed of convergence and the amount of work needed per cycle
(which is also directly related to the total memory requirement), it is absolutely imperative to
limit the number of C-variables while still guaranteeing that all F-variables are sufficiently
strongly connected to the C-variables.

However, the goal should not just be to minimize the total number of C-points. According
to Remark A.4.6 and the related discussion in Section A.6, an important objective is to create
C/F-splittings which are as uniform as possible with F-variables being “surrounded” by
C-variables to interpolate from. Although there is no algebraic proof, interpolation tends to
be considerably better, resulting in much faster convergence, if this objective is considered.
A simple algorithm is described in Section A.7.1.1.

Requiring strong F-to-C connectivity does not necessarily mean that all F-variables need
to have strong direct connections to C-variables. In general, strong connectivity may be via
strongly connected neighboring F-variables (cf. Section A.4.3). This leads to “aggressive”
coarsening strategies as described in Section A.7.1.2. Such strategies allow for a drastic
reduction of the setup and cycle cost, the complexity of the coarse-level operators as well
as the memory requirement. Clearly, these benefits will be at the expense of a reduced con-
vergence speed since smoothing becomes less efficient and since it becomes more difficult
to “match the ranges” of the smoothing and the interpolation operators. In practice, how-
ever, this disadvantage is usually more than compensated for by the benefits, in particular,
if AMG is used as a preconditioner rather than stand-alone (cf. Section A.7.3). We will
present examples in Section A.8.

A.7.1.1 Standard coarsening
In this section, we consider C/F-splittings based on direct couplings: each F-variable i is
required to have a minimum number of those of its couplings j ∈ Ni be represented in C
which affect the error at i most, that is, for which |aij | is largest in some sense (“strong
connections”).

For all the applications we have in mind here, most of the strong couplings are negative
and we first describe a fast procedure which generates a C/F-splitting taking only negative
couplings into account (for positive couplings, see Section A.7.1). That is, the resulting C/F-
splitting will be such that all F-variables have a substantial (direct) negative connectivity
to neighboring C-variables. In other words, we essentially coarsen in directions in which
algebraically smooth error changes slowly (cf. Section A.3.3).

To be more specific, let us define a variable i to be strongly negatively coupled (or
strongly n-coupled) to another variable, j , if

−aij ≥ εstr max
aik<0

|aik| with fixed 0 < εstr < 1 (A.7.1)

and let us denote the set of all strong n-couplings of variable i by Si ,

Si = {j ∈ Ni: i strongly n-coupled to j}. (A.7.2)
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(Note that all positive connections are regarded as weak at this point.) According to practical
experience, the concrete value of εstr is not critical, εstr = 0.25 being a reasonable default
value. Since the relation of variables being strongly n-coupled is generally nonsymmetric
(even if A is symmetric), we introduce the set STi of strong transpose n-couplings of i
consisting of all variables j which are strongly n-coupled to i:

STi = {j ∈ � : i ∈ Sj }.
The proposed simple splitting algorithm corresponds to the “preliminary C-point

choice” [334]. Essentially, one starts with defining some first variable, i, to become a
C-variable. Then all variables, j , which are strongly n-coupled to i (i.e. all j ∈ STi ) become
F-variables. Next, from the remaining undecided variables, another one is defined to become
a C-variable and all variables which are strongly n-coupled to it (and which have not yet
been decided upon) become F-variables. This process is repeated until all variables have
been taken care of.

The only problem is that, in order to avoid randomly distributed C/F-patches and instead
obtain reasonably uniform distributions of C- and F-variables, we need to perform this
process in a certain order. In order to ensure that there is a tendency to build the splitting
starting from one variable and continuing “outwards” until all variables are covered, we
introduce a “measure of importance”, λi , of any undecided variable i to become the next
C-variable. We define

λi = |STi ∩ U | + 2|STi ∩ F | (i ∈ U)
where U , at any stage of the algorithm, denotes the current set of undecided variables. (For
any set P , |P | denotes the number of elements it contains.) λi acts as a measure of how
valuable a variable i ∈ U is as a C-variable, given the current status of C and F. Initially,
variables with many others strongly n-coupled to them become C-variables, while later the
tendency is to pick as C-variables those on which many F-variables strongly depend.

The complete algorithm is outlined in Fig. A.11. We point out that the measure λi has
to be computed globally only once, at the beginning of the algorithm. At later stages, it
just needs to be updated locally. For isotropic five-point and nine-point stencils, the first
coarsening steps are illustrated in Fig. A.12.

Remark A.7.1 Before the above algorithm starts, variables which have no connection at
all (e.g. resulting from Dirichlet boundary points which have not been eliminated from the
system) are filtered out and become F-variables. Trivially, such variables do not require
interpolation. Similarly, variables which correspond to (very) strongly diagonally dominant
rows of the matrix might be filtered out at this point. �

Remark A.7.2 After termination of the above algorithm, all F-variables have (at least) one
strong n-coupling to a C-variable (except for the “trivial” ones taken out at the very begin-
ning, see Remark A.7.1). However, there may be a few U-variables left, in particular, in non-
symmetric problems. Such particular variables have the property that they are not strongly
n-coupled to any of the C-variables (otherwise they would have become F-variables earlier
in the process). Moreover, such variables have no strong n-connection among themselves
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F := , C := , U :=

i := |S
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U | + 2| S
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F |     (i U)i
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j S
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U :  F : = F { j}, U := U \{ j}i
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i

pick with max
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Figure A.11. Standard coarsening algorithm [334].
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Figure A.12. First steps of the standard coarsening process in case of isotropic five-point (top) and
nine-point stencils (bottom). At each stage, those undecided points with highest λ-value are shown
in bold-italics.

nor is any F-variable strongly n-coupled to any of them (otherwise their measure λi would
be nonzero). However, each of these U-variables is strongly n-coupled to (at least) one of
the F-variables. We therefore redefine all potentially remaining U-variables to become F-
variables. In interpolation, they will be interpolated indirectly via their strong F-couplings
(see Section A.7.2.1). �

Remark A.7.3 None of the C-variables is strongly n-coupled to any of those C-variables
created prior to itself in the coarsening process described above. However, since the relation
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of being strongly n-coupled is not necessarily symmetric, this may not fully be true the other
way around. In any case, however, the resulting set of C-variables is close to a maximal set
of variables which are not strongly n-connected to each other (see Remark A.4.6). �

Remark A.7.4 The theoretical investigation of special processes such as F-smoothing
(Section A.5.1.2) and relaxation of interpolation (Jacobi interpolation, Section A.5.1.3)
was based on the assumption that the submatrices AFF are strongly diagonally dominant.
Clearly, if required, this condition can be exactly satisfied during the coarsening step or,
very easily, by adding a few C-points afterwards (if necessary). However, for those applica-
tions considered in this appendix, the above coarsening algorithm tends to ensure sufficient
diagonal dominance without any modification. Therefore, by default, we do not explicitly
check for strong diagonal dominance. �

A.7.1.2 Aggressive coarsening
In many PDE applications, we have to deal with small stencils. In such cases, the previous
splitting algorithm, because it is based on direct connections, may cause a relatively high
complexity (memory requirement due to the coarse-level Galerkin operators). For instance,
isotropic seven-point stencils on regular 3D meshes, will cause the first coarser level to
correspond to the black points of a red–black coarsened grid (as in the 2D case depicted in
Fig. A.12, upper picture). One easily sees that the Galerkin operator on this level corresponds
to a 19-point stencil. That is, the Galerkin matrix is larger than the original matrix by a factor
of 1.36. Although subsequent coarsening will typically become faster (simply because
the corresponding stencils are larger), the first coarsening step significantly contributes to
the final complexity. Complexity can substantially be reduced by employing “aggressive
coarsening”.

In order to allow aggressive coarsening, we extend the definition of strong connectivity
to also include variables which are not directly coupled. Following [334], we introduce the
concept of long-range strong n-connections. A variable i is said to be strongly n-connected
to a variable j along a path of length � if there exists a sequence of variables i0, i1, . . . , i�
with i = i0 and j = i� such that ik+1 ∈ Sik for k = 0, 1, 2, . . . , �− 1. With given values
p ≥ 1 and � ≥ 1, we then define a variable i to be strongly n-connected to a variable j
w.r.t. (p, �) if at least p paths of length ≤ � exist such that i is strongly n-connected to j
along each of these paths (in the above sense).

In principle, for any given p and �, the splitting algorithm described in the previous
section immediately carries over if we apply it to the set

S
p,�
i = {j ∈ � : i strongly n-connected to j w.r.t. (p, �)} (A.7.3)

rather than Si (A.7.2). From a practical point of view, however, it does not pay to exploit
strong n-connectivity in this generality. In fact, the cases p = 2, � = 2 and p = 1, � = 2
turn out to be the most useful. Moreover, it hardly ever pays to use aggressive coarsening
on more than one level. (On all but the first level, standard coarsening is usually efficient
enough.) We will refer to the coarse strategies corresponding to S2,2

i and S1,2
i as A2- and

A1-coarsening, respectively.
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Remark A.7.5 Applying the splitting algorithm directly to Sp,�i instead of Si ,
requires the storage of the complete connectivity information (and the correspond-
ing transpose information contained in (Sp,�i )T ) for each variable i. Even for the

cases S2,2
i and S1,2

i considered here, this may be quite substantial but can be avoided
to a large extent by applying the standard coarsening algorithm twice. In the first
step, it is applied exactly as described in the previous section. Then, instead of
(A.7.3), we define strong n-connectivity only between the resulting C-variables
(via neighboring F-variables). That is, for each variable i ∈ C, we define

Ŝ
p,�
i = {j ∈ C: i strongly n-connected to j w.r.t. (p, �)}. (A.7.4)

Using this definition, the standard coarsening algorithm is now applied a second time
but restricted to the set of C-variables. The subset of “new” C-variables resulting
from this second step will then be used as the next coarser level. �

Clearly, A1- is faster than A2-coarsening. As an example, Fig. A.13 illustrates the
second step of the two-step process described in the previous remark for isotropic five-
point stencils. Generally, while A2-coarsening is effective only in (at least) “planewise”
isotropic problems, A1 is also effective in strongly anisotropic cases. Figure A.14 shows
the result of using A2 and A1 coarsening for the example discussed in Section A.1.3.
In case of strategy A2 (left picture), the coarsening pattern is essentially the same as for
standard coarsening (see Fig. A.4) except in the lower left quarter where the problem is
isotropic and coarsening is faster. Strategy A1, on the other hand, also speeds coarsening up
in the anisotropic areas. Indeed, the right picture in the figure shows that coarsening is now
substantially faster everywhere. It is still essentially in the direction of strong couplings.
However, the coarse-level points are further apart than before.

Remark A.7.6 If aggressive coarsening is used, strong diagonal dominance of the corre-
sponding submatricesAFF (theoretically required if F-smoothing or Jacobi interpolation is
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Figure A.13. Results of aggressive A2 (left) and A1 coarsening (right) in case of isotropic five-point
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respectively.



478 MULTIGRID

Figure A.14. The finest and three consecutive AMG levels if aggressive A2 (left) and A1 coarsening
(right) is applied (only) on the first level.

to be employed in the sense of Section A.5.1), can no longer be assumed in the strict sense,
at least not for each row. �
A.7.1.3 Strong positive connections
The previous approaches to constructing a C/F-splitting were based on negative couplings
only. Provided that potentially existing positive couplings are relatively small, they can,
indeed, be ignored in coarsening and interpolation (cf. the related discussion in Sec-
tion A.4.2). However, this cannot always be assumed and we have to allow for matrices
which also contain some strong positive entries.

According to Theorem A.4.6, a more general splitting process should ensure that, for all
F-variables which have strong negative and positive couplings, a minimum number of both
types of couplings is represented in C. However, to construct such a splitting within one
step, turns out to be relatively complicated. Since, for all problems we have in mind here,
most strong connections are negative, we propose a very simple alternative. After one of the
coarsening processes described before has been applied, we test for all F-variables i whether
or not there are strong positive F–F couplings. For instance, we simply check whether

aij ≥ ε+
str max

k �=i
|aik| (A.7.5)

holds for some j �= i. Here, ε+
str is some reasonable tolerance, for instance, ε+

str = 0.5.
If such a j exists, all js satisfying (A.7.5) will a posteriori be added to the set Si (A.7.2)
(this will affect the performance of the interpolation routines, see Section A.7.2) and the
variable which corresponds to the largest positive coupling, will be redefined to become a
C-variable. (An example demonstrating the effect of this process, is given in Section A.8.4.)

Clearly, this a posteriori update of the C/F-splitting is suitable only if there are not
too many strong positive connections. Otherwise, one has to change the original splitting
algorithm as mentioned above.
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A.7.2 Interpolation

In defining interpolation to the currently finest level, we assume that a C/F-splitting has
been constructed either by means of standard or aggressive coarsening. In the first case,
interpolation is used as described in Section A.7.2.1 (direct or standard interpolation). In the
second case, interpolation is used as described in Section A.7.2.2 (multipass interpolation).
In both cases, interpolation can optionally be improved further by means of additional
relaxation steps (Section A.7.2.3, Jacobi interpolation).

Some of the interpolation variants described in the following exploit strong indirect
C-couplings which will increase the “radius” of interpolation. In all such cases,
it is important to reasonably truncate the resulting interpolation operator before
computing the Galerkin operator (see Section A.7.2.4).

The following abbreviations will be needed below. Here, Si is as defined in (A.7.2),
possibly modified a posteriori as described in Section A.7.1.3:

Ci = C ∩Ni, Csi = C ∩ Si,
Fi = F ∩Ni, F si = F ∩ Si.

A.7.2.1 Direct and standard interpolation
The following procedures apply in case the C/F-splitting has been constructed by means of
standard coarsening.

Direct interpolation
In the simplest case, the definition of interpolation, as described in Section A.4.2.3, is
applied immediately. More precisely, for each i ∈ F , we define the set of interpolatory
variables by Pi = Csi and approximate

aiiei +
∑
j∈Ni

aij ej = 0 =⇒ aiiei + αi
∑
k∈Pi

a−
ikek + βi

∑
k∈Pi

a+
ikek = 0 (A.7.6)

with

αi =
∑
j∈Ni a

−
ij∑

k∈Pi a
−
ik

and βi =
∑
j∈Ni a

+
ij∑

k∈Pi a
+
ik

.

This immediately leads to the interpolation formula

ei =
∑
k∈Pi

wik ek with wik =
{

−αi aik/aii (k ∈ P−
i )

−βi aik/aii (k ∈ P+
i ).

(A.7.7)

If P+
i = ∅, this formula is modified according to Section A.4.2.2, that is, we set βi = 0 and

add all positive entries, if there are any, to the diagonal. Since this interpolation involves
only direct connections of variable i, we will refer to it as direct interpolation.



480 MULTIGRID

Remark A.7.7 The above procedure can be applied as long as Csi �= ∅. However, this is
ensured by the standard coarsening algorithm for all F-points i with the potential exception
of just a few of them (see Remark A.7.2). Such “exceptional” F-points, however, necessarily
have at least one strong connection to a “regular” F-point, and will be interpolated indirectly
as described next. �

Standard interpolation
The standard coarsening strategy ensures that there is a strong F–C connectivity. However, it
does not strictly enforce what actually is required by the two-level theory, namely, that each
F-variable should have a fixed percentage of its total connectivity reflected in C (defined
by τ , see Section A.4.2). Although this is usually not a problem in practice (since the
coarsening algorithm by itself usually ensures sufficient F–C connectivity), we can easily
make up for this. We modify the previous direct interpolation so that, for each i ∈ F , its
strong F-connections are also (indirectly) included in interpolation.

That is, instead of immediately approximating the ith equation (left equation in (A.7.6)),
we first (approximately) eliminate all ej (j ∈ Fsi ) by means of the corresponding j th
equations. More specifically, for each j ∈ Fsi , we replace

ej −→ −
∑
k∈Nj

ajkek/ajj (A.7.8)

resulting in a new equation for ei ,

âiiei +
∑
j∈N̂i

âij ej = 0 with N̂i = {j �= i: âij �= 0}. (A.7.9)

By defining Pi as the union of Csi and all Csj (j ∈ Fsi ), we now define interpolation exactly

as in (A.7.6) and (A.7.7) with all as replaced by âs and Ni replaced by N̂i .
This modification usually enhances the quality of interpolation substantially (see

Example A.7.1 below), the main reason being that the type of approximation (A.7.6),
if applied to the “extended” equation (A.7.9), introduces less error. Moreover, it further
contributes to the objective of having F-variables largely “surrounded” by interpolatory
variables. This modified interpolation will be referred to as standard interpolation below.

Example A.7.1 Consider the same case as in Example A.6.1 except that the coarse grid
is assumed to be created by h → 3h coarsening, see Fig. A.15. (This is just for ease of
demonstration; the standard coarsening process described in Section A.7.1 would not really
create this coarsening.)

Direct interpolation in this situation would obviously give piecewise constant inter-
polation (dashed line in the figure) which, as we know from Example A.6.1, is not quite
satisfactory. In fact, the resulting Galerkin operator is off by a factor of 3 compared to
the natural one. (Compare Example A.6.1 where the corresponding factor was 2.) Standard
interpolation, on the other hand, can easily be seen to correspond to linear interpolation. For
instance, the interpolated value for e0 is computed from the equation −e−1 + 2e0 − e1 = 0



AN INTRODUCTION TO ALGEBRAIC MULTIGRID 481
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Figure A.15. Direct versus standard interpolation.

by substituting

e1 −→ (e0 + e2)/2,

giving e0 = 2
3e−1 + 1

3e2. �

Of course, direct and standard interpolation processes may also be mixed in a straight-
forward way. That is, standard interpolation is used only for variables i for which, based on
some reasonable criterion, the (direct) F–C connectivity appears to be too low. However,
for simplicity, such mixed interpolation will not be considered here. Moreover, for critical
F-variables i, one might be tempted to eliminate all ej (j ∈ Fi) (rather than just the strong
F-neighbors) and to use the union of Ci and all Cj (j ∈ Fi) as Pi . However, taking com-
putational work into account, this extended interpolation is rarely ever advantageous and
will not be discussed further.

Remark A.7.8 Apart from other minor differences, interpolation in AMG1R5 was a
compromise between the direct interpolation and the standard interpolation described above.
There, an attempt was made to replace ej (j ∈ Fsi ) by averages involving only variables
in Csi . That is, the goal was to improve the direct interpolation without increasing the set
of interpolatory variables Pi . If it turned out that this was not possible, based on certain
criteria, new C-variables were added to the splitting, increasing Csi a posteriori. Although
this approach works quite well in many situations, it has two drawbacks.

First, an a posteriori introduction of additional C-variables may turn a fairly regular
C/F-splitting (produced by the coarsening algorithm) into a quite disturbed one which,
during subsequent coarsening steps, may lead to more irregular and more complex Galerkin
operators. In fact, in complex 3D situations, many additional C-variables are typically
introduced a posteriori often causing unacceptably high complexities (see Section A.8 for
examples). Second, the above-mentioned replacement of the ej s by averaged values was
motivated by geometric arguments. It works very well in case of matrices which are close
to M-matrices and are related to regular geometric situations. However, it may substantially
deteriorate in other cases.
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In practice, the standard interpolation as described above—extending the interpolation
pattern on a fixed set C followed by a truncation (see Section A.7.2.4)—has turned out to
be more robust and often considerably more efficient. �

A.7.2.2 Multipass interpolation
The following interpolation procedure applies when the C/F-splitting has been constructed
by means of aggressive coarsening. It proceeds in several passes, using direct interpolation
whenever possible and, for the remaining variables, exploiting interpolation formulas at
neighboring F-variables. (This corresponds to the approach described in Section A.4.3.)
The individual passes are as follows:

(1) Use direct interpolation (Section A.7.2.1) to derive formulas for all i ∈ F for which
Csi �= ∅ and define the set F� to contain all these variables. If F� = F stop, otherwise
proceed.

(2) For all i ∈ F \F� for which Si ∩F� �= ∅ do the following: take the ith equation (left
equation in (A.7.6)) and, for all j ∈ Si ∩ F�, replace

ej −→
∑
k∈Pj

wjkek

leading to a new equation (A.7.9) for ei . Defining the set of interpolatory variables Pi
as the union of allPj for j ∈ Si∩F�, an interpolation formula is then computed exactly
as in the case of standard interpolation. If all such variables i have been processed,
update F� to also include all variables which have obtained an interpolation formula
during this pass.

(3) If F� = F stop. Otherwise go back to Step 2.

Using the aggressive (A1 or A2) coarsening strategy described in Remark A.7.5, this
process can be shown to terminate after at most four passes. Note that the update of F�

is done in a Jacobi (not Gauss–Seidel) fashion. This is done to preserve the locality of
interpolation. We will refer to this interpolation as multipass interpolation.

C 1 C 1 C

1 2 1 2 1

C 1 C 1 C

1 2 1 2 1

C 1 C 1 C

C 1 2 1 C

1 2 1 2 1

2 1 C 1 2

1 2 1 2 1

C 1 2 1 C

1

2

1

2

1

1

2

1

2

1

1 2 1 2 12 2

1 2 1 2 12 2

Figure A.16. Multipass interpolation for isotropic five-point problems. Left, A2-coarsening; right,
A1-coarsening.
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Example A.7.2 Figure A.16 illustrates multipass interpolation in case of A2- and A1-
coarsening, applied to the five-point Poisson stencil (cf. Fig. A.13). F-points marked by
“1” and “2” are those which are interpolated in the first and second pass, respectively. In
case of A2-coarsening (left), the resulting interpolation can easily be seen to be linear. For
A1-coarsening (right), we obtain constant interpolation at all points marked by “1”, and
linear interpolation at the remaining points (see also Example A.7.3 below). �

A.7.2.3 Jacobi interpolation
Given any of the previous interpolation formulas, we can optionally improve it by a posteriori
applying Jacobi relaxation as formally described in Section A.5.1.3. More explicitly, one
step of this Jacobi relaxation, proceeding from iteration μ− 1 to iteration μ (where μ = 0
corresponds to the given interpolation), proceeds as follows.

For all variables i ∈ F in turn, take the ith equation (left equation in (A.7.6)) and, for
all j ∈ Fi , replace

ej −→
∑
k∈Pj

w
(μ−1)
jk ek (A.7.10)

which leads to a new equation (A.7.9) for ei . Defining the set of interpolatory variables Pi
as the union of Ci and all Pj for j ∈ Fi , the μth interpolation formula is then obtained
exactly as in the case of standard interpolation.

Clearly, only one or (at most) two steps are practical. Depending on the situation,
relaxation of interpolation may considerably enhance convergence. Often, however, the
additional effort for computing this interpolation does not pay if total computational cost is
taken into account. Clearly, one may save a substantial amount of work by only applying
relaxation of interpolation locally wherever it appears to be reasonable. This is not done in
the following.

The interpolation as described above will be referred to as fully relaxed Jacobi interpo-
lation. In most cases, it will be sufficient to use the replacement (A.7.10) only for j ∈ Fsi ,
that is, only for the strongly connected F-variables. Accordingly, the set Pi is then selected
as the union ofCsi and all Pj for j ∈ Fsi . This will be referred to as partially relaxed Jacobi
interpolation.

Example A.7.3 Consider the same case as in Example A.7.2. We saw there that multipass
interpolation, applied to the A1-coarsened grid (right-hand side of Fig. A.16), gives constant
interpolation at those points marked by “1”, and linear interpolation at the remaining points.
One easily sees that, applying Jacobi relaxation just to the points marked by “1” yields linear
interpolation everywhere. �

A.7.2.4 Truncation of interpolation
For both standard as well as Jacobi interpolation, the sets Pi of interpolatory variables
may become quite large. This is, in particular, true for the Jacobi interpolation since each
relaxation step introduces, roughly, a “new layer” of additional C-variables to be used for
interpolation. Consequently, even if only one Jacobi step is applied at each AMG level, the
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resulting Galerkin operators will substantially increase towards coarser levels. This process,
without reasonable truncation, will generally be much too costly.

However, interpolation weights corresponding to variables “far away” from variable
i will usually be much smaller than the largest ones. Before computing the coarser-level
Galerkin operator, we therefore always truncate the full interpolation operator by ignoring
all interpolatory connections which are smaller (in absolute value) than the largest one by
a factor of εtr and rescale the remaining weights so that the total sum remains unchanged.
In practice, a value of εtr = 0.2 is usually taken.

Remark A.7.9 If interpolation contains substantial positive and negative weights, one
should truncate and rescale positive and negative weights separately (analogously to the
definition of interpolation (A.7.6)). Otherwise, convergence may substantially degrade. �

Remark A.7.10 One might be tempted to truncate the Galerkin operator rather than the
interpolation operator. This would formally give more control on the growth of the coarse-
level operators. However, we have already pointed out in Remark A.2.4, that this may cause
serious convergence problems if not applied with great care. �

A.7.3 Algebraic Multigrid as Preconditioner

In order to increase the robustness of standard multigrid approaches, it has become very
popular in recent years, to use multigrid not as a stand-alone solver but rather to combine it
with acceleration methods such as conjugate gradient, BI-CGSTAB [397] or GMRES [335,
337]. In the simplest case, complete multigrid cycles are merely used as preconditioners
[211, 292]; in more sophisticated approaches, acceleration is even used on the individual
grids of the hierarchy [82, 294]. This development was driven by the observation that, it is
often not only simpler but also more efficient to use accelerated multigrid approaches rather
than to try to optimise the interplay between the various multigrid components in order to
improve the convergence of stand-alone multigrid cycles.

This has turned out to be similar for AMG which was originally designed to be used
stand-alone. Practical experience has clearly shown that AMG is also a very good pre-
conditioner, much better than standard (one-level) ILU-type preconditioners, for example.
Heuristically, the major reason is due to the fact that AMG, in contrast to any one-level
preconditioner, operates efficiently on all error components, short-range as well as long-
range. This has the implication that, instead of using AMG stand-alone, it is generally more
efficient to put less effort into the (expensive) setup phase and use AMG as preconditioner,
for example, by using aggressive coarsening strategies (cf. the applications in Section A.8).

In this context, we also point out that, although AMG tries to capture all relevant influ-
ences by proper coarsening and interpolation, its interpolation will hardly ever be optimal.
It may well happen that error reduction is significantly less efficient for some very specific
error components. This may cause a few eigenvalues of the AMG iteration matrix to be
considerably closer to one than all the rest. If this happens, AMG’s convergence factor
is limited by the slow convergence of just a few exceptional error components while the
majority of the error components are reduced very quickly. Acceleration by, for instance,
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conjugate gradient typically eliminates these particular frequencies very efficiently. The
alternative, namely, to try to prevent such situations by putting more effort into the con-
struction of interpolation, will generally be much more expensive. And even then, there is
no final guarantee that such situations can be avoided. (We note that this even happens with
“robust” geometric multigrid methods, see, for instance, Remark A.8.10.)

A.8 APPLICATIONS

In this section we will demonstrate the efficiency and robustness of AMG in solving second-
order elliptic differential equations. All results presented have been obtained by the code
RAMG05 described in the previous section. Although the strength of RAMG05 is its direct
applicability to geometrically complex problems, we will often consider selected model
problems on simple geometries in quite some detail. Such model problems do not give the
full picture, but they permit easy investigation of AMG’s asymptotic behavior as well as
its dependence on various specific aspects such as anisotropies, discontinuities, singular
perturbations and the like. Practical experience has shown that AMG’s performance in
geometrically complex situations, in 2D as well as 3D, is very comparable to that in related
model situations. We will present some typical examples to demonstrate this.

We have already pointed out that it is not sufficient to merely look at AMG’s conver-
gence behavior in order to judge its performance. Useful comparisons have to take both
computing times and memory requirements into account. Having this in mind, we will com-
pare the influence of different algorithmical components (such as type of interpolation and
speed of coarsening) and solution approaches (stand-alone versus accelerated cycles) on
the performance. Moreover, in order to quantify the overall efficiency, we will make some
comparisons with well-known standard (one-level) solution methods such as ILU precondi-
tioned conjugate gradient (“CG”). However, we want to point out that the purpose of these
comparisons is merely to give a first indication, they do not give a final picture.

First, many variants and improvements of ILU preconditioned CG methods are available,
here we focus on simple, well-known strategies. In particular, our comparisons are not
meant to judge the performance of such classical methods in general. Secondly, RAMG05
is still under development and is continuously being enhanced and generalized. In particular,
RAMG05 is far from being optimized. In fact, this code has not been designed for optimum
efficiency but rather for flexibility in testing and extending the method. In particular, the
setup cost may be substantially reduced. Depending on the concrete approach, 50% savings
or even more seem realistic. Moreover, our main interest here is to demonstrate typical trends
in the influence of different algorithmical components. For simplicity, these components
are implemented as “fixed” strategies, that is, they are not locally adjusted to particular
requirements of the given problem. For example, if Jacobi relaxation of interpolation is
performed, it is always applied “globally”. In many situations, however, a local application,
controlled by some reasonable measure (e.g. based on the total strength of C-connectivity
found at an F-point), may give similar convergence improvements at much lower cost and
memory. Similarly, if aggressive coarsening is performed, it is done everywhere. Thus, there
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is much room for quite substantial optimizations. Nevertheless, the results indicate that the
code is very efficient even as it stands.

In the sequel, for brevity, we will refer to “AMG” rather than to “RAMG05”. However,
one should keep in mind that there is rapid, ongoing development of new AMG approaches
and variants, and that there is no unique and best AMG approach yet.

A.8.1 Default Settings and Notation

Various parameters have to be set to define AMG’s setup and cycle (see Section A.7). Unless
explicitly stated otherwise, we use the following default settings and procedures.

• εstr = 0.25 to define strong connectivity (Section A.7.1.1).
• εtr = 0.2 to define truncation of interpolation (Section A.7.2.4).
• Coarsening is terminated if the number of variables on the coarsest level drops below

40. The coarsest-level equations are solved by direct Gauss elimination.
• Smoothing is done by Gauss–Seidel relaxation, one pre- and one postsmoothing step

being the default. Unless explicitly stated otherwise, the order of relaxation is “CF”,
that is, first all C-variables are relaxed and then all F-variables. (This corresponds to
red–black relaxation in geometric multigrid.)

Other degrees of freedom in defining the concrete strategy will be varied in the experi-
ments below and some notation is required to distinguish these cases.

• Type of cycle and coarsening The abbreviations VS and VA are used to distinguish
V-cycles based on standard and aggressive coarsening, respectively (Section A.7.1).
Aggressive coarsening is performed only in creating the second AMG level, and only
the types A1 and A2 are used (see Section A.7.1.2). Correspondingly, we distinguish
VA1 and VA2 cycles. For F-cycles, the “V” is replaced by “F”.

• Type of smoothing As mentioned above, by default we use one Gauss–Seidel CF-
relaxation step for pre- and postsmoothing. If this is not the case, we append the type of
smoothing to the abbreviation of the cycle. For instance, VS-FF stands for a V-cycle using
standard coarsening but employing two F-smoothing steps rather than one CF-step for
pre- and postsmoothing (cf. Section A.5.1.2). SGS stands for symmetric Gauss–Seidel
relaxation.

• Type of interpolation The type of interpolation used is appended in parentheses: the
letters “D” and “S” stand for direct and standard interpolation, respectively (see Sec-
tion A.7.2.1). Our standard AMG cycle is VS(S). Note that, if aggressive coarsening
is employed, interpolation to the finest level is always multipass interpolation (Sec-
tion A.7.2.2). For example, VA2(S) means that standard interpolation is performed on
all but the finest level.

If, in addition, Jacobi relaxation is applied to improve interpolation, the letters “F”
and “P” refer to fully and partially relaxed interpolation, respectively (Section A.7.2.3).
For instance, VS(S-2F) stands for a V-cycle using standard coarsening and standard
interpolation improved by two full Jacobi relaxations. As mentioned above, truncation
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with εtr = 0.2 is the default. Otherwise, the truncation parameter is also contained
within the parentheses, for example, VS(S-1F,0.02).

• Acceleration If a cycle is used as preconditioner rather than stand-alone, the type
of accelerator is appended to the corresponding cycle abbreviation. For instance,
VA1(D)/CG means that the VA1(D) cycle is used as preconditioner for CG. Note that, if
a cycle is used as preconditioner for CG, pre- and postsmoothing will always be done in a
symmetric way. For instance, if presmoothing is done by CF-relaxation, postsmoothing
will be CF-relaxation with the order of variables reversed. For nonsymmetric problems,
we will usually use AMG as preconditioner for BI-CGSTAB.

The following sections contain results on asymptotic convergence, memory requirement
as well as computational work. The asymptotic convergence factor, ρ, is always computed
numerically by applying a von Mises vector iteration to the homogeneous problem, usually
starting with a random first approximation. Results on memory requirement will be given
in terms of the grid and operator complexity, cG and cA,

cG =
∑
�

n�/n1 and cA =
∑
�

m�/m1, (A.8.1)

where n� and m� denote the number of variables and nonzero matrix entries, respectively,
on level �. Note that � = 1 corresponds to the finest level. Although the true memory
requirement of AMG is not fully reflected by these quantities (some extra work space still
needs to be allocated), they are closely related.

Unless explicitly stated otherwise, all timings given have been obtained on a Pen-
tium II/300 PC using the Lahey F90 Compiler (version 4.0). We point out that timings for a
particular machine always have to be judged with care. Comparisons typically change from
machine to machine and even from compiler to compiler. For instance, the Pentium II is
relatively fast in integer (compared to floating point) computations. This is advantageous
for substantial parts of the AMG algorithm which essentially require integer computations
(in particular, during the setup phase). Consequently, comparisons of the setup and solution
costs may give a different picture on machines for which floating point computations are
more efficient than integer computations (such as on IBM RS6000 workstations).

A.8.2 Poisson-like Problems

In the following, we investigate the performance of AMG in some detail if applied to the
diffusion equation

−((1 + sin(x + y))ux)x − (ex+yuy)y = f (x, y), (A.8.2)

defined on the unit square with f (x, y) ≡ 1 and homogeneous Dirichlet boundary condi-
tions. Discretization is on a uniform grid of mesh size h = 1/N using standard five-point
stencils. Although this example is very simple, the resulting AMG behavior is typical for
general “Poisson-like” problems and the relevant conclusions qualitatively carry over also
to unstructured meshes (cf. the examples in Section A.8.3). We summarize our practical
experience with AMG in the following remark.
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Remark A.8.1 Compared to problems on very regular meshes, a certain decrease of AMG
convergence has to be expected in case of irregular meshes. This is essentially due to the
fact that, on regular meshes, standard AMG interpolation tends to be close to geometrical
interpolation (which is very good for Poisson-like problems as considered here). This cannot
be expected to be satisfied to the same extent on irregular meshes. Similarly, convergence
has to be expected to be somewhat slower in 3D than in 2D situations. In 3D, we have the
additional effect that smoothing by Gauss–Seidel relaxation is (slightly) less efficient than
in 2D problems (just like in geometric multigrid). By how much convergence will finally
be influenced by the irregularity of the grid and its dimension, depends somewhat on the
concrete problem. By experience, however, the effects mentioned are very limited and the
results presented in the following exhibit the typical AMG behavior observed in many other
cases. �

A.8.2.1 Coarsening and complexity
Problem (A.8.2) has a slight anisotropy towards the upper right corner. Due to the setting
εstr = 0.25, however, AMG still treats all connections contained in the corresponding
matrix as strong, at least on the finest level. Consequently, the first standard coarsening step
of AMG corresponds to geometrical red–black coarsening. This is shown in Fig. A.17(a).
Subsequent coarsening then becomes faster (here, grid size ratio 1 : 4) simply because
the Galerkin stencils become larger on coarser levels. For example, the Galerkin operator
on level 2 corresponds to a nine-point stencil. There is a slight disturbance of the regular
coarsening in the upper right corner where the anisotropy of the problem is largest. However,
the coarsening pattern is still essentially the same.

This type of coarsening is typical forfive-point stencils with all connections being strong,
yielding grid complexities of cG ≈ 1.7. If interpolation were to be defined geometrically
(i.e. linear interpolation), the Galerkin operators on all coarser levels would correspond

(b)(a)

Figure A.17. The finest and three consecutive AMG levels created by: (a) standard coarsening;
(b) aggressive A2-coarsening (applied only in the first coarsening step).
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to nine-point stencils and the “ideal” operator complexity would be cA ≈ 2.2. For AMG,
however, the situation is more involved, since the final values of cG and cA are influenced by
the AMG interpolation operator which tends to cover more points than geometric interpola-
tion, especially towards coarser levels. As a consequence, the AMG Galerkin operators will
tend to become somewhat larger towards coarser levels. This effect, however, is normally
limited and is more than compensated for by the decrease of grid points. In any case, one
has to expect the final operator complexity of AMG to be larger than the ideal complexity
by a certain factor. In the above example, we obtain cA ≈ 2.38 if standard coarsening and
interpolation are used (see Table A.1).

Remark A.8.2 Memory requirement is somewhat higher in corresponding 3D situations.
For instance, if applied to seven-point stencils with all connections being strong, standard
AMG coarsening again yields geometrical (3D) red–black coarsening in creating the first
coarser level, with the Galerkin operator corresponding to a nineteen-point stencil. Subse-
quent coarsening, as before, will become faster. However, the “ideal” operator complexity
(obtained if geometrical interpolation was used) is now cA ≈ 2.8. Consequently, the true
AMG complexity, generally, has to be expected to be larger than 3.0. �

If memory requirement is an issue, aggressive coarsening may be used instead of stan-
dard coarsening. As mentioned earlier, it is usually sufficient to apply this type of coarsening
in the first coarsening step and maintain standard coarsening for all subsequent levels. Fig-
ure A.17(b) shows the resulting first four levels if aggressive A2-coarsening is performed to
create the first coarser level. The first AMG coarsening step now corresponds to geometrical
h → 2h coarsening rather than red–black coarsening. Except for the upper right area of
the domain, this also holds for the subsequent (standard) coarsening steps. Near the upper
right corner, the situation is slightly different. Obviously, the Galerkin operator on level 2 is
more anisotropic than it was on the finest level. AMG detects this and creates the third level
by linewise coarsening in the y-direction. Since linewise coarsening essentially removes
the anisotropy, the next coarsening step is again in both directions.

Ignoring the special coarsening near the upper right corner, the grid complexity now
is only cG ≈ 1.33 and the ideal operator complexity becomes cA ≈ 1.6 (assuming linear
interpolation, all Galerkin operators correspond to nine-point stencils). As before, the true
AMG operator complexity will be somewhat larger; in the above example we obtain cA ≈
1.77 (see Table A.1) which is very reasonable. In corresponding 3D situations, the gain
in terms of memory reduction by means of aggressive coarsening is even higher. Memory
usage can further be reduced either by also using A2-coarsening on the coarser levels (which
usually does not pay, see above) or by using A1-coarsening to create the first coarser level
(cf. the examples in Section A.8.3).

A.8.2.2 Performance and comparisons
Figure A.18(a) shows asymptotic convergence factors, ρ, for several AMG strategies and
increasingN . We first observe that our standard cycle, the VS(S)-cycle, exhibits very stable
convergence behavior with ρ < 0.15 for increasing N . Investing more effort into the
interpolation, by applying one Jacobi F-relaxation, improves convergence only marginally,
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Table A.1. Complexities and computing times (N = 512).

Times (sec)/Pentium II, 300 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

ILU(0) 0.87 1.07 628.6 (587)
AMG1R5 2.42 1.71 6.97 2.10 25.9 (9)
VS(S) 2.38 1.67 11.8 2.32 37.4 (11) 2.93 32.6 (7)
FS(S) ” ” ” 3.87 31.2 (5) 4.46 29.7 (4)
VS(D) 2.20 1.67 8.51 2.22 48.5 (18) 2.83 39.7 (11)
VA2(S) 1.77 1.35 10.3 1.78 58.2 (27) 2.38 41.3 (13)
VA1(S) 1.50 1.19 8.07 1.47 65.4 (39) 2.07 45.3 (18)
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Figure A.18. (a) Convergence factors for cycles used stand-alone; (b) average reduction factors
for accelerated cycles.

indicating that the standard interpolation is fairly good in this case (cf. VS(S-1F,0.02)-cycle).
In contrast to this, investing more work into the cycle itself, by applying an F- instead of a
V-cycle, causes extremely fast convergence (cf. Remark A.8.4).

The influence of aggressive coarsening is demonstrated by the low-memory VA2(S)- and
VA1(S)-cycles. As expected, convergence becomes considerably slower but still approaches
an upper limit for large N . As mentioned earlier, aggressive coarsening not only causes
the smoothing to be less effective (we still use only one CF-relaxation step for pre- and
postsmoothing) but also interpolation to be less accurate (multipass interpolation from level
2 to level 1). Clearly, convergence can be improved, for instance, by using twice as many
smoothing steps and using Jacobi relaxation to improve interpolation to the finest level.
However, this would substantially increase the cost of the cycle and, more importantly, tend
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to reduce the advantage of low operator complexity which was the major purpose for using
aggressive coarsening to begin with.

A simpler and very effective way of improving the convergence of any cycle, in particular
those using aggressive coarsening, is to use them as preconditioners rather than stand-
alone. This is demonstrated in Fig. A.18(b) which shows the AMG convergence if used
as preconditioner for CG. For the same cycles as before, the average residual reduction
factors are shown, obtained over (at most) 50 iterations in solving the homogeneous system
starting with a random first approximation. At relatively little extra cost, convergence is
substantially enhanced.

Remark A.8.3 Figure A.18 also depicts the convergence of the VS(D)-cycle (where
standard interpolation is replaced by the simpler direct interpolation). Although this cycle
also gives good convergence in most cases, its convergence behavior is often not as stable
as that of the VS(S)-cycle. This is why the VS(S)-cycle is our standard cycle. �

Remark A.8.4 The reason for using F-cycles rather than V-cycles is to solve the coarse-
level correction equations more accurately and to reduce the accumulation of errors from
the individual levels of the AMG hierarchy. Clearly, in general, F-cycle convergence cannot
be better than the corresponding two-level convergence. The drastic improvement in con-
vergence shown in Fig. A.18 (cf. VS(S)- and FS(S)-cycles) is due to a particular situation
which cannot be expected in general. Since standard coarsening, applied to a five-point
stencil with all connections being strong, corresponds to red–black coarsening, there are no
F–F connections on the finest level (i.e., AFF is a diagonal matrix). Therefore, according
to Section A.2.3, the two-level method involving the first two levels corresponds to a direct
solver. Consequently, any increase of accuracy in solving the correction equations on level
2, directly improves the AMG convergence by a corresponding amount. Since, compared
to the V-cycle, the F-cycle solves the second-level correction equation approximately twice
as accurately, this immediately causes the overall convergence to be twice as fast. (Note
that we have a similar effect for isotropic seven-point stencils in 3D.) �

Figure A.19(a) shows the convergence histories of the VS-, VA2- and VA1-cycles,
with and without acceleration by CG, for solving the given problem (N = 512 and using
u ≡ 1 as first approximation)3. The figure also shows the convergence history of ILU(0)
preconditioned CG for the first 30 iterations.

However, the computational time, and how it increases with increasing N , is more
important than convergence histories. Figure A.19(b) shows computational times to solve
(A.8.2) for varying mesh sizes up to a residual reduction by ten orders of magnitude. Times
are given in milliseconds per finest grid point and include the setup cost. For all AMG
variants discussed here, the total cost approaches an upper limit for increasing mesh sizes
which demonstrates their computational optimality for solving problems of the kind at hand.
The figure also depicts the corresponding increase in cost for ILU(0) preconditioned CG.

3For ease of reading, we always use thin lines for stand-alone AMG cycles and corresponding bold lines for
their accelerated analogs.
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Figure A.19. (a) Convergence histories for N = 512; (b) total time in millisec per finest grid point
to reduce the residual by ten orders of magnitude.

Since the convergence speed of CG/ILU(0) depends on N , the advantage of AMG over
CG/ILU(0) substantially increases with increasing problem size. For N = 1024, it can be
seen that the accelerated standard cycle, VS(S)/CG, is about 37 times faster than CG/ILU(0).

Remark A.8.5 The computational work of AMG is essentially determined by the operator
complexity cA and the convergence factor ρ. Only if both quantities are bounded as a
function of h, do we have an asymptotically optimal performance. We note that cA is
indeed virtually independent of N for all AMG variants shown. The slight increase of the
total cost for medium sized meshes, seen in Fig. A.19(b), is caused by the small increase
of the convergence factors in this area (cf. Fig. A.18). �

Detailed measurements are given in Table A.1 for N = 512 including the complexity
values, cG and cA. In addition to the computational times for the setup phase and single
cycles, total execution times (including setup) are given for the reduction of the residual
by a factor of ε0 = 10−10 (the values in parentheses indicate the number of iterations
required). The table shows that the standard cycle, VS(S)/CG, is nearly 20 times faster
than standard ILU(0) preconditioned CG. The lowest memory cycle, VA1(S), reduces the
memory overhead for storing the coarse-level matrices by approximately 64%. If used as a
preconditioner, it is still approximately 14 times faster than CG/ILU(0).

Table A.1 also shows complexity values and timings for the original AMG solver,
AMG1R5, which should be compared with the VS(S)-cycle. Obviously, for the current
problem, AMG1R5 converges somewhat faster (nine iterations instead of 11) and the total
execution time is lower4. The faster convergence is due to the particularly simple geometrical

4This lower computational time is, to some extent, due to the fact that AMG1R5 is a FORTRAN77 code using
only static arrays while RAMG05 uses dynamic FORTRAN90 arrays (which decreases the performance in case
of the Lahey compiler used here).
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situation which benefits the interpolation used in AMG1R5 (cf. Remark A.7.8). We will
see later that this advantage gets lost in more complex geometric situations or for more
complicated problems.

Remark A.8.6 The cost of “better” cycles such as F-cycles (and even more for W-cycles)
is usually substantially higher than that of the simpler V-cycles, at least in connection with
standard coarsening. While, in V-cycles, each level is visited just once, in F-cycles, level
n is visited n times. This increase in cost is, generally, more critical in AMG than it is
for comparable geometric multigrid cycles. This is mainly due to the more complex AMG
coarse-level operators. Thus, although the convergence of F-cycles may be faster than that
of their V-cycle analog, the total computational time is usually higher. That, in Table A.1,
the total times for the FS(S)-cycle are (slightly) lower than those for the VS(S)-cycle is a
consequence of the extremely fast F-cycle convergence which, in turn, is a consequence of
the particular situation mentioned in Remark A.8.4. �

A.8.2.3 F-smoothing and Jacobi interpolation
According to the theoretical results of Section A.5.1.4, it is possible to employ mere F-
smoothing instead of full smoothing except that standard interpolation might then not be
sufficient any more. Indeed, in general, additional work needs to be invested in improving
interpolation by Jacobi F-relaxation in order to cope with all those error components which
cannot efficiently be reduced by mere F-smoothing. That just one Jacobi step is enough is
demonstrated in Fig. A.20 which compares the convergence factors of the standard cycle,
VS(S), with that of various cycles using mere F-smoothing5.
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Figure A.20. Convergence factors of cycles using F-smoothing.

5We have forced strong diagonal dominance (A.5.3) here with δ = 0.75.



494 MULTIGRID

Table A.2. Complexities and computing times for cycles using F-smoothing
(N = 512).

Complexities Times (sec)/Pentium II, 300 MHz

Method cA cG Setup Cycle ε0 = 10−10 ρ

VS(S) 2.38 1.67 11.8 2.32 37.4 (11) 0.151
VS-FF(S) 2.45 1.68 13.1 2.65 113.6 (38) 0.656
VS-FF(S-1F,0.2) 2.82 1.67 22.0 2.91 65.6 (15) 0.354
VS-FF(S-1F,0.1) 2.95 1.67 24.7 3.02 60.9 (12) 0.253
VS-FF(S-1F,0.02) 3.24 1.67 39.6 3.20 71.9 (10) 0.177

Obviously, the VS-FF(S) cycle (i.e., the VS(S)-cycle with each CF-relaxation step
replaced by two F-relaxation steps), is substantially inferior to the VS(S)-cycle and h-
dependent. However, one Jacobi F-relaxation step, applied to the interpolation, enhances
convergence substantially. If truncation with εtr ≤ 0.1 is used, convergence approaches
that of the VS(S)-cycle. (Truncation with the default value, εtr = 0.2, is not quite suffi-
cient.) Unfortunately, this is at the expense of an increase of the total solution cost (mainly
because of a strong increase of the setup cost). In addition, operator complexities substan-
tially increase. Detailed results are shown in Table A.2 for the case N = 512. Although
we have already mentioned ways of improvement, the trend indicated is typical: skipping
relaxation of the C-equations may unnecessarily increase cost and memory requirement
(cf. Section A.5.1.1).

A.8.3 Computational Fluid Dynamics

Industrial CFD applications involve very complicated flow problems. For instance, in the
car industry, flows through heating and cooling systems, complete vehicle underhood flows
or flows within passenger compartments are computed on a regular basis. Large complex
meshes, which are normally unstructured, are used to model such situations. Requirements
on the achievable accuracy are ever increasing, leading to finer and finer meshes. Locally
refined grid patches are introduced to increase the accuracy with as few additional mesh
points as possible. Figures A.21 and A.22 show two exemplary meshes used to model the
flow through a down-shot coal furnace and the cooling jacket of a four-cylinder engine,
respectively6.

The software industry is continuously improving the generality and efficiency of its
codes. The incorporation of multigrid methods would be one way to improve performance.
Geometrically oriented approaches, however, can hardly cope with the complex geometries
under consideration. Generally, there is no natural grid hierarchy which could easily be
exploited. But even if there was such a hierarchy, the coarsest level would still be required
to be fine enough to resolve the geometry to some extent. For industrially relevant configu-
rations, such coarsest grids would still be much too fine for an efficient multilevel solution.

6All examples have been provided by Computational Dynamics Ltd., London, UK.
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Figure A.21. View into the interior of the bottom part of a coal furnace model (325 000 mesh
cells; for simplicity, only the mesh surface is visualized).

Figure A.22. Cooling jacket of a four-cylinder engine (100 000 cells).

AMG is of particular interest here since it can be used as a “plug-in solver” for existing
codes.

In this section, we present some examples of AMGs performance if applied to industrial
CFD applications based on segregated solution methods.
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A.8.3.1 Segregated solution methods
The basic equations to be solved are the Navier–Stokes equations

ut − 1

Re
�u+ u · ∇u+ ∇p = f (A.8.3)

∇ · u = 0 (A.8.4)

where (A.8.3) are the momentum equations and (A.8.4) is the continuity equation.u denotes
the velocity vector, p the pressure and f the body force. Re is the Reynolds number.

Segregated solution methods (or pressure-correction type methods) to tackle the solution
of the Navier–Stokes equations belong to the most established approaches used in general-
purpose commercial CFD codes. Their major advantage is that, at each time step, the
approximate solution of just a series of scalar equations is required rather than the solution
of the coupled Navier–Stokes system.

Assuming an implicit time-stepping scheme (here backward Euler for simplicity) and
a stable discretization in space (indicated by the subscript h), equations of the following
form have to be solved at the nth time step:

1

δt
(u(n)h − u(n−1)

h )− 1

Re
�hu

(n)
h + u(n−1)

h · ∇hu(n)h + ∇hp(n)h = f
(n)
h (A.8.5)

∇h · u(n)h = 0. (A.8.6)

Here, the convective part has been linearized. (If required, the solution of the nonlinear
equations can be computed iteratively in a straightforward way.) For ease of reading, we
omit the subscript h in the following.

There are several variants of pressure-correction type approaches all of which proceed
in two steps: first, an intermediate velocity approximation, u�, is computed by replacing
p(n) in (A.8.5) by values from the previous time step:

1

δt
(u� − u(n−1))− 1

Re
�u� + u(n−1) · ∇u� + ∇p(n−1) = f (n). (A.8.7)

Second, corrections

u(n) = u� + u′ and p(n) = p(n−1) + p′ (A.8.8)

are computed such that u(n) is an improved solution of (A.8.5) satisfying the continuity
equation (A.8.6). To strictly satisfy (A.8.5), one would have to solve

1

δt
u′ − 1

Re
�u′ + u(n−1) · ∇u′ + ∇p′ = 0. (A.8.9)

However, since the correction u′ is assumed to be relatively small and change little in
space, the u′-dependent part in (A.8.9) is approximated by A(u(n−1))u′ with some simple
(invertible) matrixA, depending on old velocity values. UsuallyA is assumed to be diagonal,
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in the simplest case justA = (1/δt)I . Well-known methods such as SIMPLE and SIMPLEC
are based on such approximations. Consequently, the velocity correction u′ is computed via

u′ = −[A(u(n−1))]−1∇p′ (A.8.10)

where p′ is the solution of the so-called pressure-correction equation

∇ · [A(u(n−1))]−1∇p′ = ∇ · u�. (A.8.11)

The latter follows immediately from (A.8.10) because of the requirement that the velocity,
after its correction (A.8.8), has to satisfy the continuity equation (A.8.6). Typically, the
pressure-correction equation has to be solved several times at each time step.

In practice, segregated solution methods are used to solve time-dependent as well as
steady-state problems with well-known approaches being PISO and SIMPLER, respectively
(for more information on segregated solution methods, see [107, 216, 281, 299–301]).

Summarizing, two different types of scalar equations have to be solved within each step:
a set of (decoupled) convection–diffusion equations (A.8.7) and the pressure-correction
equation (A.8.11), a Poisson-like equation with coefficients which, in general, depend on
known velocity values. AMG can be used efficiently to solve both types of scalar equa-
tion. Regarding Poisson-like equations, we have demonstrated this in Section A.8.2 by
means of a simple model problem. Convection–diffusion problems will be considered in
Section A.8.5.2. However, the pressure-correction equation is generally by far the most
expensive to solve. We therefore focus on this equation. For a further discussion of segre-
gated solution methods, in particular in the context of AMG, see also [166].

Remark A.8.7 The fact that the pressure-correction equation is just one component within
an outer iteration has two implications. First, there is no need to solve it too accurately,
in particular not in steady-state computations. We will therefore consider the efficiency
of AMG not only for obtaining high- but also low-accuracy approximations. Secondly,
potential performance gains through the use of an efficient solver solely for solving the
pressure-correction equations is limited by the cost of the remaining components. But,
since the solution of the pressure-correction equations typically makes up the largest part
of the overall computation, potential benefits may be substantial. �

RemarkA.8.8 Currently, there is a trend in commercial code development towards solving
the Navier–Stokes equations directly as a fully coupled system. However, this has several
drawbacks, for instance, regarding overall memory requirements (which is a major concern
for all commercial software providers). On the other hand, having efficient solvers available
for directly solving coupled systems on complex geometries, would increase the overall
performance substantially. AMG solvers can play a very important role here. Extensions of
the AMG approach which can handle such coupled systems are under development. �

A.8.3.2 Industrial test cases
In order for any new solver to be suitable for industrial use, it has to be fast, robust and
require only a low amount of memory. Whether or not this is satisfied, has to be judged
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by comparison with typical industrial solvers such as the ILU preconditioned conjugate
gradient.

In terms of performance, AMG is generally much more efficient than any one-level
method, in particular, if the underlying meshes are large and complex, if there are thin sub-
structures in different directions, or if coefficients are not smoothly varying. The robustness
has turned out to be extraordinarily high for all industrial problems solved so far. Regarding
memory requirement, AMG can not compete with a simple one-level method. Any hier-
archical solver, and hierarchical approaches are necessary to obtain fast solution, requires
additional memory. Memory requirement, however, is a major concern for any commercial
software provider. Industrial users of commercial codes always drive their simulations to the
limits of their computers, shortage of memory being a serious one. In fact, most industrial
users would prefer to wait longer for the results if they would otherwise not be able to solve
what they really want to solve.

For these reasons, low-memory AMG approaches are of particular interest, even if the
reduced memory requirement causes an increase in the total computational time. A memory
overhead of some tens of percents is certainly acceptable. In any case, however, the operator
complexity cAmust not be significantly larger than say, 2.0. We will see that the low-memory
cycles, VA1(S) and VA2(S), will satisfy the industrial requirements in all cases considered.

In this section, our focus will be on solving pressure-correction equations to a high
accuracy, namely, by reducing the residual by ten orders of magnitude. (See Section A.8.3.3
for low-accuracy approximations.) We consider problems with different types of meshes.
Discretization is based on a standard finite-volume approach. In all cases, the concrete data
used correspond to one particular time step taken from a normal production run.

The first problem corresponds to the 2D simulation of the flow through a fan model. The
core part of the corresponding mesh is outlined in Fig. A.23(a). The mesh consists mostly
of quadrilaterals and some triangles.

Figure A.23(b) shows the convergence histories for the standard VS(S) cycle as well as
for the low-memory variants VA1(S) and VA2(S), used with and without acceleration by con-
jugate gradient. We observe that the convergence behavior is comparable to that of the simple
model equation (A.8.2) except that convergence is slightly slower here (cf. Fig. A.19(a)). As
before, the VA-cycles are not supposed to be used stand-alone but rather as preconditioners.

The fastest cycle, VS(S)/CG, needs 11 steps to reduce the residual by ten orders of
magnitude. It also provides the best method in terms of computational time as can be seen
from Table A.3. It requires a total time of 3.68 sec which is about 8.5 times less than
the time required by ILU(0)/CG. Memory overhead is reasonable for this 2D problem,
however, relative to our above requirements, it remains too high. The VA2- and VA1-cycles
are still much faster than ILU(0)/CG but require substantially less memory. In particular, the
operator complexity of the VA1/CG-cycle is only cA = 1.39. That is, its memory overhead
is smaller than that of the standard cycle by 72% at the expense of some 25% increase in
total execution time.

The following two examples correspond to 3D flow computations with largely different
unstructured meshes, namely, the flows through the cooling jacket of a four-cylinder engine
(Fig. A.22) and through a coal furnace (Fig. A.21), respectively. While the first mesh is a
fairly uniform tetrahedral mesh, the second one consists mainly of hexahedra and a few



AN INTRODUCTION TO ALGEBRAIC MULTIGRID 499

thousand pentahedra, including many locally refined grid patches. According to this, the
discretized problems employ mostly five-point stencils in the first case and varying stencil
sizes in the second case (ranging from four- to 11-point stencils).

The convergence histories for both problems are depicted in Fig. A.24. The difference
in size and structure of the above meshes hardly influences the convergence of AMG.
Compared to the 2D problem (Fig. A.23(b)), however, convergence is somewhat slower here,
which is typical for 3D applications (cf. Remark A.8.1). The only major difference between
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Table A.3. Complexities and computing times (fan model).

Times (sec)/Pentium II, 300 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

ILU(0) 0.11 0.09 32.0 (354)
VS(S) 2.38 1.65 0.93 0.20 4.50 (18) 0.25 3.68 (11)
VA2(S) 1.87 1.43 0.83 0.16 6.70 (37) 0.21 4.56 (18)
VA1(S) 1.39 1.21 0.60 0.13 8.44 (63) 0.17 4.60 (23)
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Figure A.24. Convergence histories: (a) cooling jacket; (b) coal furnace.

the 2D and 3D problems is that the standard VS(S)-cycle, used stand-alone, converges
significantly slower in the 3D cases. As a consequence, the accelerated VA-cycles converge
faster than the standard cycle. For both meshes, the accelerated standard cycle exhibits fastest
convergence and requires 15 iterations to reduce the residual by ten orders of magnitude.

Table A.4 shows that, in terms of total execution time, the accelerated standard cycle
is nearly 20 times faster than ILU(0)/CG for the cooling jacket, and around 6.5 times for
the coal furnace. The lowest-memory cycle, VA1(S)/CG, is still over 17 times faster than
CG/ILU(0) for the first case. For the second case, it is even cheaper than the accelerated
standard cycle although it requires eight additional iterations.

Generally, standard coarsening requires significantly more memory in 3D than in 2D.
According to the table, the operator complexity of the VS(S)-cycle is given by cA = 2.77 and
cA = 3.39 for the two problems (which is still practical but too high w.r.t. our requirements).
The reasons for this increase in complexity are similar to those stated in Remark A.8.2 for
the model problem. The first standard coarsening step tends to be relatively slow (in terms
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Table A.4. Complexities and computing times.

Times (sec)/Pentium II, 300 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

Cooling jacket

ILU(0) 0.39 0.40 434.1 (1084)
AMG1R5 5.35 1.98 7.25 1.29 42.1 (27)
VS(S) 2.77 1.55 5.77 0.90 34.4 (32) 1.11 22.6 (15)
VA2(S) 2.25 1.30 4.94 0.73 55.6 (69) 0.96 27.2 (23)
VA1(S) 1.44 1.14 3.18 0.56 59.2 (100) 0.76 24.5 (28)

Coal furnace

ILU(0) 1.86 1.70 743.8 (436)
AMG1R5 7.06 1.90 72.6 6.76 370.0 (44)
VS(S) 3.39 1.59 33.9 4.36 174.2 (32) 5.27 113.5 (15)
VA2(S) 2.12 1.27 21.8 3.00 173.5 (51) 3.93 104.6 (21)
VA1(S) 1.47 1.14 14.4 2.33 170.2 (67) 3.27 89.5 (23)

of a reduction of grid points) while, at the same time, the size of the Galerkin stencils
on the second level becomes substantially larger than on the finest one. As can be seen
from Table A.4, aggressive coarsening avoids this problem very efficiently in both cases. In
particular, A1-coarsening reduces the memory overhead by around 80% in both test cases.
Although this significantly increases the number of iterations required, the resulting method
is still very efficient (even the most efficient in some cases).

Remark A.8.9 For comparison, Fig. A.24 and Table A.4 also show the performance of
the original code AMG1R5. Note first that the convergence of AMG1R5 is comparable
to that of RAMG05 for the cooling jacket but significantly slower for the coal furnace.
More importantly, however, the complexity values of AMG1R5, cA = 5.35 and cA = 7.06,
respectively, indicate an unacceptably high memory requirement of AMG1R5 in both cases.
This confirms what has already been mentioned in Remark A.7.8: the coarsening strategy
used in AMG1R5 may become very inefficient for nonregular 3D meshes such as those
considered here. Since cA is directly related to the computational time, AMG1R5 is more
expensive, particularly for the coal furnace case. �

A.8.3.3 Low-accuracy approximations
Particularly in steady-state computations, the pressure-correction equation usually needs to
be solved only to a low accuracy of one or two digits. One might expect that the use of
AMG solvers is an “overkill” (because of the high setup cost involved) and simple one-level
methods would be more efficient.
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Table A.5. Total computing times to reach a low residual and error reduction, respectively.

Fan model Cooling jacket

ε0 = 10−1 ε0 = 10−2 ε0 = 10−1 ε0 = 10−2

Setup Setup
Method cost Resid. Error Resid. Error cost Resid. Error Resid. Error

CG/ILU(0) 0.11 0.28 9.98 11.1 12.2 0.39 7.64 114.8 202.8 177.4
VS(S) 0.93 1.15 1.32 1.32 1.69 5.77 7.62 8.50 10.2 11.2
VS(S)/CG ” 1.20 1.45 1.70 1.45 ” 8.99 8.99 10.3 8.99
VA2(S) 0.83 1.10 1.23 1.41 1.54 4.94 8.84 9.50 13.2 13.9
VA2(S)/CG ” 1.20 1.20 1.65 1.20 ” 8.95 7.00 10.8 8.95
VA1(S) 0.60 0.86 1.22 1.47 1.83 3.18 7.53 8.62 12.9 14.1
VA1(S)/CG ” 0.94 0.94 1.46 1.46 ” 4.70 4.70 8.49 6.22

Indeed, this seems to be true if one compares the total computing times needed by AMG
and CG/ILU(0) to reduce the residual by only one order of magnitude. Table A.5 shows
corresponding timings (in the columns labeled “Resid.”) for both the fan model and the
cooling jacket. The results show that the AMG execution time is still comparable to that
of CG/ILU(0) for the cooling jacket but is considerably higher for the fan model, where
CG/ILU(0) appears to be up to four times faster. Note that, in this case, AMG’s setup time
alone is already two to three times higher than the total execution time of CG/ILU(0)!
If, however, the residual is required to be reduced by two orders of magnitude instead,
the execution time of CG/ILU(0) again becomes higher than that of AMG (accelerated
VA1(S)-cycle) by factors of approximately 8 and 23 for the two problems.

Generally, however, one has to be very careful in drawing conclusions from small
residual reductions to corresponding reductions in the error. Indeed, if one compares AMG
with CG/ILU(0) on the basis of error rather than residual reductions, the picture looks
completely different. To demonstrate this, Table A.5 contains total computing times on the
basis of the true error reduction (in the columns labeled “Error”). According to these results,
AMG is always faster than CG/ILU(0). For instance, even if the requirement on the error
reduction is merely one order of magnitude, the execution time of VA1(S)/CG is lower than
that of CG/ILU(0) by factors of approximately 10 and 25 for the first and second test case,
respectively. Note that these results depend, to some extent, on the used norm (here, we
used the Euclidean norm). The tendency, however, will be similar for other norms.

This advantageous behavior of AMG in terms of error reduction is related to its property
to globally reduce errors much more effectively than a one-level method (such as ILU(0)).
To illustrate this further, Fig. A.25 shows separate convergence histories for residuals and
errors for both CG/ILU(0) and VA2(S)/CG. Obviously, during the first iterations, AMG
reduces errors much more effectively than CG/ILU(0). This unsatisfactory behavior of
CG/ILU(0) makes the use of termination criteria, based merely on the residual reduction,
very unpractical. If the given tolerance is too large, CG/ILU(0) may stop after only a few
iterations although the error may still be far too large. On the other hand, selecting a (slightly)
smaller tolerance, may drastically increase computing cost.
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Figure A.25. Convergence histories: residual versus error for fan model and cooling jacket.

Nevertheless, in computing low-accuracy approximations, AMG’s setup cost becomes
quite substantial. In fact, most of the total computing time may be spent in the setup routines.
However, in the situations as described here, typically chains of (often many hundreds
or thousands of) problems have to be solved for which the underlying matrices usually
change only slowly from one step to the next. Consequently, AMG’s setup phase only
needs to be performed once in a while. For most of the problems, the complete setup can
be “frozen” (or “updated” by fixing the interpolation and just recomputing the Galerkin
operators). To control such an optimized use of AMG by an efficient and automatic strategy
is straightforward. In this way, AMG’s total setup overhead can be drastically reduced. For
those examples considered here, new setups are, on average, needed only after every fifth
time step. Clearly, this substantially enhances the efficiency of AMG.

A.8.4 Problems with Discontinuous Coefficients

In this section, we consider problems with strongly discontinuous coefficients, again begin-
ning with the investigation of a typical model problem. We will see that, compared
to Poisson-like problems, the overall performance of AMG decreases to some extent.
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Figure A.26. Distribution of coefficients.

Qualitatively, however, AMG behaves as before. In particular, its performance for more
complex problems is very similar to that observed in Section A.8.3. Typical results are
given in Sections A.8.4.2 and A.8.4.3.

A.8.4.1 A model problem
We consider the diffusion problem [292]

−(aux)x − (buy)y = f (x, y) (A.8.12)

on the unit square with discontinuous coefficientsa > 0 andb > 0 being defined as indicated
in Fig. A.26. f (x, y) is defined to be 0 except for the points (0.25, 0.25), (0.5, 0.5) and
(0.75, 0.75) where it is defined to be 10. Dirichlet boundary conditions are given as

u = 1 for x ≤ 0.5, y = 0 and x = 0, y ≤ 0.5; otherwise: u = 0.

Discretization is assumed to be done by the standard five-point stencil on a regular grid of
mesh size h = 1/N . For instance, the x-derivative −(aux)x at point x0 is approximated by

1

h2

(− a(x0 − h/2)u(x0 − h)+ cu(x0)− a(x0 + h/2)u(x0 + h)) (A.8.13)

with c = a(x0 − h/2)+ a(x0 + h/2).
Besides discontinuous changes in the size of the coefficients by orders of magnitude,

the resulting equations are strongly anisotropic near the boundary, with the strong connec-
tivity being in the direction of the boundary. Regarding the treatment of such problems
by geometric multigrid methods, both properties require special attention. In order to see
the similarities between geometric and algebraic multigrid if applied to such problems, we
briefly recall a typical geometric approach.

First, assuming usual h → 2h coarsening, smoothing needs to be done by “robust”
smoothers such as alternating line relaxation. Secondly, geometric (linear) interpolation of
corrections is no longer appropriate. This is because linear interpolation for u at a grid
point x0 requires the continuity of its first derivatives. However, in our example, ux and
uy are not continuous but rather aux and buy . Since corresponding corrections exhibit the
same discontinuous behavior, proper interpolation has to approximate the continuity of aux
and buy rather than that of ux and uy . Consequently, we obtain a better interpolation, for
instance in the x-direction, if we start from the equation

(aux)(x0 − h/2) = (aux)(x0 + h/2)
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and approximate this by

a(x0 − h/2)(u(x0)− u(x0 − h)) = a(x0 + h/2)(u(x0 + h)− u(x0)).

This yields the interpolation formula

c u(x0) = a(x0 − h/2)u(x0 − h)+ a(x0 + h/2)u(x0 + h) (A.8.14)

for computing u(x0) from its neighbors.
The extension of such relations to both space dimensions forms the basis for the defi-

nition of “operator-dependent” interpolation in geometric multigrid. Clearly, by means of
some additional approximations, the “interpolation pattern” has to be modified in order to
match the coarse-grid points that are available. Such an interpolation was first investigated
in [3]. In that paper, it was also shown that the use of operator-dependent interpolation
gives the most robust multigrid convergence if, in addition, Galerkin operators are used on
coarser levels (rather than the coarse-level stencils corresponding to (A.8.12)).

The development of AMG can be regarded as the attempt to generalize the ideas con-
tained in [3]. In fact, geometrically motivated operator-dependent interpolation (A.8.14)
is simply an approximation to the (homogeneous) difference equations (A.8.13). This is
exactly the way AMG attempts to define interpolation. Clearly, in contrast to the geometric
approach, line relaxations are not required in AMG since anisotropies are “resolved” by
coarsening essentially in the directions of strong connectivity (see Fig. A.28(a)).

Figure A.27(a) shows the convergence factors of the VS- and VA-cycles if applied to the
above problem. The standard VS(S)-cycle converges somewhat slower than for the Poisson-
like model problem and its rate exhibits a (slight) h-dependence. But even for the finest grid,
it still converges at a rate of 0.38 per cycle. In contrast to the Poisson-like example, improving
interpolation by one additional Jacobi relaxation step (VS(S-1F)-cycle) substantially speeds
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up convergence. In fact, the improved interpolation restores the convergence observed for
the standard interpolation in the Poisson-like case (cf. VS(S)-cycle in Fig. A.18(a)). The
F-cycle convergence factor is around 0.05 and virtually constant for all grids considered.
The VA1(S)-cycle converges asymptotically at about the same rate as in the Poisson case.
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Table A.6. Complexities and computing times (N = 512).

Times (sec)/Pentium II, 300 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−8 Cycle ε0 = 10−8

ILU(0) 0.93 1.07 693.4 (647)
AMG1R5 2.58 1.81 6.87 2.19 41.9 (16)
VS(S) 2.52 1.79 9.43 2.44 41.1 (13) 3.03 33.8 (8)
FS(S) ” ” ” 4.67 32.8 (5) 5.20 30.2 (4)
VA2(S) 2.14 1.58 8.78 2.08 29.6 (10) 2.68 30.3 (8)
VA1(S) 1.78 1.32 7.52 1.67 65.8 (35) 2.29 48.6 (18)
VS(S-1F,0.02) 3.20 1.79 25.9 2.79 48.2 (8) 3.40 46.3 (6)
VS(S-1P,0.02) 3.05 1.79 19.0 2.82 47.2 (10) 3.30 42.1 (7)

Finally, the VA2-cycle converges even faster than the VS-cycle. However, this is unusual
and can not be expected in most cases.

As before, acceleration by conjugate gradient improves convergence substantially (see
Fig. A.27(b)). Moreover, convergence speed becomes virtually independent of the mesh
size. How this improvement translates into number of iteration steps and computational
time needed to solve (A.8.12) by eight orders of magnitude (forN = 512 and starting with
u ≡ 0 as first approximation), is shown in Fig. A.28(b) and Table A.6. The accelerated
VS-cycle requires just eight iterations and is over 20 times faster than CG/ILU(0). The
corresponding F-cycle even solves this problem in only four cycles and is approximately
23 times faster than CG/ILU(0). However, this extraordinarily rapid convergence occurs
for reasons similar to those mentioned in Remark A.8.4. Although the two-level method
involving the first two levels no longer strictly corresponds to a direct solver (due to the
one-dimensional coarsening near the boundary, see Fig. A.28(a)), it is still very close since
the F-points of the finest level are only (very) weakly connected.

We note that the memory requirement for strongly anisotropic problems is typically
higher than that for isotropic problems, the reason being that AMG will essentially perform
one-dimensional coarsening (in the direction of strong connectivity). To a limited extent, this
is also observed in Table A.6. To reduce the memory requirement in anisotropic areas, A1-
coarsening needs to be employed and is quite effective. From the table we see that, compared
to the VS-cycle, the VA1-cycle requires 50% less overhead memory at the expense of a 50%
increase in execution time.

We have seen above that, relaxation of interpolation substantially improves convergence.
Although the mere solution time of VS(S-1F,0.02) (not counting the setup) is significantly
lower than that of VS(S), the table shows that this advantage is eaten up by a much higher
setup cost. Unfortunately, this is also typical for more general situations. Moreover, relax-
ation of interpolation naturally increases the memory requirement. As can be seen in
Table A.6, the VA1-cycle requires only one-third of the memory overhead of the VS(S-
1F,0.02)-cycle. As already mentioned at the beginning of Section A.8, there is much room
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for optimizing the application of relaxation of interpolation, for instance, by only applying
it locally where really needed and by locally optimizing truncation of interpolation.

Remark A.8.10 The above test case was constructed as a worst case example for the
geometric multigrid code MG2 [292]. Although MG2 is normally very efficient in solving
problems with discontinuous coefficients, for this particular problem there exist eigenvalues
of the MG2 iteration matrix which are very close to one. As a consequence, MG2 V-cycle
convergence becomes extremely slow. Using MG2 as preconditioner substantially improves
convergence. But about 60 MG2 V-cycles have to be performed to reduce the residual by
eight orders of magnitude. Even the F-cycle still requires about 40 cycles [292]. Compared
to this, AMG does not show any particular problems for this test case and converges much
faster. �

A.8.4.2 Oil reservoir simulation
In oil reservoir simulation, the basic task is to solve complex multiphase flows in porous
media. For each phase, �, of a multiphase problem, the governing equations are the continuity
equation

−∇ · (ρ�u�) = ∂

∂t
(ρ�φS�)+ q� (A.8.15)

and Darcy’s law

u� = −K kr�
μ�
(∇p� − ρ�g∇z). (A.8.16)

The continuity equation describes the mass conservation. For each phase, u� denotes the
velocity vector, S� the saturation, ρ� the density distribution (depending on p�) and q� rep-
resents injection or production wells. φ denotes the porosity of the medium. Darcy’s law
essentially describes the velocity–pressure dependence. Here, p� denotes the pressure, μ�
the viscosity and kr� the relative permeability (depending on S�). g is the gravity acceler-
ation constant (we here assume that gravity acts in the direction of the z-axis). Finally, K
is a tensor (absolute permeability). The absolute permeability varies in space by, typically,
several orders of magnitude in a strongly discontinuous manner. The gray scale in Fig. A.29
indicates the variation of the permeability as a function of space for a typical case.

The phase velocities can be eliminated by inserting (A.8.16) into (A.8.15). For incom-
pressible flows we can assume ∂φ/∂t = 0 and ∂ρ�/∂t = 0, and one obtains the following
equations involving pressures and saturations:

∇ ·
(
K
kr�

μ�
(∇p� − ρ�g∇z)

)
= φ

∂

∂t
S� + q�/ρ�. (A.8.17)

From this set of equations, pressures and saturations can be computed if one takes into
account that

∑
� S� ≡ 1 and that the individual phase pressures are directly interrelated by

means of simple non-PDE relations involving known (but saturation-dependent) capillary
pressures.
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It is rather expensive to solve the resulting nonlinear system in a fully implicit manner.
This limits the size of the problems that can be handled. The more classical IMPES approach
(implicit in pressure, explicit in saturation) treats (A.8.17) by an explicit time-stepping.
Consequently, in each time step, the pressures need to be computed with all saturations
being known from the previous time step. Exploiting the interrelation of the individual
phase pressures mentioned above, only one pressure (for instance, the oil pressure) requires
the solution of a partial differential equation of the form

−∇ · (T∇p) = Q (A.8.18)

which is obtained by adding the individual equations (A.8.17) (and using
∑
� S� ≡ 1). The

tensor T is directly related toK . According to the assumption of incompressibility, both T
andQ depend only on the saturations and given quantities.

Clearly, as with any explicit time-stepping method, the major drawback of the IMPES
approach is the serious restriction in the maximally permitted time step size (CFL (Courant–
Friedrichs–Lewy) condition). Since this restriction becomes stronger with decreasing spatial
mesh size or increasing variation in the magnitude of T , in practice, the classical IMPES
method also strongly limits the treatment of large problems.

Recently, however, a new IMPES-type approach has become quite popular which elimi-
nates the time-step restriction due to the CFL condition. Rather than updating the saturations
directly on the grid based on (A.8.17), a streamline method is used instead [34, 387]. By
transporting fluids along periodically changing streamlines, the streamline approach is actu-
ally equivalent to a dynamically adapting grid that is decoupled from the underlying, static,
grid used to describe the reservoir geology (and to compute the pressure). The 1D nature of
a streamline allows the 3D problem to be decoupled into multiple 1D problems. The main
advantage of this approach is that the CFL conditions are eliminated from thefluid transport,
allowing global time-step sizes that are independent of the underlying grid constraints.

Although this approach cannot (yet) be applied to all relevant situations occurring in
oil-reservoir simulation, it is well suited for large heterogeneous multiwell problems that
are convectively dominated. This has been demonstrated [34] for a problem consisting of
one million mesh cells. Cases of this size could not be solved as easily and quickly by
standard implicit methods. Clearly, an efficient solver for the pressure equation (A.8.18)
then becomes highly important.

The one million cell case previously mentioned, provided by StreamSim Technologies
(CA, USA), has been used as a test case for AMG. The variation of the absolute perme-
ability, which directly corresponds to a discontinuous variation of the coefficients in the
resulting matrix by four orders of magnitude, is shown in Fig. A.29. Figure A.30 shows the
convergence histories of the typical AMG cycles for this case (starting with the zero first
approximation). We see that all cycles presented show essentially the same convergence
behavior as for the Poisson-like problems considered in Section A.8.3.2 (cf. Fig. A.24).
This demonstrates the robustness of AMG with respect to strong, discontinuous variations
in the matrix coefficients.

Table A.7 presents some detailed measurements. For all cycles considered, we see a
substantial benefit by using them as preconditioners rather than stand-alone. The accelerated
standard VS(S)-cycle takes 16 iterations to reduce the residual by ten orders of magnitude.
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Figure A.29. Distribution of permeability as a function of space (logarithmic gray scale).
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Figure A.30. Convergence histories (one million cell case).

Although the lowest-memory cycle, VA1(S)/CG, converges more slowly (24 iterations), in
terms of total computation time it is fastest and about 16 times faster than CG/ILU(0). Its
complexity value cA = 1.41 is very reasonable. Note, however, that the memory reduction
by aggressive A2-coarsening is not very effective, the reason being the strong anisotropies
in the problem. On the whole, the AMG performance is strongly comparable to that shown
in Table A.4 for Poisson-like cases.

The performance of AMG1R5 shows that the original interpolation (cf. Remark A.7.8)
leads to unacceptably high memory requirements for this example: cA = 7.66 as compared
to cA = 2.85 for VS(S). As a consequence, although AMG1R5 converges faster than VS(S),
its efficiency is substantially lower.
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Table A.7. Complexities and computing times (one million cell case).

Times (sec)/IBM Power PC, 333 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

ILU(0) 3.89 3.74 3376. (902)
AMG1R5 7.66 2.21 167. 22.7 758.6 (26)
VS(S) 2.85 1.56 43.8 10.5 401.2 (34) 12.6 245.1 (16)
VA2(S) 2.56 1.39 41.6 9.20 492.2 (49) 11.3 267.3 (20)
VA1(S) 1.41 1.13 26.7 5.56 476.4 (81) 7.67 210.7 (24)

Figure A.31. Synchronous line-start motor: (a) magnetic field plot; (b) initial and locally refined
mesh [265].

A.8.4.3 Electromagnetic systems
In this section we consider a synchronous line-start motor excited with permanent magnets.
The knowledge of the magnetic field inside such a motor, induced by the currents in the
stator and the magnets in the rotor, allows its optimization w.r.t. functionality and efficiency.
For an example, see Fig. A.31(a).

The governing equation is the magnetostatics Maxwell equation (also known as
Ampere’s law)

∇ ×H = J, (A.8.19)

where H denotes the magnetic field intensity and J the electric current density. According
to Maxwell’s equation for the magnetic flux density,

∇ · B = 0,



512 MULTIGRID

we know that there is a magnetic vector potential, A, such that B = ∇ × A. Finally, we
observe that the constitutive relation B = μH , with μ being the permeability, (A.8.19) can
be rewritten as

∇ × (ν∇ × A) = J (A.8.20)

where ν = 1/μ is the reluctivity.
We here consider only 2D intersections (Cartesian coordinates) and, for reasons of

symmetry, we can assume A and J to be of the special form

A = (0, 0, u(x, y)), J = (0, 0, f (x, y)).

Hence, (A.8.20) can be seen to correspond to a scalar diffusion equation for the (z-
component of the) magnetic potential, namely,

−∇ · (ν∇u) = f. (A.8.21)

For isotropic materials, the reluctivity ν is a scalar quantity. Normally, it is a function ofu and
(A.8.21) has to be solved by some outer linearization (for instance, Newton’s method). More
importantly, however, ν is strongly discontinuous and differs by three orders of magnitude
between the steel and air areas inside the motor.

An accurate solution of (A.8.21) by finite elements requires local refinements near the
critical areas (see Fig. A.31(b)). Instead of solving the discrete equations on the full circular
domain (with Dirichlet boundary conditions), one may solve it more efficiently on half the
domain using periodic boundary conditions or on a quarter of the domain using antiperiodic
boundary conditions.

Figure A.32(a), (b) show the performance of AMG for both the periodic and the antiperi-
odic case. Except that the low-memory cycle converges somewhat slower here, the overall
performance is strongly comparable to the case considered in the previous section. The
underlying mesh, provided by the Department of Computer Science of the Katholieke Uni-
versiteit Leuven, is shown in Fig. A.1 (half the domain). The coarser levels produced by
AMG’s standard coarsening are depicted in Fig. A.3.

It should be noted that antiperiodic boundary conditions cause strong positive connec-
tions to occur in the underlying matrix (in all equations which correspond to points near the
antiperiodic boundary). As discussed theoretically in Section A.4.2.3, interpolation should
take such connections into account, for instance, in the way as described in Section A.7.1.3.
If this is ignored, that is, if interpolation is done only via strong negative couplings, the dis-
continuous behavior of corrections across the antiperiodic boundary is not properly reflected
by the interpolation, leading to a substantial degradation of the method.

This is demonstrated in Fig. A.32(c). We observe that the standard VS(S)-cycle, without
acceleration, hardly converges. In fact, the convergence speed is limited by the convergence
of the smoother on the finest level. It is heuristically clear that this slow convergence is only
caused by particular error components, namely, those which really exhibit the discontinu-
ity. All other components are very effectively reduced. Consequently, the use of accelerated
cycles “cures” this problem to some extent as can be seen from the figure. However, it takes
ten “wasted” cycles before the critical error components are sufficiently reduced by conju-
gate gradient and the AMG performance becomes visible again. Although this demonstrates
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Figure A.32. Convergence histories: (a) periodic case; (b) antiperiodic case; (c) antiperiodic case
(positive connections ignored).

that the use of accelerators such as conjugate gradient helps to stabilize convergence, a sit-
uation like that shown here should clearly be avoided since it demonstrates that something
is wrong conceptually. Moreover, the area of “stalling” convergence (here just the first ten
iterations) strongly depends on the problem and the size of the grid (more precisely, on the
distribution of those eigenvalues of the AMG iteration matrix which are close to one).

A.8.5 Further Model Problems

A.8.5.1 Special anisotropic problems
We have seen before that AMG treats anisotropies by coarsening in the proper direction. This
works perfectly if the anisotropies are essentially aligned with the grid. Moreover, since
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AMG adjusts its coarsening locally, diffusion equations (A.8.12) with strongly varying
anisotropies are no problem for AMG.

However, one has to expect certain difficulties if strong anisotropies are not aligned with
the grid. The following model problem is a well-known test case for such a situation:

−(c2 + εs2)uxx + 2(1 − ε)scuxy − (s2 + εc2)uyy = f (x, y) (A.8.22)

with s = sin α and c = cosα. We consider this differential operator on the unit square with
f (x, y) ≡ 1, homogeneous Dirichlet boundary conditions, ε = 10−3 and 0◦ ≤ α ≤ 90◦.
For such values of α, uxy is most naturally discretized by the left-oriented seven-point
stencil

1

2h2

⎡⎢⎣−1 1

1 −2 1

1 −1

⎤⎥⎦ (A.8.23)

where h = 1/N .
The main difficulty with the differential operator (A.8.22) is that it corresponds to the

operator −uss−εutt in an (s, t)-coordinate system obtained by rotating the (x, y)-system by
an angle of α (“rotated anisotropic diffusion equation” [415]). That is, (A.8.22) is strongly
anisotropic with the direction of strong connectivity given by the angle α (see Fig. A.33).

In particular, forα = 0◦ andα = 90◦, (A.8.22) becomes −uxx−εuyy = f and −εuxx−
uyy = f , respectively, and the anisotropies are just aligned with the axes. Geometric
multigrid methods solve these equations very efficiently by employing h → 2h coarsening
and using line relaxations (in the direction of strong connectivity) for smoothing. In contrast
to this, AMG uses point relaxation for smoothing but coarsens in the direction of strong
connectivity. The standard VS(S)-cycle, for instance, converges at a rate of 0.1 per cycle,
independent of the grid size. This can be seen from Fig. A.34(a). Using acceleration by
conjugate gradient gives a convergence factor better than 0.01 per cycle (see Fig. A.34(b)).

= °0

= °90

= °45

Figure A.33. Direction of strong connectivity (ε � 1).
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Figure A.34. (a) Convergence factors of cycles used stand-alone; (b) average reduction factors of
accelerated cycles.

The figure shows that AMG also performs well for α = 45◦. In this case, the discretiza-
tion of (A.8.22) corresponds to the stencil

1

h2

⎡⎣−(1 − ε)/2 −ε
−ε 1 + 3ε −ε

−ε −(1 − ε)/2

⎤⎦ , (A.8.24)

which exhibits a strong connectivity in the diagonal direction. It has only nonpositive off-
diagonal entries and essentially degenerates to a three-point stencil for small ε. Since the
anisotropy is still aligned with the grid, AMG can cope with this anisotropy as efficiently as
in the previous cases by coarsening in the diagonal direction. Nevertheless, solving this case
with geometric multigrid (using h → 2h coarsening), brings a problem. Even alternating
line relaxation no longer has good smoothing properties. In fact, it is no better than point
relaxation (since the connections in both coordinate directions are very weak).

For other values of α, the strong anisotropies are no longer aligned with the grid.
(Note also that, generally, the resulting discretization matrices are not M-matrices.) This
causes particular difficulties for any multigrid method. In geometric multigrid, as above,
neither point- nor line-relaxation schemes have good smoothing properties with respect to
h → 2h grid coarsening. More importantly, however, the extent to which the anisotropy is
captured by grid points, strongly depends on α and is different on different grid levels. This
substantially reduces the effectiveness of coarse-grid correction processes and, through this,
the overall cycle convergence.

Since AMG cycles also obtain their correction quantities from points which form sub-
grids of the given grid, the nonalignment also influences the AMG performance. This
is demonstrated in Fig. A.34(a) which, for N = 128,256,512 and different cycles, shows
convergence factors as a function of α. One sees that, for certain values of α, the standard
VS(S)-cycle (upper three curves in the figure) converges very slowly and the convergence
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factor depends on the mesh size h. For instance, for α = 10◦ andN = 512, the convergence
factor is worse than 0.9. We note that the convergence of the corresponding F-cycle (not
shown here) is faster but still shows a similar h-dependency for most values of α.

This confirms that the slow convergence is not (only) due to the mere accumulation
of errors (introduced by the inaccurate solution of the coarse-level correction equations
in a V-cycle) but that there are also convergence problems for the “intermediate” two-
level methods. Consequently, an improvement of interpolation by relaxation should help.
Although the corresponding VS(S-1F,0.02)-cycle indeed converges much better than the
standard VS(S)-cycle, it still shows a significant h-dependency as can be seen from the
figure. However, using the improved interpolation in conjunction with the F-cycle eliminates
this problem: the FS(S-1F,0.02)-cycle converges at a rate which is the same for all mesh
sizes and better than 0.1 for all α considered.

Figure A.34(b) shows average reduction factors obtained for the corresponding cycles
if used as a preconditioner for conjugate gradient. Although the shapes of the curves are
similar to the previous ones, the accelerated cycles converge much faster. In particular, the
accelerated F-cycle with improved interpolation converges at a rate ≤ 0.02 for all α and h
considered.

Finally, Fig. A.35 shows convergence histories forN = 512 and α = 20◦, starting with
u = 0 as first approximation. One observes that the VS(S)-cycle converges rapidly for the
first few cycles before convergence levels off and reaches its slow asymptotic value. This
effect is virtually eliminated for the corresponding accelerated cycle. To a lesser extent,
a similar effect occurs also for the FS(S)-cycle. The accelerated F-cycle with improved
interpolation reduces the residual by ten orders of magnitude in only six iteration steps.

We see that it is easy to obtain fast convergence even in this example which can be
regarded as very difficult for geometric multigrid methods. However, as can be seen from
Table A.8, cost and memory requirement become rather high if relaxation of interpolation
is employed. An operator complexity cA of over 6 is unacceptably high for practical appli-
cations. The setup cost is also much higher than for the other cycles. The table shows that,
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Figure A.35. Convergence histories (N = 512, α = 20◦).
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Table A.8. Complexities and computing times (N = 512, α = 20◦).

Times (sec)/Pentium II, 300 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

AMG1R5 3.02 1.84 12.1 3.07 414.0 (131)
VS(S) 3.24 1.84 18.6 3.55 263.6 (69) 4.22 119.7 (24)
FS(S) ” ” ” 6.87 183.4 (24) 7.49 108.4 (12)
VA2(S) 1.72 1.41 11.6 2.25 153.1 (63) 2.92 75.8 (22)
VS(S-1F,0.02) 6.05 1.84 91.9 5.65 199.2 (19) 6.45 162.9 (11)
FS(S-1F,0.02) ” ” ” 13.1 210.0 (9) 13.8 174.4 (6)
VS(D-1F,0.5) 2.54 1.88 15.4 3.13 125.1 (35) 3.82 76.5 (16)
FS(D-1F,0.5) ” ” ” 5.91 109.9 (16) 6.53 74.2 (9)

although the cycles with standard interpolation converge much slower, in terms of total com-
putational work they are still more efficient, the best one being the accelerated VA2-cycle.
Remark A.8.11 outlines the main reason for the particularly high memory requirement
observed in this example.

Remark A.8.11 We have already mentioned that, compared to isotropic problems, the
memory requirement is generally higher for anisotropic problems. The memory requirement
increases further for problems where the anisotropies are not aligned with the grid. Table A.8
shows that, using standard coarsening and standard interpolation, the operator complexity
is cA = 3.24 while for the Poisson-like problem discussed earlier, it was only cA = 2.38
(see Table A.1). The major reason is that the nonalignment causes the strong connections to
“fan out” so that each point is strongly connected to an increasing number of points on both
sides of the “true” anisotropic line. Thus interpolation stencils become larger on coarser
levels and, as an immediate consequence, so do the Galerkin operators. Clearly, this effect
is strongly amplified by relaxation of interpolation. �

The fan-out effect mentioned in this remark may be reduced by choosing a larger trun-
cation value for interpolation, εtr . Indeed, this dramatically improves efficiency as seen
from the last two rows in Table A.8 where we have chosen εtr = 0.5. Compared to the case
εtr = 0.02, the operator complexity is reduced from 6.05 to 2.54 and the total execution
time is reduced by more than a factor of two! (Note that we have also used the simpler direct
interpolation instead of the standard one.)

In this context we want to recall that our main goal in this appendix on applications
is to demonstrate how different AMG components may influence the overall per-
formance. We have not tried to find optimal components or parameters but rather
confined ourselves to a few typical ones. The above results clearly show that opti-
mized parameter settings may, depending on the application, substantially improve
the performance.
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Remark A.8.12 If, instead of the seven-point discretization (A.8.23), we use the standard
nine-point discretization, the AMG convergence behavior is qualitatively the same (except
that α = 45◦ does not play such a particular role any more). Generally, the performance of
AMG suffers from the nonalignment of the anisotropies just as geometric multigrid does.
However, in AMG, due to its higher flexibility in creating the coarser levels, this problem
is much less severe and easy to cure in the cases considered here, at least in terms of robust
convergence. The convergence behavior of geometric multigrid in such cases is considered
in [292]. �

A.8.5.2 Convection–diffusion problems
So far, we have only considered symmetric problems. However, as mentioned earlier,
RAMG05 does not make use of the symmetry and can formally also be applied to non-
symmetric problems. Practical experience has shown that, generally, the nonsymmetry by
itself does not necessarily cause particular problems for AMG. Other properties of the
given system typically influence the performance of RAMG05 to a much larger extent, for
instance, whether or not the underlying matrices are (approximately) weakly diagonally
dominant. If this is strongly violated, there is no guarantee that the method converges.

We are not going to discuss nonsymmetric problems in detail here but rather present
results for a typical example from a class of nonsymmetric problems for which AMG
provides robust and fast convergence. This is the class of convection-dominant equations

−ε�u+ a(x, y)ux + b(x, y)uy = f (x, y) (A.8.25)

with some small ε > 0, discretized by standard first-order upwind differences. Note that
the resulting discretization matrices are off-diagonally negative.

Generally, for such equations, AMG converges very quickly, in particular, if the char-
acteristics are straight lines. Heuristically, this is an immediate consequence of AMG’s
coarsening strategy. Since strong connections are only in the upstream direction, interpo-
lation to any F-point i will typically use relatively many of them for interpolation and,
consequently be rather accurate in the sense of AMG. Thus, the reason for fast convergence
is essentially algebraic, and not a consequence of smoothing in the usual sense.

When the characteristics change over the region, the simple directionality of the strong
connections on coarser grids is lost, and AMG will exhibit a more typical convergence
behavior. As an example, consider a worst case problem given by selecting

a(x, y) = − sin(πx) cos(πy) and b(x, y) = sin(πy) cos(πx), (A.8.26)

f (x, y) ≡ 1 and u = sin(πx)+ sin(13πx)+ sin(πy)+ sin(13πy) on the boundary of the
unit square. Finally, we set ε = 10−5.

The major difficulty with this particular example is that a and b are chosen to yield closed
characteristics and a stagnation point in the center of the domain. Consequently, (A.8.25)
becomes more and more singular for ε −→ 0. For ε = 0, the continuous problem is no
longer well defined: any function which is constant along the characteristic curves, solves
the homogeneous equation. According to the results shown in [292], geometric multigrid
approaches have serious difficulties with this example: covergence becomes very slow and
mesh dependent.
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Figure A.36. (a) Solution contours; (b) standard coarsening pattern.
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Figure A.37. (a) Average reduction factors; (b) convergence histories for N = 512.

Figure A.36 depicts the coarsening strategy performed by AMG. Since strong connec-
tivity is in the circular direction only, AMG attempts to not coarsen in the radial direction
(within the limits imposed by the grid).

Figure A.37(a) shows average reduction factors of some AMG cycles if used as a pre-
conditioner for BI-CGSTAB [397]. In all cases, instead of CF-relaxation, we employed sym-
metric Gauss–Seidel relaxation for smoothing (which usually gives faster convergence for
convection dominant problems). The figure shows rapid convergence in all cases. In partic-
ular, the cycles using standard coarsening, on average reduce the residual by approximately
two orders of magnitude per BI-CGSTAB iteration. (Note that each BI-CGSTAB iteration
involves the performance of two AMG cycles.) The VA2(S)-cycle still converges very fast
(better than 0.1 reduction per iteration) but exhibits a relatively significant h-dependency.
Figure A.37(b) shows the convergence histories of cycles with and without acceleration.
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Table A.9. Complexities and computing times (N = 512).

Times (sec)/Pentium II, 300 MHz

Complexities Stand-alone BI-CGSTAB
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

AMG1R5 3.94 2.11 9.72 2.94 180.2 (58)
VS(S) 3.33 1.92 12.0 3.48 88.6 (22) 7.52 64.8 (7)
FS(S) ” ” ” 8.34 95.4 (10) 17.3 98.4 (5)
VA2(S) 2.58 1.68 9.62 2.87 107.1 (34) 6.22 78.0 (11)
VS(S-1F,0.02) 5.14 1.94 89.3 4.93 138.6 (10) 10.4 141.2 (5)

Table A.9 shows detailed performance measurements for N = 512. The accelerated
VS(S) cycle requires seven iterations to reduce the residual by ten orders of magnitude,
the accelerated FS(S)- and VS(S-1F)-cycles only require five cycles. In terms of total cost,
however, the accelerated standard cycle is the most efficient. Note that acceleration by
BI-CGSTAB is not really effective here for those cycles which exhibit a fast stand-alone
convergence (FS(S) and VS(S-1F)). Although acceleration reduces the number of iterations
by a factor of two, there is no gain in computational time since, as mentioned above, each
BI-CGSTAB iteration requires the performance of two AMG cycles. However, for the
other cycles, acceleration is beneficial. Regarding the relatively high memory requirement
observed in the table, note that we have a similar “fan out” effect (in the upstream direction)
as described in the previous section (cf. Remark A.8.11).

A.8.5.3 Indefinite problems
We consider the Helmholtz equation (with constant c)

−�u− cu = f (x, y) (c ≥ 0) (A.8.27)

on the unit square with homogeneous Dirichlet boundary conditions. Discretization is on a
regular mesh with fixed mesh size h = 1/N using the standard five-point stencil,

1

h2

⎡⎣ −1
−1 4 − ch2 −1

−1

⎤⎦ . (A.8.28)

The corresponding discretization matrix,Ac, is nonsingular as long as c does not equal any
of the eigenvalues

λn,m = 2

h2
(2 − cos nπh− cosmπh) (n,m = 1, 2, . . . , N − 1) (A.8.29)

of the corresponding discrete Laplace operator, A0. If c = λn,m (= λm,n), Ac is singular
and its nullspace is spanned by the eigenfunctions

φn,m = sin(nπx) sin(mπy) and φm,n = sin(mπx) sin(nπy) (A.8.30)

of A0 corresponding to the eigenvalue λn,m.
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Figure A.38. Convergence factor of stand-alone VS(S)-cycle as a function of c (h = 1/256).

Ac is positive definite as long as c is smaller than the first eigenvalue of A0, that is, if
c < λ1,1. However, according to Section A.4.2.1 (see Example A.4.1), we have to expect a
performance degradation of AMG if c approaches λ1,1. This is demonstrated in Fig. A.38
where the convergence factor of the VS(S)-cycle (used stand-alone) is depicted as a function
of c (for h = 1/256). Indeed, if c approaches λ1,1 = 2π2 + O(h2), AMG’s convergence
factor tends to one. Example A.4.1 showed that, in order to avoid this, interpolation in AMG
necessarily would have to approximate φ1,1 increasingly better if c → λ1,1.

If c > λ1,1, Ac is no longer positive definite. Nevertheless, Fig. A.38 shows that AMG
converges at a slightly reduced rate as long as c remains comfortably between the first two
eigenvalues (the second eigenvalue being λ1,2 = λ2,1 ≈ 49.4). Increasing c further, we see
that AMG converges as long as c remains comfortably between consecutive eigenvalues,
but that this convergence becomes poorer and poorer. By the time c approaches the sixth
eigenvalue (c ≈ 150), AMG diverges, even for c in the “valleys” between the eigenvalues.
This degradation occurs because the Gauss–Seidel relaxation, although it still has good
smoothing properties (on the finer levels), diverges for all (smooth) eigenfrequencies φn,m
with λn,m < c. Consequently, as in usual geometric multigrid, the overall method will
still converge as long as the coarsest level used is fine enough to represent these smooth
eigenfrequencies sufficiently well (and a direct solver is used on that coarsest level). That
is, the size of the coarsest level limits the convergence of AMG when c becomes larger: the
more variables are represented on the coarsest level, the higher the value of c for which AMG
converges. (In the above computations, we used five AMG levels resulting in a coarsest grid
containing 500 variables.)

If we use the VS(S)-cycle as a preconditioner for BI-CGSTAB rather than stand-alone,
we obtain reasonable convergence for much larger values of c. This is demonstrated in
Fig. A.39(a) which shows the average reduction factor of VS(S)/BI-CGSTAB as a function
of c in solving the homogeneous problem with the first approximation being constant to
one. (The values shown are the average reduction factors per BI-CGSTAB iteration, each
of which requires two AMG iterations, observed in reducing the residual by eight orders
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Figure A.39. (a) Average reduction factor of the VS(S)/BI-CGSTAB-cycle as a function of c
(h = 1/256); (b) solution of (A.8.27) for f (x, y) ≡ 1 and c = 1000.

of magnitude.) The figure shows that acceptable convergence is achieved up to c ≈ 1000
(close to the 40th eigenvalue of A0). Figure A.39(b) shows the solution of (A.8.27) for
f (x, y) ≡ 1 and c = 1000.

For even larger values of c the average reduction factor per iteration is only 0.8–0.9.
Finally, for c > 2100, AMG breaks down since some diagonal entries in the coarsest level
Galerkin operator become negative. As before, we used five levels for all computations.
Decreasing the number of levels (i.e. increasing the number of variables on the coarsest
level) gives convergence for even larger values of c. In any case, however, the size of c
permitted will remain limited. We will not discuss this problem any further since it is well-
known that the efficient solution of Helmholtz equation with very large values of c requires
different algorithmical approaches [79].

A.9 AGGREGATION-BASED ALGEBRAIC MULTIGRID

In this section, we consider a particularly simple limiting case of the AMG approach dis-
cussed in this appendix, namely, the case that interpolation is defined such that each F-
variable interpolates from exactly one C-variable. That is, although each F-variable i may
have more than one connection to the set of C-variables, the sets of interpolatory variables,
Pi , are restricted to contain exactly one C-variable each. According to Section A.4.2, the
corresponding interpolation weight should equal one if the ith row sum of the given matrix
is zero. To simplify interpolation further, let us always define this weight to be one even if
the ith row sum of the given matrix is not zero.

Consequently, the total number of variables can be subdivided into “aggregates” Ik
where k ∈ C and Ik contains (apart from k itself) all indices i corresponding to F-variables
which interpolate from variable k (see Fig. A.40). With this notation, the computation of
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Figure A.40. Subdivision of fine-level variables into aggregates. The arrows indicate which
C-variable an F-variable interpolates from.

the Galerkin coarse-level operator now becomes very simple. One easily sees that

IHh AhI
h
H = (aHkl ) where aHkl =

∑
i∈Ik

∑
j∈Il

ahij (k, l ∈ C), (A.9.1)

that is, the coefficient aHkl is just the sum of all crosscouplings between Ik and Il .
Obviously, regarding the coefficients aHkl , the particular role of the variables k and l

(as being C-variables) is not distinguished from the other variables. In fact, the Galerkin
operator merely depends on the definition of the aggregates. Consequently, we might
as well associate each aggregate Ik with some “new” coarse-level variable which has
no direct relation to the C-variable k. The above interpolation is nothing else than
piecewise constant interpolation from these new coarse-level variables to the associated
aggregates.

This leads to the so-called aggregation-type AMG approaches [51, 398, 399] which
had originally been developed the other way around: coarsening is defined by building
aggregates (rather than constructing C/F-splittings), a new coarse-level variable is associ-
ated with each aggregate and interpolation is defined to be piecewise constant. The above
description indicates that the aggregation approach can be regarded as a limiting case of
the approach considered in this appendix (which started from the interpretation that the
coarse-level variables form a subset of the fine-level ones; see Remark A.2.2).

Clearly, for a given subdivision into aggregates to be reasonable, all variables in the same
aggregate should strongly depend on each other. Otherwise, piecewise constant interpolation
makes no real sense. Since directionality of strength of connectivity plays no role in this
approach, strength of connectivity is most naturally defined in a symmetric way. More
precisely, one usually defines two variables i and j to be strongly connected to each other
if a2

ij /aiiajj exceeds a certain size.
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Unfortunately, an immediate implementation of this simple coarsening and inter-
polation approach leads to rather inefficient AMG cycles, even if used as a precon-
ditioner. Convergence will be very slow and not at all robust (see Section A.4.2.1
(Variant 4)). In particular, V-cycle convergence will exhibit a strong h-dependency
if applied to differential problems. In fact, if regarded as a limiting case of the
approach considered in this appendix, the aggregation approach just forces worst
case situations as discussed in Section A.6 (see Example A.6.1). By the definition of
the approach, remedies to avoid such worst-case situations in practice (by a proper
distribution of the C- and F-variables) as discussed in Section A.6, cannot be real-
ized here. Finally, piecewise constant interpolation cannot account for any potential
oscillatory behavior of the error and, thus, is not suitable if there are strong positive
couplings.

Consequently, the basic idea of aggregation-based AMG needs certain improvements in
order to become practical. In the following sections, we sketch two possibilities introduced
in [51] and [398, 399], respectively. Since we just want to highlight the main ideas, we
restrict ourselves to simple but characteristic (Poisson-like) problems.

At this point, for completeness, we also mention [106], where the concept of aggregation
was introduced for the first time.

A.9.1 Rescaling of the Galerkin Operator

It has been demonstrated [51] that the coarse-grid correction of smooth error, and by this the
overall convergence, can often be substantially improved by using “overinterpolation”, that
is, by multiplying the actual correction (corresponding to piecewise constant interpolation)
by some factor α > 1. Equivalently, this means that the coarse-level Galerkin operator is
rescaled by 1/α,

IHh AhI
h
H −→ 1

α
IHh AhI

h
H .

To motivate this approach, let us consider the simplest case that Ah is derived from
discretizing −u′′ on the unit interval with mesh size h, i.e. the rows of Ah correspond to
the difference stencil

1

h2
[−1 2 −1]h

with Dirichlet boundary conditions. Let us assume any error, eh, to be given which satisfies
the homogeneous boundary conditions. If no rescaling is done (α = 1), the variational
principle (last statement in Corollary A.2.1) tells us that the two-level correction, IhH e

H ,
is optimal in the sense that it minimizes ‖eh − IhH e

H ‖1 w.r.t. all possible corrections in

R(IhH ). Because of (A.3.13) this means that IhH e
H minimizes

‖vh‖2
1 = (Ahv

h, vh)E = 1

2h2

∑
i,j

′
(vhi − vhj )2 +

∑
i

si(v
h
i )

2 (A.9.2)
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Figure A.41. Optimal approximation I hH e
H of eh w.r.t. the energy norm.

where vh = eh − IhH e
H . (The prime indicates that summation is only over neighboring

variables i and j .) This, in turn, means that, away from the boundary (where we have
si = 0), the Euclidean norm of the slope of vh is minimal. At the boundary itself we have
si �= 0, and vh equals zero.

The result of this minimization is illustrated in Fig. A.41 (see also [51, 67]), assuming
the aggregates to be built by joining pairs of neighboring variables (marked by dashed
boxes). We here consider a smooth error eh in the neighborhood of the left boundary
of the unit interval. On each aggregate, interpolation is constant and the slope of IhH e

H

necessarily vanishes. On the remaining intervals, the Euclidean norm of the slope of vh

becomes minimal if the slope of IhH e
H equals that of eh. Consequently, IhH e

H has, on the
average, only half the slope of eh.

This simple argument illustrates that the optimal approximation of eh by elements
in R(IhH ) w.r.t. the energy norm does not approximate to the actual values of eh.
Multiplying the resulting approximation by a factor of α = 2 gives a much more
effective correction in this sense. Note that subsequent smoothing smooths out the
“wiggles”, but does not improve the quality of the correction.

Remark A.9.1 Note that the above aggregation approach for the model problem −u′′
coincides with the approach considered in Example A.6.1, where we have shown that
the Galerkin operator is off by a factor of two. In fact, we could have used this result
immediately to show that a rescaling of the Galerkin operator by α ≈ 2 makes sense.
However, the above considerations show the origin of the problem more clearly, namely,
the inability of piecewise constant interpolation to approximate the values of smooth error if
approximation is based on the energy norm. Piecewise linear (second-order) interpolation
would not exhibit this problem (see the next section). �

The main argument carries over to the Poisson equation in 2D and 3D, assuming a
uniform grid and the aggregates to be built by 2 × 2 and 2 × 2 × 2 blocks of neighboring
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variables, respectively. For more general problems and/or different grids, the optimal weight
is no longer α = 2. Nevertheless, it has been demonstrated [51] that a slightly reduced
value of α = 1.8 (in order to avoid “overshooting”) yields substantially improved V-cycle
convergence for various types of problems, at least if the cycle is used as a preconditioner
and if the number of coarser levels is kept fixed (in [51] four levels are always used).
Smoothing is done by symmetric Gauss–Seidel relaxation sweeps.

Clearly, the robustness and efficiency of this (very simple and easy to program) approach
are somewhat limited since a good value ofα depends on various aspects such as the concrete
problem, the type of mesh and, in particular, the size of the aggregates. For instance, if the
aggregates are composed of three neighboring variables (rather than two) in each spatial
direction, the same arguments as above show that the best weight would be α ≈ 3 in the
case of Poisson’s equation. If the size of the aggregates varies over the domain, it becomes
difficult to define a good value for α.

A.9.2 Smoothed Aggregation

Another approach to accelerate aggregation-based AMG has been developed [398–400].
Here, piecewise constant interpolation is only considered as afirst-guess interpolation which
is improved by some smoothing process (“smoothed aggregation”) before the Galerkin
operator is computed. In [398, 399], this smoothing is done by applying one ω-Jacobi
relaxation step.

The operator corresponding to piecewise constant interpolation is denoted by Ĩ hH . Then
the final interpolation operator used is defined by

IhH = (Ih − ωD−1
h A

f
h )Ĩ

h
H

where Dh = diag(Afh ) and Afh is derived from the original matrix Ah by adding all weak
connections to the diagonal (“filtered matrix”). That is, given some coarse-level vector
eH , eh = IhH e

H is defined by applying one ω-Jacobi relaxation step to the homogeneous

equations Afh v
h = 0 starting with the first approximation Ĩ hH e

H . (Note that this process
will increase the “radius” of interpolation and, hence, destroy the simplicity of the basic
approach. Note also that Jacobi relaxation here serves a quite different purpose from the
Jacobi F-relaxation in Section A.5.1.3.)

To illustrate this process, we again consider the 1D case of −u′′ and assume the aggre-
gates to consist of three neighboring variables (corresponding to the typical size of aggre-
gates used in [398, 399] in each spatial direction). Note first that, since all connections are
strong, we have Afh = Ah. Figure A.42 depicts both the piecewise constant interpolation
(dashed line) and the smoothed interpolation obtained after the application of one Jacobi-
step with ω = 2/3 (solid line). Obviously, the smoothed interpolation just corresponds to
linear interpolation if the coarse-level variables are regarded as the fine-level analogs of
those variables sitting in the center of the aggregates.

In order to see this explicitly, we use the notation as introduced in the figure and note
that the result of piecewise constant interpolation is

ẽi,k−1 = ek−1, ẽi,k = ek and ẽi,k+1 = ek+1 (i = −1, 0, 1). (A.9.3)
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e
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Figure A.42. Piecewise constant versus smoothed interpolation.

The application of oneω-Jacobi step as formally described above, using ẽ as thefirst approx-
imation, means that the final interpolated values within the aggregate Ik (and analogously
in all other aggregates) are computed as follows:

e−1,k = ẽ−1,k + ω(e−1,k − ẽ−1,k) where e−1,k = 1
2 (ẽ1,k−1 + ẽ0,k),

e1,k = ẽ1,k + ω(e1,k − ẽ1,k) where e1,k = 1
2 (ẽ0,k + ẽ−1,k+1),

e0,k = ẽ0,k + ω(e0,k − ẽ0,k) where e0,k = 1
2 (ẽ−1,k + ẽ1,k).

Inserting (A.9.3), this gives

e−1,k = ω

2
ek−1 +

(
1 − ω

2

)
ek, e1,k =

(
1 − ω

2

)
ek + ω

2
ek+1 and e0,k = ek.

The special choice ω = 2/3 indeed leads to linear interpolation as pointed out above,

e−1,k = 1
3ek−1 + 2

3ek , e1,k = 2
3ek + 1

3ek+1 and e0,k = ek.

Remark A.9.2 Linear interpolation does not exhibit a scaling problem as
described in the previous section for piecewise constant interpolation. In fact, for
the above model case, one can easily compute the Galerkin operator to be

1

(3h)2
[−3 6 −3]3h

which, after proper scaling of the restriction operator by 1/3, is seen to exactly
correspond to the “natural” 3h-discretization of −u′′. �

Of course, in more general situations, relaxation of piecewise constant interpolation
will not give exact linear interpolation any more and a good choice of ω depends on the
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situation. Nevertheless, even if ω = 2/3 is kept fixed, the interpolation will typically be
much better than for the piecewise constant one. This is demonstrated in [399] by means of
various 2D and 3D examples. (Smoothing is done by a mixture of Gauss–Seidel and SOR
sweeps.) Note that a good value for ω depends not only on the problem and the underlying
mesh, but also on the size of the aggregates. In [398], the tendency is to compose aggregates
of three neighboring variables in each spatial direction. If, instead, only two neighbors were
aggregated in each spatial direction (as in the previous section), one easily sees by similar
arguments that ω ≈ 0.5 should be chosen.

We now compare the performance of RAMG05 with that of the aggregation-based
AMG code distributed by Vanek et al. [398]. We want to stress that this is not meant to be
any kind of judgement on the underlying approaches; too much can still be improved in
either approach. We simply want to point out the differing behavior of the interpolations as
currently used in these two codes.

In general, both codes perform comparably if applied to relatively smooth (Poisson-
like) problems. Sometimes RAMG05 is slightly faster and sometimes the aggregation-
based code. A major advantage of aggregation-type AMG is that, typically, it needs less
memory than RAMG05 (due to its very fast coarsening which causes a lower operator
complexity cA). On the other hand, the aggregation-based code seems to require accel-
eration by conjugate-gradient to maintain its efficiency and robustness in more complex
situations. Since RAMG05 puts more effort into the construction of interpolation and per-
forms a slower coarsening, its performance seems to depend to a lesser extent on aspects
such as strong discontinuities. This is demonstrated in Table A.10 for three examples all
of which exhibit strong anisotropies or discontinuites. The results clearly show that, at
least for the kind of problems considered here, aggregation-based AMG behaves criti-
cally if used stand-alone (with total computing times being higher than those of RAMG05
by factors of 8.5 to 16). However, if used as a preconditioner, efficiency substantially
increases.

A.10 FURTHER DEVELOPMENTS AND CONCLUSIONS

The AMG approach described here has been seen to provide very robust and efficient
methods for solving certain types of matrix equations, such as those arising in the numerical
solution of (scalar) elliptic PDEs. This has been demonstrated by a variety of applications
of different type, on structured as well as unstructured grids, in 2D and 3D. Although all
applications were geometrically based and many of them were even defined on very simple
grids, AMG did not make use of any information other than that contained in the given
matrix. The only reason for also considering certain model problems on simple geometries
was that they most easily allow the investigation of AMG’s asymptotic behavior as well
as its dependency on various specific aspects such as anisotropies, discontinuities, singular
perturbations and the like. AMG’s performance in geometrically complex situations is
comparable as was demonstrated by some examples.

From a practical point of view, this is the main strength of AMG. It is applicable to
complex geometric situations, independent of the spatial dimension, and it can be applied
to solve certain problems which are out of the reach of geometric multigrid, in particular,
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Table A.10. Complexities and computing times.

Times (sec)/IBM Power PC, 333 MHz

Complexities Stand-alone Conjugate gradient
Setup

Method cA cG time Cycle ε0 = 10−10 Cycle ε0 = 10−10

Example from Section A.8.4, h = 1/512

Aggregat. AMG 1.56 1.31 10.7 2.04 245.4 (115) 2.48 57.90 (19)

VS(S) 2.52 1.79 4.86 1.74 27.49 (13) 2.11 21.71 (8)
FS(S) 2.52 1.79 4.86 3.30 21.42 (5) 3.64 19.52 (4)
VA2(S) 2.14 1.58 4.76 1.45 19.28 (10) 1.81 19.25 (8)

Example from Section A.8.4 (one million cell case)

Aggregat. AMG 2.64 1.29 108. 17.0 4634. (266) 19.1 414.4 (16)

VS(S) 2.85 1.56 43.8 10.5 401.2 (34) 12.6 245.1 (16)
FS(S) 2.85 1.56 43.8 17.5 288.6 (14) 19.5 258.2 (11)
VA1(S) 1.41 1.13 26.7 5.56 476.4 (81) 7.67 210.7 (24)

Example from Section A.8.5, h = 1/512, α = 20◦

Aggregat. AMG 1.22 1.13 11.2 2.10 1610. (762) 2.37 191.5 (76)

VS(S) 3.24 1.84 8.82 2.57 186.2 (69) 3.03 81.66 (24)
FS(S) 3.24 1.84 8.82 5.03 129.6 (24) 5.43 74.12 (12)
VA2(S) 1.72 1.41 6.09 1.54 103.3 (63) 1.99 49.86 (22)

problems with no geometric or continuous background at all (as long as the underlying
matrix satisfies certain conditions). That is, AMG provides an attractive multilevel variant
whenever geometric multigrid is either too difficult to apply or can not be used at all.

Clearly, AMG should not be regarded as a competitor for geometric multigrid. Whenever
geometric multigrid can be applied efficiently, it will usually be superior. Instead, AMG
should be regarded as an efficient alternative to standard numerical methods such as CG
accelerated by typical (one-level) preconditioners. AMG not only converges much faster
but its convergence is, to a large extent, also independent of the size of the given problem.
Although designed to be used stand-alone, practical experience has clearly shown that one
often can increase efficiency further by using AMG as a preconditioner. We have seen that
cheaper (e.g. low-memory) AMG variants, used as a preconditioner, are often better than
more sophisticated ones applied stand-alone.

Further developments and applications which are close to the original AMG ideas are
contained in [105, 160, 166, 200, 222, 263, 265, 310, 436, 437]. Related approaches, but with
a focus on different coarsening and interpolation strategies, are found in [147, 214]. AMG
methods based on smoothed aggregation (see Section A.9.2) are an efficient alternative to
standard AMG, at least if employed as a preconditioner rather than stand-alone. Applications
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of the (nonsmoothed) aggregation-type approach in computationalfluid dynamics are found
in [250, 309, 326, 413].

Many aspects have not been addressed in this introduction, for instance, the further
improvement of interpolation. The focus of this introduction was on purely matrix-based
approaches. However, as long as interpolation is defined merely on the basis of the algebraic
information contained in the given matrix, its “quality” (assuming an adequate geometric
problem to be given) is somewhat limited. Although, for all type of problems considered
here, this could be compensated for by a proper arrangement of the algorithm, in general
this limitation is the major reason for the fact that the two-level theory presented does not
carry over to a V-cycle theory (proving V-cycle convergence factors which are independent
of the size of the given problem). Generally, the more effort is put into the construction
of the interpolation, the faster the convergence can be, but, unfortunately, the required
numerical work may increase even faster. That is, the main problem in designing efficient
AMG algorithms is the trade-off between convergence and numerical work, and keeping
the balance between the two is the ultimate goal of any practical algorithm.

Moreover, there are still many applications for which algebraically defined interpolation,
and hence the resulting AMG performance, are not yet satisfactory. For instance, one of the
major current research activities in AMG aims at its generalization to efficiently treating
systems of PDEs such as linear elasticity problems. Although AMG has successfully been
applied to various cases [51, 90, 256, 334, 399], its development has not yet reached the
state where a particular approach is well accepted. However, even for scalar applications,
there are still questions about the best ways to define coarsening and interpolation, for
instance, if the given matrix is symmetric positive definite, contains relatively large positive
off-diagonal entries, and is far from being weakly diagonally dominant. In such cases, the
performance of classical AMG may be only suboptimal.

It is often possible to avoid such situations by simplifying the given matrix before apply-
ing AMG [312]. One can also imagine situations where it would be advantageous (and easy)
to provide AMG with some additional information on the problem at hand. For instance,
information on the geometry (in terms of point locations) or more concrete descriptions
on what an “algebraically smooth” error looks like (e.g. in form of some user-provided
“test-vector(s)”). This additional information can be used to fit AMG’s interpolation in
order to approximate certain types of error components particularly well. Straightforward
possibilities have already been indicated [334].

In the following, we briefly summarize a few more recent approaches to defining inter-
polation which aim at increasing the robustness in cases such as those mentioned above.

A new way to construct interpolation (AMGe, [90]) starts from the fact that an alge-
braically smooth error is nothing but an error which is slow to converge w.r.t. the relaxation
process. Hence, an algebraically smooth error, generally, corresponds to the eigenvectors
of A belonging to the smallest eigenvalues. Instead of defining interpolation by directly
exploiting (A.3.11), the goal in [90] is to define interpolation so that the smaller the asso-
ciated eigenvalue is, the better eigenvectors are interpolated. To satisfy this by explicitly
computing eigenvectors is, of course, much too expensive. However, in the case of finite
element methods, assuming the element stiffness matrices to be known, one can derive mea-
sures (related to measures used in classical multigrid theory) whose minimization allows
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the determination of local representations of algebraically smooth error components in the
above sense. The added robustness has been demonstrated [90] by means of certain model
applications. However, the approach is still in its infancy. Significant development work
still has to be done to link the processes of coarsening and interpolation definition in order
to obtain an optimal algorithm. However, it is an interesting new approach which has the
potential to lead to more generally applicable AMG approaches.

Other algebraic approaches, designed for the solution of equations derived from finite
element discretizations, have been considered [256, 409]. Both approaches are aggregation
based and the coarse-space basis functions are defined so that their energy is minimized
in some sense. (In the finite element context it is natural to define interpolation implic-
itly by constructing the coarse-space basis functions.) This does not require the element
stiffness matrices to be known, but leads to a global (constraint) minimization problem
the exact solution of which would be very expensive. However, iterative solution processes
are proposed in both papers to obtain approximate solutions, indicating that the extra work
(invested in the setup phase) is acceptable. While [409] concentrates on scalar applications,
an extension to systems of PDEs (from linear elasticity) is a major aspect in [256]. Special
attention is paid to the correct treatment of zero-energy modes (e.g. rigid-body modes in
case of linear elasticity): such modes should be contained in the span of the coarse-space
basis functions, at least away from Dirichlet boundaries. (Note that, for typical scalar prob-
lems, this corresponds to the requirement that constants should be interpolated exactly away
from Dirichlet boundaries, see Remark A.4.1.) It is interesting that the approach in [256]
can be regarded as an extension of the earlier work [399] on smoothed aggregation: if only
one iteration step is performed to approximately solve the energy minimization problem,
the resulting method coincides with the smoothed aggregation approach. In contrast to the
latter, however, further iterations will not increase the support of the basis functions (i.e., the
radius of interpolation). Some test examples [256] indicate the advantages of this new inter-
polation in terms of convergence speed. Unfortunately, however, this benefit is essentially
offset by the expense of the minimization steps.

There are various other papers with focus on the development of multigrid methods to
solve finite element problems on unstructured grids. Although some of them are also based
on algorithmical components which are, more or less, algebraically defined, most of them
are not meant to be algebraic multigrid solvers in the sense considered in this appendix.
We therefore do not want to discuss such approaches further but rather refer, for example,
to [104] and the references given therein.

In the approach of [407], A is not assumed to be symmetric, and interpolation and
restriction are constructed separately. Interpolation, for instance, is constructed so that a
smooth error, Sheh, is interpolated particularly well w.r.t. the Euclidean norm, ‖.‖E . More
precisely, the attempt is to make ∥∥Sheh − IhH eH

∥∥
E
,

where eH denotes the straight injection of Sheh to the coarse level, as small as possible
(cf. (A.5.1)). In [407], this leads to certain local minimizations which are used to find, for
each variable, pairs of neighboring variables which would allow a good interpolation in
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the above sense, and, at the same time, compute the corresponding weights (of both the
interpolation and the restriction). Based on this information, a C/F-splitting is constructed
which allows each F-variable to interpolate from one of the pairs found before. A heuristic
algorithm is used to minimize the total number of C-variables.

In this context, we want to point out that, although standard AMG has been developed
within the variational framework, it has successfully been applied to a large number of
nonsymmetric problems without any modification. This can be explained heuristically, but
no theoretical justification is available at this time. In the context of smoothed aggregation-
based AMG, a theoretical analysis can be found in [168].

An important aspect which has not been addressed in this appendix is the parallelization
of AMG. An efficient parallelization of AMG is rather complicated and requires certain
algorithmical modifications in order to limit the communication cost without significantly
sacrificing convergence. Most parallelization approaches investigated up to now either refer
to simple aggregation-based variants [326] or use straightforward domain decomposition
techniques (such as Schwarz’ alternating method) for parallelization. A parallelization strat-
egy which stays very close to the standard AMG approach has been presented [223]. Results
for complex 3D problems demonstrate that this approach scales reasonably well on dis-
tributed memory computers as long as the number of unknowns per processor is not too
small. The method discussed in [407] is also available in parallel. There are several further
ongoing parallelization activities, for instance, at the University of Bonn and the Lawrence
Livermore National Laboratory [110] and the Los Alamos National Laboratory, but no
results have been published to date.

It is beyond the scope of this introduction to discuss the variety of hierarchical alge-
braic approaches which are not really related to the multigrid idea in the sense that
these approaches are not based on the fundamental multigrid principles of smoothing and
coarse-level correction. There is actually a rapid and very interesting ongoing development
of such approaches. For completeness, we include some references. Various approaches
based on approximate block Gauss elimination (“Schur-complement” methods) are found
in [8, 10–12, 115, 282–284, 313, 406]. Multilevel structures have also been introduced into
ILU-type preconditioners [338]. Recently, some hybrid methods have been developed which
use ideas both from ILU and from multigrid [21–23, 314–316]. For a further discussion,
see [408].

Summarizing, the development of hierarchically operating algebraic methods to effi-
ciently tackle the solution of large sparse, unstructured systems of equations is currently
one of the most active fields of research in numerical analysis. Many different methods
have been investigated but, so far, none of them is really able to efficiently deal with all
practically relevant problems. All methods seem to have their range of applicability but all
of them may fail to be efficient in certain other applications. Hence, the development in this
exciting area of research is expected to continue for a while.
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This is an introduction to the modern theory of iterative subspace correction methods for
solving symmetric positive definite variational problems in a Hilbert space. The basics of
stable space splittings and the convergence properties of additive and multiplicative Schwarz
methods are given in the form of a discussion rather than a rigorous mathematical treatment.
The standard applications to multigrid algorithms and domain decomposition schemes are
covered. The examples are based on finite difference discretizations of Poisson’s equation,
and are adapted to the main material of the book which is oriented towards a more practically
oriented user of multigrid methods in large-scale applications in the engineering sciences.

B.1 INTRODUCTION

This monograph concentrates on the efficient parallel implementation of multigrid methods
for PDE discretizations and emphasizes quantitative multigrid theory. The present appendix
is complementary, and provides a bridge to the state-of-the-art qualitative multigrid theory.
By qualitative we mean the analysis of optimality of multigrid algorithms and other methods
used in scientific computing in the asymptotic range, i.e. if the mesh parameter h in the
discretization of the problem tends to 0 and, consequently, the number of equations tends
to infinity. Even though we believe that the distinction between quantitative and qualitative
multigrid theories is more of a philosophical nature, both appear to have their merits and
shortcomings. Using the qualitative theory, the optimal O(N) operation count of a FMG-
cycle to solve a finite difference or finite element discretization of a second-order elliptic
PDE problem within discretization error can be rigorously justified under conditions that
are much more general than those required by the quantitative theory. Nonuniform grids and
nested refinement can easily be treated. However, no specification of the size of the constants
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in the O(N) estimate can be given. Neither approach can give a satisfactory treatment of the
robustness problem at large, they do not provide reliable performance estimates for problems
with strongly varying coefficients or predominantly nonsymmetric or indefinite behavior
such as convection–diffusion problems or Helmholtz equations. Some recent developments
in the qualitative theory have led to a unified treatment of seemingly different types of
iterative solution methods for operator equations, including multigrid algorithms, domain
decomposition methods,fictitious domain methods, but also “old-fashioned” block-iterative
solvers. A simplified version of this modern theory of subspace correction methods will be
outlined below, together with examples for multigrid and domain decomposition algorithms.

The basic idea of subspace correction methods consists in the following (in later places,
we will replace the matrix notation used at this moment by an operator notation which will
make it easier to see connections with other concepts, e.g. from applied Fourier analysis).
Given a linear system

Lu = f (B.1.1)

of large dimension N , in a subspace correction method we use a finite number of auxiliary
problems

L̃j ũj = f̃j , j = 1, . . . , J, (B.1.2)

of usually smaller dimension Nj (N1 + · · · + NJ ≥ N ). Note that in some applications
the L̃j are just diagonal submatrices of L and the ũj subvectors of u which has led to
the synonym subproblems or subspace problems for (B.1.2). However, the main implicit
assumption is that any of the L̃j is invertible, and that the auxiliary problems (B.1.2) can
be solved fast, typically, in O(Nj ) operations. Finally, simple prolongation matrices Pj of
dimension N ×Nj and restriction matrices Rj of dimension Nj ×N are necessary to link
the subproblems (B.1.2) to the original system (B.1.1). In analogy with classical iterative
methods such as Jacobi and Gauss–Seidel iterations, we can now define the two prototypes
of algorithms for the solution of (B.1.2) based on the subproblems (B.1.2) and the given set
of prolongation and restriction matrices.

Additive subspace (AS) correction method uk+1 = AS(ω, uk, L, f ; L̃j , Pj , Rj )

(1) Residual computation
Compute rk = f − Luk .

(2) Restriction and solution of independent subspace problems
For j = 1, . . . , J , compute ṽkj = L̃−1

j Rj r
k .

(3) Prolongation and update
Compute uk+1 = uk + ω∑J

j=1 Pj ṽ
k
j .

The error iteration matrix for this AS iteration becomes

MAS = I − ωBL, B =
J∑
j=1

Pj L̃
−1
j Rj , (B.1.3)
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where B can be considered as preconditioner for L associated with the given choice of
subspace problems (B.1.2), more precisely, with the choice of {L̃j , Pj , Rj: j = 1, . . . , J }.
The relaxation parameterω is introduced for convenience, it could be replaced by individual
relaxation parametersωj , j = 1, . . . , J , and can be interpreted as a way of correctly scaling
the subspace problems (B.1.2) with respect to the original system (B.1.1). Formally, the
multiplication by B looks very suitable for parallelization, however, the parallel efficiency
truly depends on the choices for L̃j , Pj , Rj . Obviously, the iteration AS as detailed above
generalizes the ω-Jacobi relaxation (for details, see Section B.3).

As it may be anticipated from its description, the AS method is usually not very fast.
A more efficient way to use the subproblems to compose an iterative method for (B.1.1)
seems to be the following analog of a SOR relaxation.

Multiplicative subspace (MS) correctionmethod uk+1 = MS(ω, uk, L, f ; L̃j , Pj , Rj )

(1) Initialization
Set v1 = uk .

(2) Loop through subspace problems for j = 1, . . . , J ,
Compute rj = f − Lvj .
Restrict and solve a subspace problem ṽ

j
j = L̃−1

j Rj r
j .

Compute prolongation and update vj+1 = vj + ωPj ṽjj .
(3) Exit

Set uk+1 = vJ+1.

The error iteration matrix for the MS method possesses a product representation as follows:

MMS = (I − ωPJ L̃−1
J RJL) · · · (I − ωP1L̃

−1
1 R1L). (B.1.4)

At first glance, the sequential nature of the MS iteration and the computation of residuals
involving L in each step of the inner loop seem to make the algorithm less attractive
for parallel implementations. However, a closer look at the implementation of the MS
method reveals that such a statement is again dependent on the particular setting. The MS
algorithm can be modified in several important directions, most importantly, the ordering
of the subspace problems now matters (this is analogous with differences between GS-LEX
and GS-RB) and subspaces can be used repeatedly in one loop. Some of these variations
will be mentioned in Section B.3.

In Sections B.2 and B.3, we will present the abstract theory of subspace correction meth-
ods for the case of symmetric positive definite systems (B.1.1). This “soft” theory requires
only knowledge about the basics of Hilbert spaces and classical numerical linear algebra.
We provide examples, partly with finite element background, that should help readers to
understand the concepts and the results. In Section B.4, we examplify the application of
this theory to multigrid methods by deriving a qualitative V-cycle convergence result for the
finite difference discretization of the Poisson equation. Domain decomposition methods, the
other mainstream application of the theory of subspace correction methods, are considered
in Section B.5.
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Since this appendix is, in a certain sense, complementary to the main contents of this
book, the presentation is kept on an informal level. The reader interested in more mathemat-
ical details and recent developments is recommended to consult the literature cited below.
The same comment applies to the absence of information on the history of the theory pre-
sented below. Since the idea of transforming and splitting a large problem into a number of
similar (sub-)problems is so obvious, analogous algorithms and attempts to formalize and
treat them have been around in most areas of applied and numerical mathematics, e.g., in
applied harmonic analysis and optimization. We specifically recommend the survey articles
and books [54, 102, 117, 134, 176, 180, 298, 362, 425, 435] for further reading.

B.2 SPACE SPLITTINGS

In this section, we change our notation slightly. Let V denote a finite-dimensional Hilbert
space, with scalar product (u, v)V and norm ‖u‖V = √

(u, u)V , u, v ∈ V . For simplicity,
everything is assumed to be real-valued. A function � ≡ �(u, v) with arguments u, v ∈ V
and values in R is called V -elliptic if it is linear in each argument (thus, representing a
bilinear form on V ) and satisfies the inequalities

|�(u, v)| ≤ γ̄ ‖u‖V ‖v‖V , γ ‖u‖2
V ≤ �(u, u) ∀ u, v ∈ V.

The first inequality is also called the continuity or boundedness of the bilinear form �, the
second the stability or coercivity of �. The best possible values of the positive constants
0 < γ ≤ γ̄ < ∞ represent the ellipticity constants of �. If in addition �(u, v) = �(v, u)

for all u, v ∈ V then � is called symmetric.

Example B.2.1 This example is related to the study of linear systems (B.1.1). SetV = R
N ,

where the Euclidean scalar product

(u, v) = vT u =
N∑
n=1

vnun, u = (u1, . . . , uN)
T , v = (v1, . . . , vN)

T ,

defines the Hilbert space structure (to make the notation simpler, we will use (·, ·)whenever
the Euclidean scalar product in some R

N is meant). Set

�(u, v) = (Lu, v) =
N∑

m,n=1

lm,nunvm.

Obviously, this is a symmetric R
N -elliptic bilinear form if and only if L is symmetric

positive definite. In this case the ellipticity constants γ, γ̄ coincide with the smallest and
largest eigenvalues of L, respectively. �

Example B.2.2 Another example of importance arises if elliptic boundary value problems
are treated by Galerkin methods, in particular, by finite element methods (FEM). We outline
the details for the homogeneous Dirichlet problem for the Poisson equation and linear finite
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elements on a two-dimensional domain �. Recall that the underlying continuous problem
takes the form

−�u(x, y)= f�(x, y), (x, y) ∈ �,
u(x, y)= 0, (x, y) ∈ �, (B.2.1)

wheref� is a given function. Suppose that (B.2.1) possesses a (sufficiently smooth) solution
u(x, y). Formally, by multiplying the differential equation by any (sufficiently smooth)
function v(x, y) that vanishes on the boundary �, integrating over�, and applying Green’s
formula, we have∫

�

f�(x, y)v(x, y) dx dy = −
∫
�

�u(x, y)v(x, y) dx dy

=
∫
�

ux(x, y)vx(x, y)+ uy(x, y)vy(x, y) dx dy

−
∫
�

un(x, y)v(x, y) d�(x, y)

=
∫
�

∇u(x, y) · ∇v(x, y) dx dy

where ∇ denotes the gradient operator. The integral with respect to � has been dropped
since v(x, y) = 0 on �. Thus, if we denote

�(u, v) = (u, v)1 ≡
∫
�

∇u(x, y) · ∇v(x, y) dx dy,

f (v) = (f �, v)0 ≡
∫
�

f�(x, y)v(x, y) dx dy,

then necessarily

�(u, v) = f (v) (B.2.2)

for all sufficiently smoothv(x, y)vanishing on�. The derivation of this so-called variational
formulation (B.2.2) associated with (B.2.1) can be made mathematically precise, if we
introduce the concept of weak solutions of (B.2.1) in the Sobolev space H 1

0 (�) [89, 179].
For the purpose of this informal introduction into subspace correction methods, it suffices to
switch immediately to Galerkin methods based on (B.2.2). Let us take anyfinite-dimensional
space V (dim V = N ) of functions on � that vanish on � and such that both (·, ·)1
and (·, ·)0 make sense as scalar product on V (this essentially reduces to requiring that
‖v‖2

k = (v, v)k = 0 and v ∈ V implies v = 0 for either k = 0 or k = 1). With this
assumption, it is clear that �(u, v)when considered as a bilinear form on thatV is symmetric
and V -elliptic with respect to either of the two scalar products (if V is equipped with the
scalar product (·, ·)1 then the ellipticity constants are simply γ = γ̄ = 1, in the other case
their ratio κ(�) = γ̄ /γ is typically very large). In the following, we will sometimes use the
more explicit notation {V ; (·, ·)V } to indicate which scalar product is meant. For instance,
if � is a symmetric V -elliptic form then {V ; �} itself is a possible choice.
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As a consequence, the finite-dimensional variational problem of finding u ∈ V

such that

�(u, v) = f (v) ∀ v ∈ V (B.2.3)

has a unique solution which is a minimizer of the energy functional J (u) = �(u, u)−2f (u)
associated with (B.2.3). This solution is, roughly speaking, a projection of the exact solution
of (B.2.1) into theN -dimensional spaceV . There is a well-understood procedure to estimate
the discretization error associated with this Galerkin projection which we will not go into.
To find the solution u ∈ V of it computationally, typically a basis� = {ϕi, i = 1, . . . , N}
in V will be chosen, and (B.2.3) turns into an equivalent system of linear equations (B.1.1),
where coefficient matrix and right-hand side are given by

L = (lm,n = �(ϕn, ϕm))Nm,n=1, f = (fm = f (ϕm))T . (B.2.4)

The matrix L is necessarily symmetric positive definite: its properties are sensitive to both
the bilinear form � and the choice of the basis � in V .

Here is the finite element example we wish to discuss. Assume for simplicity that � is
a polygonal domain and equipped with a quasi-uniform and regular triangulation T (this
means that all triangles are well-shaped (i.e. the smallest angle is bounded from below by a
fixed value) and have approximately the same diameter ≈ h, and that neighboring triangles
share a common vertex or a common edge). Figure B.1(a) shows a typical triangulation.
The space V = V (T ) of linear finite elements associated with T consists of all continuous
functions on� that vanish on � and are linear (i.e. take the form u(x, y) = a+bx+ cy for
some a, b, c ∈ R) when restricted to any of the triangles in T . Any function u ∈ V (T ) is
uniquely determined by its values ui at the interior vertices or nodal points P i = (xi, yi) of
T , and can be recovered by linear interpolation on each triangle (clearly, values at boundary
vertices are set to 0). The dimensionN of V (T ) coincides with the number of nodal points,
and due to the assumptions on T , satisfies N ≈ h−2. The standard basis functions ϕi ,
known as the nodal bases or simply hat functions, are defined as the Lagrange functions for
this local, piecewise linear interpolation scheme, i.e. ϕi ∈ V (T ), i = 1, . . . , N , is given

0

0
0

0

1

P

0

(b)(a)

i

i

0

Figure B.1. (a) Triangulation; (b) linear finite element nodal basis function.
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by requiring

ϕi(xs, ys) =
{

1, s = i,

0, s �= i,
s = 1, . . . , N.

The support of any ϕi is very small: it consists of the union of triangles adjacent to P i .
Figure B.1(b) shows a typical nodal basis function. Let us mention in passing that under
some assumptions on � and f� (which are weaker than the corresponding conditions for
finite difference schemes), this choice of V as finite-dimensional space in the Galerkin
formulation (B.2.3) leads to a discretization error of O(h2) in the ‖ · ‖0 norm and of O(h) in
the ‖ · ‖1 norm, respectively. The associated matrix L is sparse, with ≈ N ≈ h−2 nonzero
entries, but has a deteriorating condition number κ(L) ≈ h−2 if h → 0. A drawback of
the finite element approach is that the computation of the scalar products in the formula for
lm,n and fm (see (B.2.4)) requires numerical integration, and generally leads to more work
in the assembly process of the linear system. �

Example B.2.3 If � is a rectangle (or composed of several rectangles), partitions R into
rectangles can be used instead of triangulations, and a completely similar setup leads to
the space of bilinear finite elements V (R) with analogous properties of the associated
Galerkin formulation (B.2.3) resp. (B.2.4). Clearly, the restriction of any u ∈ V (R) to any
subrectangle of the partition will be a bilinear function: u(x, y) = a+bx+cy+dxy. �

There are many other choices (higher order finite element and spectral element spaces,
wavelet spaces, linear combinations of radial basis functions or Gaussians) that appear in
connection with data approximation and the solution of various operator equations and can
be used within a Galerkin scheme. However, for the purpose of this appendix we will restrict
ourselves to the above examples.

We will now introduce the notion of stable space splittings which allows us to give
a unified treatment of subspace correction methods as methods based on properly repre-
senting Hilbert spaces by sums of other Hilbert spaces. The notation is chosen such that
the analogy with the introduction becomes obvious. Fix the N -dimensional Hilbert space
V , and consider the problem (B.2.3) where � is a symmetric V -elliptic bilinear form. For
j = 1, . . . , J , let Ṽj be aNj -dimensional Hilbert space and �̃j symmetric Ṽj -elliptic bilin-
ear forms. We do not assume that Ṽj ⊂ V , instead we require that a link between Ṽj and
V is established by linear mappings (embeddings or prolongations) Pj : Ṽj → V .

Definition B.2.1 We call the formal decomposition

{V ; �} ∼=
J∑
j=1

Pj {Ṽj ; �̃j } (B.2.5)

a stable space splitting of {V ; �} using the spaces {Ṽj ; �̃j } and the embeddings Pj , j =
1, . . . , J , if any v ∈ V admits at least one representation

v =
J∑
j=1

Pj ṽj , ṽj ∈ Ṽj , j = 1, . . . , J (B.2.6)
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and

‖|v|‖ = inf

⎛⎝ J∑
j=1

(�̃j ṽj , ṽj )

⎞⎠1/2

, (B.2.7)

satisfies a two-sided inequality

η�(v, v) ≤ ‖|v|‖2 ≤ η̄�(v, v) ∀ v ∈ V (B.2.8)

with positive constants η, η̄. The infimum in (B.2.7) is taken with respect to all admissible
representations (B.2.6). The optimal constants η, η̄ in (B.2.8) are called lower and upper
stability constants of the splitting (B.2.5), respectively, their ratio κ = η̄/η is the condition
of the splitting.

Note that in the finite-dimensional setting described here, the assumption (B.2.6) auto-
matically implies (B.2.8). The definition can be extended to countably many spaces Ṽj
(J = ∞), and V as well as Ṽj could be separable Hilbert spaces. Then (B.2.8) becomes a
real assumption. This extension is useful to connect the discrete theory outlined here with
general recipes from approximation theory and the theory of function spaces. The impor-
tance of Definition B.2.1 will become clear in Section B.3, let us just mention that keeping
the size of κ small and independent of J will be critical for the fast convergence of subspace
correction methods. We now present some examples of stable splittings which illustrate the
flexibility of the abstract concepts and are a preparation for the subsequent sections of this
appendix.

Example B.2.4 This example is related to classical block-iterative solvers for (B.1.1).
Consider the situation of Example B.2.1. Split the index set � = {1, . . . , N} into pairwise
disjoint nonempty sets �j and set Nj = #�j . Without loss of generality, assume �1 =
{1, . . . , N1},�2 = {N1 + 1, . . . , N1 + N2}, and so on. By L̃j we denote the (symmetric
positive definite) submatrices of L of dimension Nj corresponding to �j . Set

Ṽj = R
Nj , �̃j (ṽj , ṽj ) = (L̃j ṽj , ṽj ),

and introduce the prolongations Pj : R
Nj → R

N by

Pj : ṽj ≡ (x̃1, . . . , x̃Nj )
T → v ≡ (x1, . . . , xN)

T , xl =
{
x̃l−N1−···−Nj−1 , l ∈ �j
0, l �∈ �j ,

j = 1, . . . , J . This gives a stable space splitting since (B.2.6) holds for exactly one choice
of ṽj :

ṽj = Rjv, Rj : (x1, . . . , xN)
T → (xN1+···+Nj−1+1, . . . , xN1+···+Nj )

T ,

j = 1, . . . , J.
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Thus, the infimum in (B.2.7) can be dropped, and it is easy to see that

‖|v|‖2 =
J∑
j=1

(L̃jRjv, Rjv) = (L̃v, v)

where L̃ = diag(L̃1, . . . , L̃J ) is a block-diagonal matrix of dimension N consisting of the
diagonal submatrices ofL corresponding to the index sets�j . The stability constants of the
splitting and its condition coincide with the extremal eigenvalues and the spectral condition
number of the matrix L̃−1L, respectively.

An extremal case occurs if we choose one-element sets�j = {j}, j = 1, . . . , N . Then
Nj = 1 and J = N . The L̃j are of size 1 and given by the diagonal entry lj,j of L. Thus,
L̃ = diag(L), and the space splitting has to do with diagonal preconditioning. In the general
case, the splitting is associated with block-diagonal preconditioning. Since the other, trivial
extremal case would be to choose J = 1 and�1 = � (then L̃−1L is just the identity matrix)
there arises the interesting design problem of finding the right balance between the size of
the submatricesNj and their overall number J . Figure B.2 shows the grid points associated
with several choices of index sets �j , j = 1, 2, for the Model Problem I, the five-point
discretization of the Dirichlet problem for Laplace’s equation on a uniform square grid.
In each case, we could have further split the two index sets. While the first two examples
are related to smoothers with red–black-ordering and line smoothing (the condition of the
associated splitting is ≈ h−2 and of the same order as for diagonal preconditioning and the
condition number of L itself), the last one relates to the domain decomposition approach
which will be discussed in Section B.5. In the latter case, the condition of the associated
splitting is ≈ h−1H−1 where H > h is the stepsize parameter of the underlying choice
of �j . The reader is encouraged to establish these bounds, the extremal vectors that give
the order of the constants η and η̄ in (B.2.8) are unit vectors, on the one hand, and vectors
associated with the grid values of “smooth” functions such as ϕ1,1

h , on the other.
There are many useful generalizations of this example: the sets�j may overlap and the

matrices L̃j need not be the corresponding diagonal submatrices ofL. The examples below
(even though they are cast in a different language) are of this type. �

1 2

Figure B.2. Choices of {�j } for the five-point discretization.
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Figure B.3. Meshes for the fictitious space example.

Example B.2.5 Here is an example related to the fictitious space method. Consider three
finite difference meshes of mesh size ≈ h on three different domains� ≈ �̂ ⊂ �̃ as shown
schematically in Fig. B.3. The first mesh which is not a square partition is assumed to be
a slight distortion of the square partition of the L-shaped domain �̂ shown in the center.
We assume that there is a discrete one-to-one mapping between the grid points of the two
meshes which is close to a linear mapping restricted to this set (such meshes are sometimes
called topologically equivalent). The third mesh is a square mesh of a unit square �̃ which
contains the mesh of the L-shaped domain (the further details shown in the right-hand side
picture will be explained below).

Suppose that we have to solve a linear problem (B.1.1) associated with afinite difference
or finite element discretization of (B.2.1) on the first domain and mesh (although this has
not been detailed in this monograph, there are standard methods to derive finite difference
approximations on unstructured meshes). By L̂ and L̃ we will denote the stiffness matrices
of the finite difference discretization of (B.2.1) with respect to the meshes on �̂ and �̃,
respectively. Note that L̂ is a submatrix of L̃. Set V = V̂ = R

N and Ṽ = R
Ñ whereN and

Ñ > N denote the number of interior grid points of the meshes for �̂ and �̃, respectively.
Define the bilinear forms �, �̂, and �̃ as in Example B.2.1. With proper assumptions on the
discretization on thefirst mesh and on its one-to-one mapping onto the second mesh, we have

�(u, u) ≈ �̂(u, u) = h−2
∑
e

|�eu|2 (B.2.9)

for all vectors u ∈ R
N , where the summation is with respect to all interior edges of the

meshes on� resp. �̂, and�eu is the difference of the values of the grid function associated
withu at the endpoints of e. A similar relationship holds for �̃. LetR : R

N → R
Ñ correspond

to the natural extension-by-zero operator of grid functions on the first two meshes (which
can be identified by assumption) to the larger square mesh, and P = RT : R

Ñ → R
N the

natural restriction operator. Then

{V ; �} ∼= {V̂ ; �̂} ∼= P {Ṽ ; �̃} (B.2.10)

can be viewed as stable space splittings with J = 1. The condition of the first splitting is
bounded, independently of h, as follows from the spectral equivalence ofL and L̂ expressed
by (B.2.9).
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Let us show that the condition of the second splitting is of the order ≈ h−1 as h → 0
(this behavior can be improved if a better R and P = RT based on discrete harmonic
extension are used). Consider any ũ ∈ R

Ñ such that u = P ũ. By (B.2.9) we have

�(u, u) ≈ �̂(u, u) = h−2
∑
e⊂�̂

|�eu|2 ≤ h−2
∑
e⊂�̃

|�eRu|2 = �̃(Ru,Ru),

sinceRu = u on �̂ andRu = 0 on �̃\�̂ by definition ofR. Thus, sincePRu = uwe obtain

‖|u‖|2 = inf
ũ : u=P ũ

�̃(ũ, ũ) ≤ �̃(Ru,Ru) = �̂(u, u) ≤ η̄�(u, u)

for some η̄ > 0.
On the other hand, fix an arbitrary u ∈ R

N and consider any ũ ∈ R
Ñ such that

u = P ũ. Then

�̂(u, u) = �̃(Ru,Ru) = h−2
∑
e⊂�̂

|�eRu|2

≤ h−2

⎛⎝∑
e⊂�̂

|�eũ|2 + 3
∑
P̃ s∈∂�̂

|ũ(xs, ys)|2
⎞⎠

≤ �̃(ũ, ũ)+ 3h−2‖ũ‖2
∂�̂
.

The second term in the last expression (the Euclidean norm of the subvector of ũ corre-
sponding to the grid points P̃ s on the boundary ∂�̂ of the L-shaped domain �̂) is bounded
from above by Ch−1�̃(ũ, ũ). For our example, this discrete Poincare-type estimate can be
verified as follows. Observe that we can connect each of those P̃ s with a grid point P̃ s

′
on

the boundary of �̃ on a separate set Es of ≤ Ch−1 interior edges from the mesh on �̃ (see
the dashed lines in Fig. B.3). Since ũ(xs

′
, ys

′
) = 0, we have

|ũ(xs, ys)|2 ≤
(∑
e∈Es

|�eũ|
)2

≤ Ch−1
∑
e∈Es

|�eũ|2.

Summation with respect to s (recall that the sets Es are pairwise disjoint) gives the above
bound. Altogether, we have

�̂(u, u) ≤ (1 + 3Ch−1)�̃(ũ, ũ)

for all ũ satisfying u = P ũ. It remains to take the infimum with respect to ũ which yields

�(u, u) ≈ �̂(u, u) ≤ 1/η‖|u‖|2 (η = (1 + Ch−1)−1 ≈ h).

Thus, we have proved the upper bound O(h−1) for the condition, that it cannot be improved
is clear from looking at unit vectors u, on the one hand, and a u obtained from the grid
function ϕ1,1

h by restricting it to �̂, on the other. �



544 MULTIGRID

Example B.2.6 This example introduces to the multilevel splittings of finite element spaces
which are central for the applications to multigrid theory. A more complete account of the
underlying concepts and their roots in spline approximation and function space theory, has
been given in [298]. The standard setting is to start with a sequence of partitions {Tj } of a
polyhedral domain in R

d obtained by some sort of regular refinement, and such that a fixed
type of finite element construction leads to an increasing sequence

V1 ⊂ V2 ⊂ · · · ⊂ Vj ⊂ · · ·

of finite element spaces on these partitions. Not all finite element constructions share this
property but there are a number of worked examples. For instance, linear finite element
spaces on triangulations and tetrahedral partitions in two and three dimensions, respectively,
which are of importance for the numerical solution of second-order elliptic boundary value
problems satisfy the above nestedness assumption. For simplicity, let � be the unit square.
Consider a sequence of uniform triangulations Tj of diameter ≈ 2j , j = 1, 2, . . . , as shown
in Fig. B.4. Note that Tj+1 is obtained from Tj by subdividing all triangles into four (equal)
subtriangles. This procedure is called regular dyadic refinement. Note that the triangulation
shown in Fig. B.1(a) is an example of a triangulation on a polygonal domain obtained by
two regular dyadic refinements from an initial, coarse triangulation into five triangles. More
general refinement procedures are possible (bisection algorithms, nested local refinement)
but will not be discussed here.

Let Ṽj = V (Tj ) be the corresponding finite element spaces of Example B.2.2, and
set �̃j (ũj , ṽj ) = 22j (ũj , ṽj )0. Note that Ṽj is a proper subspace of Ṽj+1, with scalar
products that are identical up to a constant scaling factor, and that the dimensions Nj =
dim Ṽj ≈ 22j grow exponentially with j . Denote by I j+1

j : Ṽj → Ṽj+1 the natural

embedding operators, and let IJj = IJ
J−1 · · · I j+1

j , j < J , be their iterates. Assume now
that we have to solve (B.2.2) with respect to the space VJ = V (TJ ). Therefore, we set
�J (uJ , vJ ) = (uJ , vJ )1, uJ , vJ ∈ VJ . �

321

Figure B.4. Dyadically refined triangulations for Example B.2.6.
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Theorem B.2.1 The space splitting

{VJ ; �J } ∼=
J∑
j=1

IJj {Ṽj ; �̃j } (B.2.11)

is stable, with stability constants ηJ , η̄J and condition κJ that remain bounded, indepen-
dently of J :

0 < η ≤ ηJ ≤ η̄J ≤ η̄ < ∞, κJ ≤ κ = η̄/η. (B.2.12)

Proofs of this result can be found in the literature cited in Section B.1. There are many
variations connected with it. For instance, if

ũj =
Nj∑
i=1

ũij ϕ
i
j

is the unique representation of ũj with respect to the nodal basis �j in the finite element
space Ṽj then

�̃j (ũj , ũj ) ≈ 22j
Nj∑
i=1

(ũij )
2‖ϕij‖2

0 ≈
Nj∑
i=1

(ũij )
2. (B.2.13)

To see this so-called L2-stability of the nodal basis �j , use the fact that for a function u
which is linear on a triangle � and takes values α, β, γ at its three vertices, we have∫

�

u(x, y)2 dx dy ≈ |�|(α2 + β2 + γ 2)

with constants independent of � (as usual, |�| denotes the area of �). Application to the
piecewise linear function ũj and each triangle in Tj leads to (B.2.13). This relationship
allows us to conclude that the splitting into one-dimensional spaces Ṽ ij associated with the

basis functions ϕij

{VJ ; �J } ∼=
J∑
j=1

Nj∑
i=1

IJj {Ṽ ij ; �̃ij } (B.2.14)

is also stable, with stability constants and condition again satisfying (B.2.12) (with possibly
different values for η, η̄). The only requirement on �̃ij is

�̃ij (ϕ
i
j , ϕ

i
j ) ≈ 1, (B.2.15)

uniformly in j and i, which is satisfied for choosing it as the restriction of either �J or �̃j
to Ṽ ij . To obtain the necessary estimates for the triple bar norm associated with (B.2.14),
take the corresponding result for the splitting (B.2.11), substitute (B.2.13), together with
the scaling assumption (B.2.15) on �̃ij (note that ũij ∈ Ṽ ij means that ũij can be written as

a scalar multiple of the basis function ϕij ).
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We conclude with some general statements on stable space splittings. First, let us men-
tion the following equivalent formulation of (B.2.2) if a stable splitting (B.2.5) is available.
Define linear operators Tj : V → Ṽj and elements φ̃j ∈ Ṽj , j = 1, . . . , J , by requiring

�̃j (Tju, ṽj ) = �(u, Pj ṽj ) ∀ ṽj ∈ Ṽj , (B.2.16)

and

�̃j (φ̃j , ṽj ) = f (Pj ṽj ) ∀ ṽj ∈ Ṽj . (B.2.17)

For any given u ∈ V , these are well-defined Galerkin formulations on the spaces Ṽj . The
operator

P =
J∑
j=1

PjTj : V → V (B.2.18)

is called the additive Schwarz operator associated with (B.2.5). Also, define φ =∑J
j=1 Pj φ̃j .

Theorem B.2.2 Assume that the space splitting (B.2.5) is stable. Then P is symmetric
positive definite with respect to {V ; �}, its spectral condition number coincides with the
condition of the splitting, and its extremal eigenvalues with the values η̄−1 and η−1. The
operator equation

Pu = φ, (B.2.19)

has the same solution as the variational problem (B.2.2).

For the elementary proof, see [298, Section 4.1]. In some cases, P can be written
explicitly. For instance, in Example B.2.4, we have P = L̃−1L. The additive Schwarz
operator associated with the splitting (B.2.14) takes the form

Pu =
J∑
j=1

Nj∑
i=1

�(u, ϕij )

�̃ij (ϕ
i
j , ϕ

i
j )
ϕij . (B.2.20)

To see this, note that the problems (B.2.16) are one-dimensional and, therefore, can be
solved explicitly, and that the prolongations are given by natural embeddings IJj which are
omitted in the above formula.

The formula (B.2.20) has a very familiar appearance, it reminds us of the Fourier series
representation (with the difference that the system

� =
J⋃
j=1

�j = {φij: i = 1, . . . , Nj , j = 1, . . . , J } (B.2.21)

is neither orthogonal nor a basis inV ). This connection is very useful, especially for proving
the stability of certain space splittings by using known results from applied harmonic anal-
ysis and function space theory [298] but also to see the benefits and drawbacks of emerging
wavelet algorithms for solving PDE discretizations [116].
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The last remark is about verifying the stability of a given splitting. The upper bound
for ‖|v‖|2 requires us to find a good decomposition of arbitrary elements u ∈ V with
components ṽj ∈ Ṽj such that v = ∑j Pj ṽj . If there is only one admissible representation
(B.2.6) then we have no choice but to consider this decomposition (thus, to “guess” a good
set of auxiliary spaces Ṽj is the important part of proving anything about the splitting).
Otherwise, we have some choice in (B.2.6), and suitable decompositions are constructed by
using various projections onto the spaces V̂j . For instance, when deriving Theorem B.2.1,
one often relies on the L2-orthoprojection operatorsQj : L2(�) → Ṽj given by

(Qju, ṽj )0 = (u, ṽj )0 ∀ ṽj ∈ Ṽj , (B.2.22)

j ≥ 1. For them, the two-sided inequality

(uJ , uJ )1 ≈ ‖Q1uJ ‖2
0 +

J∑
j=2

22j‖QjuJ −Qj−1uJ ‖2
0 ∀ uJ ∈ VJ , (B.2.23)

can be proved (e.g., using approximation-theoretic and elliptic regularity results), again
with constants uniformly bounded with respect to J .

Let us show that (B.2.23) implies Theorem B.2.1. By setting ũj = QjuJ −Qj−1uJ

for j = 2, . . . , J , and ũ1 = Q1uJ , we have ũj ∈ Ṽj and uJ = ∑J
j=1 ũj . This implies the

upper bound for the stability of the splitting (B.2.11):

‖|uJ ‖|2 = inf
ṽj∈Ṽj : uJ=∑J

j=1 ṽj

J∑
j=1

22j‖ṽj‖2
0

≤ ‖Q1uJ ‖2
0 +

J∑
j=2

22j‖QjuJ −Qj−1uJ ‖2
0

≤ C(uJ , uJ )1 = C�J (uJ , uJ ).

On the other hand, for an arbitrary decomposition (B.2.6), using the fact that the spaces Ṽj
form an increasing sequence and that theQj are linear projections, we have

QjuJ = Qj

( J∑
l=1

ṽl

)
=

j∑
l=1

ṽl +
J∑

l=j+1

Qj ṽl

and

‖QjuJ −Qj−1uJ ‖2
0 = ‖ṽj +

J∑
l=j+1

Qj ṽl −
J∑
l=j

Qj−1ṽl‖2
0

≤
(

2
J∑
l=j

‖ṽl‖0

)2

= 4

( J∑
l=j

2−l/2(2l/2‖ṽl‖0)

)2

≤ 4

( J∑
l=j

2−l
)( J∑

l=j
2l‖ṽl‖2

0

)
≤ 2−j+3

J∑
l=j

2l‖ṽl‖2
0.
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An analogous estimation works for ‖Q1uJ ‖2
0. Thus,

�J (uJ , uJ ) ≤ C

(
‖Q1uJ ‖2

0 +
J∑
j=2

22j‖QjuJ −Qj−1uJ ‖2
0

)

≤ C

( J∑
j=1

22j2−j+3
J∑
l=j

2l‖ṽl‖2
0

)
= C

( J∑
l=1

2l‖ṽl‖2
0

( l∑
j=1

2j+3
))

≤ 16C

( J∑
l=1

22l‖ṽl‖2
0

)
.

Taking the infimum with respect to all admissible representations (B.2.6), we see the lower
bound for the stability of the splitting (B.2.11).

Speaking in practical terms, the orthoprojectionsQj are still too involved (the solution
of (B.2.22) is not straightforward), and one would like to replace them by more explicit
constructions. Finite element interpolation operators Iju : C(�̄) → Ṽj defined by requiring
the interpolation condition (Iju)(xi, yi) = u(xi, yi) at all (boundary and interior) vertices
of Tj come to mind but do not necessarily lead to the “optimal” decomposition to prove
Theorem B.2.1, more recently, quasi-interpolants have been proposed. A simple set of
quasi-interpolant operators which could be used for the above linear finite element spaces
is given by

Q̃ju =
Nj∑
i=1

(u, ϕij )0

(1, ϕij )0
ϕij , j ≥ 1. (B.2.24)

Although these Q̃j are not projections onto Ṽj , they at least reproduce constant functions
locally in the interior of the triangulation Tj which is often enough (local preservation of
polynomials of a certain degree is one of the characteristics of quasi-interpolant operators).
More importantly, the Q̃j are well-defined and uniformly bounded with respect to L2(�),
and they can be computed by fast algorithms.

The typical method to establish the lower bound in the stability requirement (B.2.8) of a
splitting (B.2.5) is the proof of so-called strengthened Cauchy–Schwarz inequalities [425,
435]. The simplest version is as follows: introduce a matrix E = ((εj,l))

J
j,l=1 where the

entries are defined as the positive constants for which

�(Pj ṽj , Pl ṽl)
2 ≤ εj,l �̃j (ṽj , ṽj )�̃l(ṽl , ṽl) ∀ ṽj ∈ Ṽj , ṽl ∈ Ṽl . (B.2.25)

Without loss of generality, we may assume that E is symmetric. Let λmax(E) denote the
largest eigenvalue of the matrix E.

Lemma B.2.1 For an arbitrary space splitting (B.2.5) we have

�(u, u) ≤ λmax(E)‖|u|‖2 ∀ u ∈ V, (B.2.26)

where the matrix E is determined from the strengthened Cauchy–Schwarz inequalities
(B.2.25) as described above.
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The proof of this lemma is straightforward. Considering an arbitrary admissible repre-
sentation (B.2.6), we obtain

�(u, u) = �

( J∑
j=1

Pj ũj ,

J∑
j=1

Pj ũj

)
=

J∑
j,l=1

�(Pj ũj , Plũl)

≤
J∑

j,l=1

εj,l �̃j (ṽj , ṽj )
1/2�̃l(ṽl , ṽl)

1/2 ≤ λmax(E)

J∑
j=1

�̃j (ṽj , ṽj ).

Since the representation was arbitrary, we arrive at (B.2.26).
By properly scaling the auxiliary bilinear forms �̃j we can ensure that εj,j = 1. As

a consequence, we have 0 ≤ εj,l ≤ 1 for all nondiagonal entries. This implies 1 ≤
λmax(E) ≤ J , both extremes are possible. Going through the above examples, we see that
η = 1 in Example B.2.4 because in this case E can be chosen as the identity matrix. For
examples where J is small (such as Example B.2.5), we can use the trivial bound λmax(E) ≤
J max εj,j . A nontrivial situation arises in Example B.2.6. By carefully applying Green’s
formula on each triangle of the underlying triangulations, one can show that

(ṽj , ṽl)1 ≤ C2|j−l|/2(2j‖ṽj‖0)(2
l‖ṽl‖0) ∀ ṽj ∈ Ṽj , ṽl ∈ Ṽl , j, l ≥ 1. (B.2.27)

Thus, we can choose E = ((C2|j−l|/2))J
j,l=1, and because of the exponential decay of

the εj,l away from the diagonal, we obtain λmax(E) ≤ C for some absolute constant C,
independently of J .

Example B.2.7 We conclude with an appendix to Example B.2.6. Depending on the
application, it may happen that the same spaces V and Ṽj are equipped with different
choices of bilinear forms. For example, if the Poisson problem (B.2.1) is modified by adding
a source term q · u(x, y), where, for simplicity, q > 0 is a constant, then the appropriate
bilinear form takes the form

�q(u, v) = (u, v)1 + q(u, v)0 ∀ u, v ∈ V.

For large q, one should definitely take into consideration the term associated with the L2-
scalar product. Therefore, if we again take the finite element spaces of Example B.2.6 then
the following results are of interest. �

Lemma B.2.2 (a) The splitting

{VJ ; (·, ·)0} ∼=
J∑
j=1

{Ṽj ; (·, ·)0} (B.2.28)
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is stable and has condition κ = J . The following stability bounds for (B.2.28) are sharp:

J−1‖uJ ‖2
0 ≤ ‖|uJ ‖|2 ≤ ‖uJ ‖2

0 ∀ uJ ∈ VJ . (B.2.29)

(b) The splitting

{VJ ; �q} ∼=
J∑

j=J0

{Ṽj ; 22j (·, ·)0} (B.2.30)

is stable with condition κ = O(1), independently of q ≥ 0 and J if J0 = J0(q) is chosen
according to the following rules: if q ≤ 1 or q ≥ 22J then J0 = 1 or J0 = J , respectively,
while in the intermediate range 1 < q < 22J the choice J0 = [log2 q/2]+1 is appropriate.

Proof. Since by definition of the orthoprojectionsQj we have

‖uJ ‖2
0 = ‖QJ0uJ ‖2

0 +
J∑

j=J0+1

22j‖QjuJ −Qj−1uJ ‖2
0, 1 ≤ J0 ≤ J, (B.2.31)

the upper bound in (B.2.29) is obvious (set J0 = 1 and look at the definition of ‖|uJ ‖| for
the splitting (B.2.28)). The lower bound follows from Lemma B.2.1 in conjunction with the
trivial estimate λmax(E) ≤ J . That the bounds cannot be improved follows by considering
special uJ . For example, take any uJ �= 0 which belongs to theL2-orthogonal complement
spaceWJ = VJ / VJ−1. By applyingQJ −QJ−1 to any admissible representation uJ =∑J
j=1 ṽj , we obtain uJ = (QJ −QJ−1)ṽJ , and since QJ −QJ−1 is an orthoprojection

ontoWJ , we obtain

‖uJ ‖2
0 = ‖(QJ −QJ−1)ṽJ ‖2

0 ≤ ‖ṽJ ‖2
0 ≤

J∑
j=1

‖ṽj‖2
0

which leads to ‖uJ ‖2
0 ≤ ‖|uJ ‖|2 for such uJ , and to the sharpness of the upper bound.

Concerning the lower bound, pick uJ = ϕ1
1 ∈ Ṽ1 ⊂ VJ , and look at the admissible

representation given by ṽj = J−1uJ , j = 1, . . . , J . Then

‖|uJ |‖ ≤
J∑
j=1

J−2‖uJ ‖2
0 = J−1‖uJ ‖2

0.

This establishes the sharpness of the lower bound.
As to the stability of (B.2.30), we will concentrate on the intermediate range 1 < q <

22J (the reader will be able to deal with the remaining cases). By definition of J0, we have
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22(J0−1) ≤ q < 22J0 . Thus, by (B.2.23) and (B.2.31) we can estimate

�q(uJ , uJ )

≥ c

(
‖Q1uJ ‖2

0 +
J∑
j=2

22j‖QjuJ −Qj−1uJ ‖2
0

)

+ q
(

‖QJ0uJ ‖2
0 +

J∑
j=J0+1

‖QjuJ −Qj−1uJ ‖2
0

)

≥ c

(
22J0

(
‖QJ0uJ ‖2

0 + 2−2J0‖Q1uJ ‖2
0 +

J0∑
j=2

22(j−J0)‖QjuJ −Qj−1uJ ‖2
0

)

+
J∑

j=J0+1

(
22j + 22J0

)‖QjuJ −Qj−1uJ ‖2
0

)

≥ c

(
22J0‖QJ0uJ ‖2

0 +
J∑

j=J0+1

22j‖QjuJ −Qj−1uJ ‖2
0

)
.

This gives the upper stability estimate for the splitting (B.2.30), with a constant η̄ ≤ C.
For the lower estimate, we complement the Cauchy–Schwarz inequalities (B.2.27) by

their trivial counterparts for the L2-scalar product

(ṽj , ṽl)0 ≤ 2−(j+l)(2j‖ṽj‖0)(2
l‖ṽl‖0) ∀ ṽj ∈ Ṽj , ṽl ∈ Ṽl .

Multiplying here by q ≈ 22J0 , and adding the result to (B.2.27) we obtain

�q(ṽj , ṽl) ≤ C(2|j−l|/2 + 2−(j+l−2J0))(2j‖ṽj‖0)(2
l‖ṽl‖0) ∀ ṽj ∈ Ṽj , ṽl ∈ Ṽl ,

for all J0 ≤ j, l ≤ J . Obviously, in this range of j, l, the first term 2|j−l|/2 dominates the
second, therefore, again λmax(E) ≤ C, independently on q, and J . Applying Lemma B.2.1
concludes the proof of Lemma B.2.2.

B.3 CONVERGENCE THEORY

After this extended introduction to the concept of stable space splittings, we now derive the
convergence theory for the associated subspace correction methods. Let us briefly link the
notation of the previous section to the AS and MS methods as defined in the introduction. All
we have to do is to fix basis systems in the spaces involved, and to identify elements of these
spaces with coefficient vectors, and operators between them with matrices. Even though
this might temporarily lead to some confusion, we will use the same notation for elements
and vectors as well as for operators and matrices, respectively. Thus, Pj will denote an
operator from Ṽj into V , and, at the same time, a rectangular N ×Nj matrix representing
this operator with respect to the bases chosen in Ṽj and V , respectively. Assuming that
(B.2.5) is stable, we will use the notation L and L̃j for the matrices associated with �
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(i.e. �(u, u) = (Lu, u)) and �̃. Thus, the matrix representation of the operators Tj can be
derived from (B.2.16):

(L̃j Tju, ṽj ) = �̃j (Tju, ṽj ) = �(u, Pj ṽj ) = (Lu, Pj ṽj ) = (P Tj Lu, ṽj ).

This gives Tj = L̃−1
j P

T
j L, and

P =
J∑
j=1

Pj L̃
−1
j P

T
j L ≡ BL, B =

J∑
j=1

Pj L̃
−1
j P

T
j . (B.3.1)

Thus, if we fix the restriction operators as the adjoint operators (transposed matrices) of the
prolongations, i.e.

Rj = PTj , j = 1, . . . , J, (B.3.2)

then everything falls into place. The additive subspace correction method defined in
Section B.1 is simply the extrapolated Richardson method (or ω-Richardson relaxation)
applied to the reformulation (B.2.19) of the original variational problem (B.2.2). The
assumption (B.3.2) is more or less natural since we are restricted to symmetric positive
definite L and L̃j ; it ensures that the preconditioner B is also symmetric positive definite.
As a by-product, the preconditioned conjugate gradient (PCG) method with preconditioner
B can be applied for solving (B.1.1), and the design of stable space splittings for {V ; �}
with small condition can be viewed as a method of constructing good preconditioners B in
a systematic way. We will give this PCG-method the descriptive name AS-CG.

Here is another useful representation which leads to a unified treatment of AS and
MS methods in terms of classical iterative methods for a so-called extended semidefinite
problem. Set L̃j,l = L̃−1

j P
T
j LPl , j, l = 1, . . . , J , and Ñ = ∑J

j=1Nj . Define the Ñ × Ñ
matrix P̃ as a J × J block matrix whose entries are theNj ×Nl matrices L̃j,l . We will use
the notation

P̃ = L̃ + D̃ + Ũ (B.3.3)

for the standard decomposition of the block matrix into lower triangular, diagonal, and upper
triangular block matrices. Let ṽ = (ṽ1, . . . , ṽJ )

T be the corresponding block representation
of R

Ñ -vectors. Set φ̃ = (φ̃1, . . . , φ̃J )
T , where the φ̃j are determined in (B.2.17).

Lemma B.3.1 Assume that a stable space splitting (B.2.5) is given, and that (B.3.2) holds.
(a) If ũ is a solution of the semidefinite problem

P̃ũ = φ̃, (B.3.4)

then u = P̃ ũ ≡ ∑J
j=1 Pj ũj is the (unique) solution of (B.2.2) and its reformulation

(B.2.19).
(b) For any fixed Ñ × Ñ matrix B̃, we consider the linear iteration

ũk+1 = ũk + B̃(φ̃ − P̃ũk), k ≥ 0, (B.3.5)
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with a starting vector ũ0 given. The iteration (B.3.5) generates an iteration in V by the
formula uk = P̃ ũk , k ≥ 0. If B̃ = B̃AS ≡ ωĨ, where Ĩ is the Ñ × Ñ identity matrix, then
(B.3.5) generates the additive subspace correction method AS associated with the splitting.
Analogously, if B̃ = B̃MS ≡ (ω−1Ĩ + L̃)−1, then (B.3.5) generates the multiplicative
subspace correction method MS associated with the splitting.

Proof. Part (a) can be seen from applying P̃ to both sides of (B.3.4) resulting in

P̃ P̃ũ =
J∑
j=1

J∑
l=1

Pj L̃
−1
j P

T
j LPlũl = PP̃ ũ = P̃ φ̃ = φ.

Now compare with Theorem B.2.2.
Analogously, applying P̃ to both sides of the iteration (B.3.5) and using the relationship

uk = P̃ ũk , we obtain

uk+1 = uk + P̃ B̃(L̃−1
1 PT1 , . . . , L̃

−1
1 PT1 )

T rk (B.3.6)

Here the explicit form of the L̃j,l and φ̃j = L̃−1
j P

T
j f has been utilized (for the latter

formula, compare (B.2.17)). Thus, setting B̃ = B̃AS, we immediately arrive at uk+1 =
uk + BASLr

k which coincides with the AS iteration.
To see the result for the MS method, some algebraic transformations are necessary. For

convenience, denote Bj = ωPj L̃
−1
j P

T
j . Consider one loop of the MS method. Denote

u = uk , r = f − Luk . By induction, we obtain

v2 = u+ B1r,

v3 = u+ ((B1 + B2)− B2LB1)r,

v4 = u+ ((B1 + B2 + B3)− (B3LB1 + B2LB1 + B3LB2)+ B3LB2LB1)r,

. . .

vJ+1 = u+
( J∑
j=1

Bj −
∑

1≤l<j≤J
BjLBl + · · · + (−1)J+1BJLBJ−1L . . . B2LB1

)
r.

Repeatedly using the formula BjLBl = ω2Pj L̃j,lL̃
−1
l P

T
l , we obtain

BjsLBjs−1L · · ·Bj2LBj1 = ωsPjs (L̃js ,js−1 · · · L̃j3,j2L̃j2,j1)L̃
−1
j1
PTj1
,

for all 1 ≤ j1 < · · · < js ≤ J . After substitution into the previous representation for vJ+1,
and returning to the notation of the MS iteration (vJ+1 = uk+1, u = uk , r = rk), we have

uk+1 = uk + ω
( J∑
j=1

j−1∑
l=1

Pj (I − ωL̃j,l

+ ω2
∑

m: l<m<j

L̃j,mL̃m,l − · · · + (−ω)j−l L̃j,j−1 · · · L̃l+1,l)L̃
−1
l P

T
l

)
rk.
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This has to be compared with (B.3.6) for

B̃ = B̃MS = ω(Ĩ + ωL̃)−1 = ω(Ĩ − ωL̃ + · · · + (−1)J−1L̃J−1).

By computing the entries of the powers of the lower triangular block matrix L̃, it is not hard
to see from the latter expressions that the two iterations coincide. This gives the statement
of part (b) for the MS method. Lemma B.3.1 is proved.

Thus, the AS and MS methods can be viewed as ω-Richardson relaxation and
Richardson-SOR iteration applied to the block matrix P̃ . Clearly, assuming that all diagonal
blocks L̃j,j are invertible, we could have chosen B̃ = ωD̃−1 to define the counterpart of
the ω-Jacobi relaxation.

By using this formalism, the convergence theory of subspace correction methods reduces
to standard derivations as known for the case of block-Jacobi and block-SOR (see [167] or
[298, Theorem 18]). Slightly different derivations can be found in [54, 425, 435]. To measure
convergence behavior, we will use the energy norm ‖ek‖� =

√
�(ek, ek) =

√
(Lek, ek) of

the error ek = u − uk after k iterations (consequently, e0 denotes the error of the starting
guess). The convergence rate is defined below as the energy norm of the corresponding
error iteration matrix.

Theorem B.3.1 Let V be a finite-dimensional Hilbert space, and � a symmetric V -elliptic
bilinear form on V . Assume that (B.2.5) is a stable space splitting (with stability constants
η, η̄ and condition κ) given by the auxiliary spaces {Ṽj ; �̃j } and the prolongations Pj ,
j = 1, . . . , J . The restrictions Rj are defined by (B.3.2).

(i) The additive subspace correction method AS converges if and only if 0 < ω < 2/η.
The optimal convergence rate is achieved for ω∗ = 2ηη̄/(η + η̄), and equals

ρ∗
AS = min

0<ω<2η
λmax(MAS) = 1 − 2

1 + κ . (B.3.7)

Correspondingly, the AS-CG method converges with the guaranteed error bound

‖ek‖� ≤ 2

(
1 − 2

1 + √
κ

)k
‖e0‖�, k ≥ 1. (B.3.8)

(ii) Assume that, in addition to the above, strengthened Cauchy–Schwarz inequalities
(B.2.25) hold such that E is symmetric and εj,j = 1 for all j = 1, . . . , J . Then the
multiplicative algorithm subspace correction method MS converges for 0 < ω < 2.
The analogously defined optimal convergence rate can be estimated by

(ρ∗
MS)

2 ≤ 1 − 1

η̄(2λmax(E)+ 1)
. (B.3.9)

Without assuming (B.2.25), one has

(ρ∗
MS)

2 ≤ 1 − 1

log2(4(J + 1)) · κ . (B.3.10)

The results in (ii) remain valid for any reordering of the spaces in the splitting.
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Intuitively, it might seem that the multiplicative algorithm MS should perform better than
AS which can be observed in many applications, and parallels the experience with Jacobi-
and Gauss–Seidel methods for specific classes of linear systems. However, this practical
observation is not reflected by the upper estimates of Theorem B.3.1. In fact, it has been
shown [297] that the logarithmic factor in (B.3.10) cannot be removed. The counterexamples
of [297] are based on some exotic Toeplitz matrices L and the splittings mentioned in
Example B.2.4.

There are numerous modifications of the multiplicative algorithm, and refined theo-
ries which serve some applications better, and lead to sharper estimates under special cir-
cumstances. We mention the symmetric multiplicative subspace correction method (SMS),
which is the abstract counterpart of the SSOR-method. It combines two steps of the MS
method into one and, is therefore, formally twice as expensive. The iteration operator takes
the form

MSMS = (I − ωPJ TJ ) · · · (I − ωP1T1)(I − ωP1T1) · · · (I − ωPJ TJ ),
and can be viewed as the MS method applied to the splitting

{V ; �} ∼= {ṼJ ; �̃J } + · · · + {Ṽ1; �̃1} + {Ṽ1; �̃1} + · · · + {ṼJ ; �̃J }.
In analogy to the situation with SOR and SSOR, one has ρ∗

SMS = (ρ∗
MS)

2, i.e. the conver-
gence theory of the SMS method is covered by Theorem B.3.1 (ii). An advantage is that
we can now write MSMS = I − BL, where B is symmetric. Thus, the application of the
PCG-method is possible, this time with a multiplicative preconditioner rather than with
the additive preconditioner associated with P . The use of subspace correction methods as
preconditioners in standard Krylov type iterative methods is becoming good practice and
can considerably increase the robustness of a solver in comparison with applying subspace
correction methods or Krylov space methods on their own.

A more general multiplicative version, the variable symmetric multiplicative algorithm
has been proposed and analyzed by Bramble et al. [54, Algorithm III]. In a multigrid envi-
ronment, the general recommendation is to allow for more subspace correction steps on the
spaces Ṽj corresponding to coarse meshes, and, therefore, to the inexpensive subproblems
in (B.2.16). The benefit is that weaker assumptions suffice to state optimal convergence
estimates, without significantly increasing the arithmetic complexity of the iteration in the
asymptotical range (J → ∞). Speaking in terms of subspace splittings, each auxiliary
space {Ṽj ; �̃j } appears νj times, with νj not necessarily a fixed number (the MS and SMS
methods correspond to νj = 1 and νj = 2, respectively). Note that these modifications are
important for the multiplicative algorithms but have no immediate impact on the additive
method (usually, the estimates for κ cannot be improved this way).

The reader is encouraged to look at the examples of Section B.1, and to interpret the
results on the conditioning of the splittings introduced so far as indicators for the convergence
rates of the associated additive and multiplicative subspace correction methods. It is also
recommended that readers derive the corresponding matrix representations and estimate the
complexity of the implementation. As should be clear from the abstract theory, the ultimative
goal is to obtain stable splittings with small condition number (hopefully, independently
of discretization and problem parameters) and a reasonable overall operation count for the
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components L̃j , Pj , and Rj (= PTj ), j = 1, . . . , J , involved in the algorithms. Roughly
speaking, the best we can hope for are so-called asymptotically optimal algorithms, the
convergence rate of which stays well away from 1, and such that the computational work
per iteration grows only linearly with the problem size. The examples of multigrid algorithms
and domain decomposition methods discussed below are of this type. Relying mostly on the
results for Example B.2.6, we will give examples of such asymptotically optimal algorithms
for finite difference discretizations.

B.4 MULTIGRID APPLICATIONS

In this section we will derive a V-cycle multigrid method for the five-point discretization
of the Poisson problem and justify its asymptotic optimality by interpreting it as a special
instance of a multiplicative subspace correction method and using the general theory for the
latter. The result is qualitative: other than saying that the convergence factor of the method
satisfies ρh ≤ ρ∗ < 1 (independently of the mesh parameter h), no concrete values of ρh
resp. of the upper bound ρ∗ can be predicted.

Consider the unit square � and the sequence of uniform grids Vj = �2−j ,2−j , j ≥ 1.
Thus, Vj is the set of all interior vertices of the triangulation Tj (compare Figs B.4
and B.5). We will simultaneously speak about vectors in R

Nj and grid functions on Vj
assuming that the connection between vector indices and grid points in Vj is clear (e.g.,
given by the ordering discussed in Chapter 1). All grid functions are extended to the bound-
ary of � by assuming zero values at the boundary grid points. Thus, grid functions on �j
can be identified with finite element functions in V (Tj ). Let

Ljuj = fj (B.4.1)

be the linear system corresponding to the standard five-point finite difference discretization
of (B.2.1) with respect to the grid Vj , j ≥ 1. For, simplicity, we will call (B.4.1) the finite
difference method (FDM) problem of level j .

Our concern will be to construct a multigrid algorithm for the solution of any of these
systems, say, of the FDM problem of level J . Thus, we set VJ = R

NJ and �J (uJ , vJ ) =
(LJ uJ , vJ ), as before. The simple key to making a “qualified” guess for a suitable space

1 32

Figure B.5. Grids Vj , j ≤ 3, for FDM problems.
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splitting is the following observation: the FDM matrices Lj of level j and the Galerkin
stiffness matrix (B.2.4) of the bilinear form

�(u, v) =
∫
�

∇u · ∇v dx dy

with respect to the finite element nodal basis �j in Ṽj coincide up to the forefactor
22j (= h−2) in Lj . Just compute the few different values of �(ϕnj , ϕ

m
j ) in (B.2.4) (only

basis functions with nontrivial intersection of supports have to be considered). This is inci-
dental, and does not generalize to more general domains, grids, differential operators or to
the 3D case. Note, however, that spectral equivalence of the FDM problem of level J with
a corresponding FEM problem would be enough to derive useful results in essentially the
same way as detailed below.

All notation is explained in Example B.2.6 or will be introduced below. Denote the
transfer operator betweenfinite element functions inV (Tj ) and vectors inVj (grid functions
on Vj ) by Ĩj , and set Ĩ Jj = ĨJ I

J
j for all 1 ≤ j ≤ J . With the proper enumeration of the

nodal basis functions in �j , the matrix representation of Ĩj is the identity matrix, and we
will omit this Ĩj in future. Note that the prolongations Pj = Ĩ Jj have a simple meaning.

Given any linear finite element function ũj ∈ Ṽj , the vector Pj ũj represents the values of
ũj on the finest grid VJ . In other words, Pj corresponds to consecutive linear interpolation
of grid functions from Vl onto Vl+1 along the edges of the triangulation Tl , l = j, . . . , J−1.
As a consequence of Theorem B.2.1 and (B.2.14), we have.

Theorem B.4.1 The following splittings are stable, with uniformly bounded stability con-
stants and condition if J → ∞ (compare (B.2.12)):

{VJ ; �J } ∼=
J∑
j=1

Ĩ Jj {Ṽj ; �̃j } ∼=
J∑
j=1

Nj∑
i=1

Ĩ Jj {Ṽ ij ; �̃ij }, (B.4.2)

where �̃j (ũj , ṽj ) = 22j (ũj , ṽj )0, and �̃ij satisfies (B.2.15). The MS method associated
with the second splitting represents a V-cycle multigrid method for solving the FDM dis-
cretization (B.4.1) of level J while the AS method leads to a multilevel preconditioner.
Both methods can be implemented with O(NJ ) operations per iteration and converge at
rates ≤ ρ < 1, where ρ does not depend on J .

According to the material of Section B.3, the additive and multiplicative subspace cor-
rection methods based on the splittings in (B.4.2) should possess convergence rates

ρ∗
J,AS ≤ ρ∗

1 < 1, ρ∗
J,MS ≤ ρ∗

2 < 1.

Recall that the stronger estimate (B.3.9) of Theorem B.3.1 can be applied since strength-
ened Cauchy–Schwarz inequalities are available for the underlying finite element splitting.
Provided that the relaxation parameter is well chosen, the iteration count to reach a given
error reduction should therefore not grow with J in any significant way. Alternatively,
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PCG-methods such as AS-CG can be used, thereby avoiding the problem of choosing an
appropriate ω.

Let us derive the details of the algorithms using the second splitting of (B.4.2). We will
show that the MS method (applied in reverse ordering) is indeed equivalent to a standard
V-cycle multigrid method, with one Jacobi relaxation as the presmoothing step and no
postsmoothing step. The AS method is simpler but still reveals the structure of a V-cycle.
Recall that Ĩ Jj = ĨJ I

J
J−1 · · · I j+1

j and that the matrix representations of the Ĩj are identity
matrices and can be omitted. The stencil notation of the finite element restriction operators
I
j
j+1 = (I

j+1
j )T (with respect to the finite element nodal bases) is as follows:

I
j
j+1 :

⎡⎣ 1/2 1/2
1/2 1 1/2
1/2 1/2

⎤⎦.
These restrictions are intermediate to the FW and HW restriction operators discussed in
Section 2.3.3. Finally, the scaling of the �̃ij is fixed by setting

�̃ij (ϕ
i
j , ϕ

i
j ) = (ϕij , ϕ

i
j )1 = 4.

The inversion of L̃ij on the one-dimensional Ṽ ij corresponds to a scalar multiplication
by 1/4.

We start with the AS method. According to (B.1.3) and (B.3.1), it suffices to describe
the matrix–vector multiplication for the preconditioner BJ associated with the splitting.
From (B.3.1) (compare also (B.2.20)) we conclude that

BJ = 2−2J−2
J∑
j=1

IJJ−1 · · · I j+1
j (I

j+1
j )T · · · (IJJ−1)

T .

The factor 2−2J comes from the forefactor 22J in the splitting while an additional 1/4
comes from the inversion of the L̃ij (see the above scaling for �̃ij ). We will incorporate a

factor 1/2 into each IJ
J−1. Thus, we set

Î
j+1
j = 2−1I

j+1
j , Î Jj = ĨJ Î

J
J−1 · · · Î j+1

j , L̂j = diag(Lj ) = 22j+2I.

(B.4.3)

The second splitting in (B.4.2) can be written in the equivalent form

{VJ ; �J } ∼=
J∑
j=1

Î Jj {Ṽj ; �̂j }, (B.4.4)

where �̂j (ũj , ṽj ) = (L̂j ũj , ṽj ) = 22j+2(ũj , ṽj ) for all ũj , ṽj ∈ Ṽj , j = 1, . . . , J . As a
result, we can simplify the formula for BJ to

BJ =
J∑
j=1

Î JJ−1 · · · Î j+1
j L̂−1

j (Î
j+1
j )T · · · (Î JJ−1)

T ,
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which can be written in a recursive way:

B1 = L̂−1
1 , Bj+1 = Î

j+1
j Bj (Î

j+1
j )T + L̂−1

j+1, j = 1, . . . , J − 1. (B.4.5)

Before we can interpret (B.4.5) as a simplified multigrid V-cycle, we will look at the
MS method for the second splitting in (B.4.2) or, what is the same, for (B.4.4). To obtain
an efficient algorithm, reverse ordering is the correct choice (i.e. the inner loop of the MS
iteration will start with the J th subproblem and end with the first one). Set

Kj = ωÎJJ−1 · · · Î j+1
j L̂−1

j (Î
j+1
j )T · · · (Î JJ−1)

T , j = 1, . . . , J,

and show by induction that the matrices

Lj = (Î
j+1
j )T · · · (Î JJ−1)

T LJ Î
J
J−1 · · · Î j+1

j (B.4.6)

indeed coincide with the FDM matrices Lj of level j = 1, . . . , J , respectively (for general
LJ based on five-point FDM discretizations, these matrices are usually different from the
corresponding FDM discretization on the coarser grid Vj but still preserve the five-point
stencil property [54, Section 7]). The induction step can be performed in stencil notation.
With the stencils for

Lj+1 : 22j+2

⎡⎣ −1
−1 4 −1

−1

⎤⎦ , Î
j
j+1 :

⎡⎣ 1/4 1/4
1/4 1/8 1/4
1/4 1/4

⎤⎦,
at hand, one computes

Lj+1Î
j
j+1 : 22j+2

⎡⎢⎢⎢⎢⎣
−1/4 −1/4

−1/2 1/4 1/2 −1/4
−1/4 1/4 1 1/4 −1/4
−1/4 1/2 1/4 −1/2

−1/4 −1/4

⎤⎥⎥⎥⎥⎦
and

Î
j+1
j Lj+1Î

j
j+1 : 22j+2

⎡⎣ −1/4
−1/4 1 −1/4

−1/4

⎤⎦ = 22j

⎡⎣ −1
−1 4 −1

−1

⎤⎦ .
The last stencil is with respect to Vj while the others are with respect to Vj+1.

Using the above notation, the inner loop of one (reverse) MS step takes the form

zj = zj+1 +Kj(fJ − LJ zj+1), j = J, . . . , 1, (zJ+1 = uk, uk+1 = z1).

Thus, the defect iteration of the MS method is given by

rk+1 = (I − LJK1)(I − LJK2) · · · (I − LJKJ )rk. (B.4.7)

Let us look at the defect iteration of a V(1,0)-cycle using the Lj as coarse grid stiffness
matrices and Sj = I−ωL̂−1

j Lj as (pre-)smoothing. This is nothing butω-Jacobi relaxation
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used as a smoother on all levels. Denote the error propagation matrix for this V-cycle for
the FDM problem of level j by

Mj = I − CjLj , j = 1, . . . , J,

By Theorem 2.4.1 with ν1 = 1, ν2 = 0, and γ = 1, we have

Mj+1 = (I − Î j+1
j Cj (Î

j+1
j )T Lj+1)(I − ωL̂−1

j+1Lj+1)

= I − (ωL̂−1
j+1 + Î j+1

j Cj (Î
j+1
j )T (I − ωLj+1L̂

−1
j+1))Lj+1.

To start, set formallyM0 = 0 or, directly,M1 = S1 = I −ωL̂−1
1 L1. In our particular case,

L̂1 = L1. From this, a recurrence for Cj can be derived:

Cj+1 = ωL̂−1
j+1 + Î j+1

j Cj (Î
j+1
j )T − ωÎ j+1

j Cj (Î
j+1
j )T Lj+1L̂

−1
j+1,

j = 1, . . . , J − 1, (B.4.8)

where C0 = 0 resp. C1 = ωL̂−1
1 . In this relation, multiply by Î J

J−1 . . . Î
j+2
j+1 from the

left and by (Î j+2
j+1 )

T . . . (Î J
J−1)

T from the right, and recall the above expressions for Kj
and Lj :

K̂j+1 ≡ Î JJ−1 · · · Î j+2
j+1Cj+1(Î

j+2
j+1 )

T · · · (Î JJ−1)
T = Kj+1 + K̂j − K̂jLJKj+1.

Obviously, K̂1 = K1 and K̂J = CJ . From this relation, we see that

I − LJ K̂j+1 = (I − LJ K̂j )(I − LJKj+1), j = 1, . . . , J − 1,

which results in

I − LJCJ = I − LJ K̂J = (I − LJK1)(I − LJK2) · · · (I − LJKJ ).
We have shown that the defect iteration of the MS method (B.4.7) and of the above V(1,0)
multigrid cycle are identical, which implies that the two iterations are also identical. More
importantly, according to Theorem B.4.1 we have proved the optimality of this algorithm
(that each iteration requires only O(NJ ) = O(22J ) operations was shown for general
multigrid cycles). Thus, for any 0 < ω < 2, convergence is guaranteed and the convergence
rate will be bounded away from 1, independently of J . The same holds true for the AS
method (with small enough ω) and the AS-CG algorithm. To a certain extent, we have
obtained a strong result, since it guarantees optimality for the simplest multigrid V-cycle
algorithm making the optimality of more advanced V-cycle and W-cycle algorithms highly
probable (one could argue that the AS method is a yet simpler V-cycle method, see the
following remarks).

The only, but important, difference between the AS and MS methods in the multigrid
context can be seen from comparing the recursions for Bj (B.4.5) and for Cj (B.4.8).
In a multiplicative algorithm, additional smoothing operations involving the coarse grid
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matrices Lj on all levels are incorporated, whereas in the additive method the matrices Lj
(j < J ) are not even required. The recursion for Cj “degenerates” to the recursion for Bj
if we set Lj = 0, j = 1, . . . , J . Thus, both algorithms can be implemented in essentially
the same way. This observation is helpful if a multigrid method is used as preconditioner
for LJ in a Krylov space iteration. The reader is recommended to derive the details for the
SMS method which leads (in contrast to the above MS method) to a symmetric multigrid
preconditioner Cj .

The reader is encouraged to check the few changes that are necessary to adapt the above
considerations to Example B.2.7. This example reveals one possibility of modifying the
standard multigrid V-cycle to obtain a robust solution method for the linear problems that
arise at each time step when parabolic problems such as the heat equation are solved by
implicit schemes with variable time steps.

As can be concluded from the above derivation, the abstract theory of subspace correc-
tion methods covers only a certain part of multigrid theory. In particular, the coarse grid
matrices Lj have to satisfy (B.4.6), i.e. they are defined from LJ by Galerkin projection
and depend on the set of prolongation/restriction operators. If we change the above inter-
polation scheme inherited from the natural embeddings of the linear finite element spaces
to FW (bilinear interpolation) than the associated Galerkin coarse grid matrices (B.4.6)
would be defined by compact nine-point stencils, and depend on the difference J − j . The
matrices L̃j resp. the bilinear forms �̃j which describe the auxiliary problems on the spaces
Ṽj of the splitting are essentially responsible for the smoothers. Here, we have restricted
our attention to symmetric positive definite smoothers and, of course, to symmetric positive
definite problems (B.1.1) from the very beginning. Extensions to cover a broader spectrum
of multigrid applications are discussed in [54], see also [180, 425, 435]. For treatments
which emphasize multilevel preconditioning, (i.e. the AS method in a multigrid context) in
connection with finite element and wavelet space decompositions for operator equations,
see [116, 117, 298].

B.5 A DOMAIN DECOMPOSITION EXAMPLE

We will sketch some of the basic algorithmic ideas and the convergence theory, again using
the Poisson equation (B.2.1) on the unit square � discretized by a five-point FDM scheme
or, equivalently, by linear finite elements. For simplicity, we fix a grid VJ of dyadic stepsize
h = 2−J as our computational grid V and, correspondingly, T = TJ as the triangulation
of the finite element space. Consider the linear system (B.1.1), where L = LJ is the FDM
matrix of level J .

The basic idea of a domain decomposition method is illustrated in Fig. B.6, where
(a) shows a decomposition into four nonoverlapping domains and an interface � while
(b) shows a decomposition into two overlapping domains. On each of the domains, local
problems are defined, e.g. by restricting the partial differential equation to the subdomain and
complementing it by some boundary conditions. Solving (in parallel) the local problems and
gluing them together leads to an approximation of the global problem on�. Obviously, this
procedure defines a preconditioner (i.e. an approximative inverse) forL, and represents one
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Figure B.6. (a) Nonoverlapping; and (b) overlapping domain decompositions.

step of an iterative domain decomposition method. Since it is based on defining subproblems,
it should fit into the framework of subspace correction methods and allow for the same
modifications as the abstract methods (e.g. CG-accelerations and multiplicative versions
are possible).

The reader can imagine that in realistic applications much more general subdomain
patterns than shown in Fig. B.6 can arise, and that the design of suitable decompositions
is subject to many side conditions (e.g. the physical nature of the underlying problem,
load balancing, and minimization of communication are typical issues). Decompositions
into strips, where any grid point belongs to at most two subdomains, are somewhat easier
to handle, and reduce essentially to the situation of two subdomains (such as shown for
the overlapping case in Fig. B.6(b)). Interior vertices, as in Fig. B.6(a), where more than
two subdomains touch each other, cause theoretical and practical problems. For both basic
versions, subdomains are denoted by �̃m, m = 1, . . . ,M . We introduce the subgrids Ṽm
as the part of V interior to �̃m, analogously, T̃m denotes the restriction of T to �̃m. The
sets of all grid functions on V and Ṽm (or, equivalently, linear finite element functions on T
and Ṽm) will be denoted by V and Ṽm, respectively. To avoid confusion with the notation
used in the previous subsection, we will not make any notational difference between spaces,
matrices, and operators for grid functions and finite element functions of different levels
j = 1, . . . , J , assuming that the reader is aware of the identification process and the formal
differences. In particular, we will consistently use Vj , V ij , �j , �ij Ṽj , Ṽ ij , �̃j , �̃ij for the

spaces and bilinear forms defined above. The same applies to the prolongations Ĩ Jj .

As auxiliary problems on Ṽm we will consider five-point FDM discretizations of the
same Poisson problem (B.2.1) with respect to the domains �̃m instead of �. In particular,
homogeneous Dirichlet boundary conditions are assumed along ∂�̃m (there are a lot of
variations such as imposing Neumann or Robin boundary conditions which have been used
successfully [102, 362] but we will not discuss them here). Thus, L̃m is the submatrix of L
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associated with the grid points in Vm, the associated bilinear form will be denoted by �̃m.
In the nonoverlapping case, where

V� ≡ V
∖ M⋃
m=1

Ṽm �= ∅,

we also need to create an auxiliary problem for the unknowns associated with the interface
�. This so-called interface problem should approximate the Schur complement matrix

S� = L� −
M∑
m=1

LTm,�L̃
−1
m Lm,� (B.5.1)

which represents the stiffness matrix for the reduced problem with respect to V� , the set of
grid functions on V� (the finite element counterpart of V� is the trace space of V onto the
interface which consists of linear spline functions interpolating the grid functions defined
on V�). In (B.5.1), the notation comes from rewriting the linear system Lx = f in a block
form related to the subgrids Ṽm:⎛⎜⎜⎜⎝

L̃1 . . . 0 L1,�
...

. . .
...

...

0 . . . L̃M LM,�
LT1,� . . . LTM,� L�

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
x̃1
...

x̃M
x�

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
f̃1
...

f̃M
f�

⎞⎟⎟⎟⎠.

Thus, x̃m = L̃−1
m (f̃m − Lm,�x�), m = 1, . . . ,M , and

S�x� = f� −
M∑
m=1

LTm,�L̃
−1
m f̃m

represents the reduced problem for determining the grid values x� on V� . The solution of
(B.1.1) can formally be written as

x� = S−1
�

(
f� −

M∑
m=1

LTm,�L̃
−1
m f̃m

)
, x̃m = L̃−1

m (f̃m −Lm,�x�), m = 1, . . . ,M.

Since S� represents a dense matrix, the explicit computation and storage of which
should be avoided, we look for an approximate substitute S̃� the inverse of which is easy to
compute, i.e. we look for a symmetric positive definite preconditioner B� = S̃−1

� ≈ S−1
� .

We introduce the associated bilinear forms by

s�(x�, y�) = (S�x�, y�), s̃�(x�, y�) = (S̃�x�, y�).

As the above formulas reveal, the extension P� of grid functions on V� to V needs special
attention.
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We will briefly discuss choices for the components and the stability question of the
resulting splitting

{V ; �} ∼=
M∑
m=1

Pm{Ṽm; �̃m} + P�{V�; s̃�}, (B.5.2)

where the rectangular matrices Pm correspond to the extension-by-zero of grid functions
on Ṽm to V (consequently, PTm represents the natural restriction of grid functions on V to
Ṽm). For interpretation of later results, note that the choices

S̃� = S�, P T� = (−LT1,�L̃−1
1 , . . . ,−LTM,�L̃−1

M , I�), (B.5.3)

would give rise to a tight splitting in (B.5.2), with η = η̄ = κ = 1 (I� is the identity matrix
in the subspace V�). This fact is expressed by the identity

(Lu, u) =
M∑
m=1

(L̃mũm, ũm)+ (S�u�, u�), u =
M∑
m=1

Pmũm + P�u�. (B.5.4)

Clearly,

L−1 =
M∑
m=1

PmL̃
−1
m P

T
m + P�S−1

� PT� . (B.5.5)

In the case of overlapping domain decompositions, the introduction of a special interface
problem can be avoided, and one directly looks at

{V ; �} ∼=
M∑
m=1

Pm{Ṽm; �̃m}. (B.5.6)

As we will see, in both cases the results may depend on the number of domains M . For
obtaining M-independent convergence results, a so-called coarse grid problem has to be
included into the definition of B� resp. into the splitting (B.5.6). Another question is the
systematic replacement of L̃−1

m by inexact solves, both for the solution of the subproblems
associated with the subdomains �̃m, and in the application ofP� , see (B.5.3). This becomes
particularly important if the dimension of the subproblems Ñm = dim Ṽm is large, and
makes the use of direct solvers prohibitive.

We will now derive a realization of the above concepts by applying Theorem B.2.1
resp. Theorem B.4.1 following essentially [296, 298]. Although the assumptions of this
derivation are a little restrictive, the results are typical and can be used as a guideline in
other, more realistic situations. In addition, since the only thing we will do is to regroup the
one-dimensional spacesV ij forming the multigrid splittings of Theorem B.4.1 with respect to
the subdomains �m and the interface �, the resulting domain decomposition algorithms
could be viewed as a specific way to parallelize a multigrid method. This provides another
link between the basic theme of this monograph and domain decomposition methods.
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Fix some integer J ∗ = 1, . . . , J − 1, and let the domains �̃m, m = 1, . . . , 22J ∗
, form

a uniform partition of the unit square � into squares of side length H = 2−J ∗
. Fig. B.6(a)

corresponds to the case J ∗ = 1. The interface � consists of the horizontal and vertical
grid lines associated with VJ ∗ . To start with, let us assume that the linear systems with
the coefficient matrices L̃m can be solved by a direct method, i.e. we assume that L̃−1

m is
available (e.g. in the form of a LU -factorization). This means, that of all components in the
representation (B.5.5) only S−1

� needs an easy replacement (in other words, we look for a
preconditioner for S�). We will provide this preconditioner by regrouping the components
of the multilevel splittings mentioned above. From the definition of S� , we have

(S�u�, u�) = inf
u : u�=u|�

�(u, u),

we leave this as an exercise to the reader. From Theorem B.4.1 we have

�(u, u) ≈ inf
u=IJ

J∗uJ∗ +∑J
j=J∗+1 I

J
j

∑
i u
i
j

�J ∗(uJ ∗ , uJ ∗)

+
J∑

j=J ∗+1

∑
i

�ij (u
i
j , u

i
j ), u ∈ V. (B.5.7)

To prove (B.5.7), use the stability estimate for the first splitting in (B.4.2) with J replaced
by J ∗ to substitute back �J ∗(uJ ∗ , uJ ∗) for the components with j < J ∗ in the second
splitting of (B.4.2). Together this gives

(S�u�, u�) ≈ inf
u�=(I J

J∗uJ∗ +∑J
j=J∗+1

∑
i I
J
j u

i
j )|�
�J ∗(uJ ∗ , uJ ∗)+

J∑
j=J ∗+1

∑
i

�ij (u
i
j , u

i
j ).

Since �ij (u
i
j , u

i
j ) ≥ 0, the infimum will not change if we omit all those terms for which

ϕij |� = 0 (for j > J ∗ this is equivalent to suppϕij ⊂ �̃m for some m). For convenience,

for each j = J ∗, . . . , J we denote by V̂j ⊂ Vj the set of all

ûj =
∑

i:ϕij |� �=0

uij ≡
∑

i:ϕij |� �=0

cij ϕ
i
j .

Note that V̂J ∗ = VJ ∗ . Obviously, any such ûj is uniquely determined by its values on �
(more precisely, by the grid values cij at the points in V�j = Vj ∩ �), and can be recovered

from its trace ûj |� by the discrete extension-by-zero operatorEj : V �j ≡ Vj |� → V̂j ⊂ Vj
of level j defined by

Eju
�
j =

{
u�j on V�j
0 on Vj\V�j

, u�j ∈ V �j .

As before, in all these definitions we identify grid functions on Vj and V�j with the corre-
sponding linear finite element functions on � and �, respectively. Observe finally that

22j‖ûj‖2
0 ≈

∑
i:ϕij |� �=0

(cij )
2 ≈ 2j‖ûj |�‖2

0,�, ûj ∈ V̂j (B.5.8)
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(the notation (·, ·)0,� resp. ‖ · ‖0,� stands for the scalar product resp. the norm in L2(�)).
Taking all this into consideration, we can continue with

(S�u�, u�) ≈ inf
u�=(I J

J∗uJ∗ +∑J
j=J∗+1

∑
i I
J
j u

i
j )|�
�J ∗(uJ ∗ , uJ ∗)+

J∑
j=J ∗+1

∑
i:ϕij |� �=0

�ij (u
i
j , u

i
j )

≈ inf
u�=(I J

J∗uJ∗ +∑J
j=J∗+1 I

J
j ûj )|�

�J ∗(uJ ∗ , uJ ∗)+
J∑

j=J ∗+1

22j‖ûj‖2
0

≈ inf
u�=uJ∗ |�+∑J

j=J∗+1 u
�
j

�J ∗(uJ ∗ , uJ ∗)+
J∑

j=J ∗+1

2j‖u�j ‖2
0.

The constants in the above two-sided inequalities are independent of J ∗ and J .
The last relationship simply represents the stability assertion of a splitting for the Schur

complement problem {V�; s�} with respect to the hierarchy of spaces V �J ∗ ⊂ · · · ⊂ V �J =
V� . To follow the mathematical formalities, introduce ��j (u

�
j , v

�
j ) = 2j (u�j , v

�
j )0,� as the

auxiliary scalar products on V �j , j = J ∗ + 1, . . . , J , and denote the natural restriction of

IJj to the interface � by IJ,�j . Formally, we can write IJ,�j = Î
J,�
j Ej : V �j → V � , where

Î
J,�
j = |� ◦ IJj . This proves the following theorem.

Theorem B.5.1 Under the above restrictions on {�m}, the space splitting

{V�; s�} ∼= Î
J,�
J ∗ {VJ ∗; �J ∗} +

J∑
j=J ∗+1

I
J,�
j {V �j ; ��j } (B.5.9)

for the Schur complement problem governed by S� is stable, with stability constants and
condition that remain bounded, independently of J ∗ and J .

It is straightforward to realize that the resulting AS and MS methods based on (B.5.9)
represent modified multigrid V-cycles for the levels J ∗, . . . , J if the bilinear forms ��j (·, ·)
are discretized using theL2(�)-stability of the basis {ϕij |�} expressed by the second relation
in (B.5.8). The first modification in comparison with the V-cycles of Section B.5 consists
in the coarse grid problem associated with {VJ ∗; �J ∗} which requires the solution of a
FDM discretization of level J ∗. The second difference is that the prolongation/restriction
operations are now performed only with respect to the values on�. Therefore, the operation
count of the preconditioning step (without multiplication by S� and costs for solving the
coarse grid problem) will be proportional to the number of unknowns on � which is ≈
2J+J ∗

.
The coarse grid problem which arose naturally in the above derivation from the com-

ponents with j ≤ J ∗ of the multilevel splitting (B.4.2) represents a bottleneck in the
parallelization of a domain decomposition code. Historically, the first algorithms that used
decompositions with many domains did not include a coarse grid problem, at the cost of
reduced convergence rates. In our derivation, the no-coarse-grid-problem case can be mim-
icked as follows: instead of starting from (B.5.7), we could have dropped all components
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with j < J ∗ in (B.4.2), and considered the reduced splitting

{V ; �} ∼=
J∑

j=J ∗
IJj {Vj ; �j } ∼=

J∑
j=J ∗

∑
i

I Jj {V ij ; �ij } (B.5.10)

as the starting point. This modification leads to a deterioration of the upper stability constant
from ≈ 1 for the splittings in (B.4.2) to ≈ 22J ∗

for (B.5.10). Indeed, going back to the finite
element interpretation, for any u ∈ V = VJ , by definition of the triple bar norm for (B.4.2),
there are vj ∈ Vj such that

u =
J∑
j=1

vj ,

J∑
j=1

22j‖vj‖2
0 ≤ C�(u, u).

To simplify notation, we have dropped the natural embeddings IJj . Setting uJ ∗ = ∑J ∗
j=1 vj ,

we have by an application of the Cauchy–Schwarz inequality

‖uJ ∗‖2
0 ≤

( J ∗∑
j=1

2−j (2j‖vj‖0)

)2

≤
J ∗∑
j=1

22j‖vj‖2
0,

which results in

u = uJ ∗ +
J∑

j=J ∗+1

vj ,

22J ∗‖uJ ∗‖2
0 +

J∑
j=J ∗+1

22j‖vj‖2
0 ≤ 22J ∗ J∑

j=1

22j‖vj‖2
0 ≤ C22J ∗

�(u, u).

Thus, the deterioration is no more than by a factor ≈ 22J ∗
. To see that this factor can be

attained, consider a function from V1 such as u = ϕ1
1 which has norms �(u, u) ≈ ‖u‖2

0 ≈ 1
but is not well represented with respect to the functions vj , j ≥ J ∗, allowed in the reduced
splittings. The lower bound will remain ≈ 1. The reader will easily verify these facts. If we
now proceed as before, we will arrive at a splitting of the form

{V�; s�} ∼=
J∑

j=J ∗
I
J,�
j {V �j ; ��j }. (B.5.11)

This splitting does not involve a coarse grid problem, in exchange it inherits the worse
condition number κ ≈ 22J ∗ = H−2 from (B.5.10).

IfJ ∗ andJ increase, the dimension of the interface problem may become fairly large. For
this (and other) reasons, many attempts have been made to further enhance parallelization. A
very popular idea is to extend the domain decomposition principle to the interface problem,
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and to decompose � into “subdomains” of its own. The first thing which comes to mind is
a decomposition

� =
∑
m,n

�m,n, �m,n = ∂�m ∩ ∂�n.

where the summation extends over all m, n for which �m,n �= ∅. In our example, the
�m,n are edges associated with the grid VJ ∗ which leads to the name edge spaces for the
sets of grid functions V �m,n = V�|�m,n to be introduced as additional auxiliary spaces.
The appealing part of this choice is that potential subproblems associated with these local
interfaces are truly one-dimensional and all similar to each other. Problems should be
expected at the interior vertices of the domain decomposition which has triggered the
introduction of additional vertex spaces. The reader who has followed our considerations
to this point will be able to introduce local problems on the respective �-components by
further regrouping the subspaces V ij associated with � appearing in the above derivation
of Theorem B.5.1. This will lead to potentially better parallelizable S�-preconditioners
(compare [362, p. 140]). See [102] for a more comprehensive and systematic discussion of
the interface problems arising in connection with nonoverlapping domain decompositions,
and [362] for numerical support. We have left out many other aspects such as the definition
of infinite-dimensional trace spaces, the construction of approximate harmonic extension
operators (replacements for P�), and the connection with boundary integral equations and
boundary element methods.

As mentioned before, it is often prohibitive to solve the subproblems L̃mũm = f̃m,
m = 1, . . . ,M , by a direct method (or by an iterative method within machine accuracy).
Instead, one would like to replace the action of L̃−1

m by a simpler preconditioner and use
inexact solves. However, this is by no means a trivial task since the L̃−1

m enter both S�
and P� in a complicated way (see [102, Section 5] and [362, Section 4.4]). Some specific
proposals, however, can easily be found if one reviews our derivation for Theorem B.5.1
carefully. Let us begin with an rearrangement of the splitting associated with (B.5.7):

{V ; �} ∼= IJJ ∗{VJ ∗; �J ∗} +
22J∗∑
m=1

( J∑
j=J ∗+1

∑
i : suppϕij⊂�̃m

IJj {V ij , �ij }
)

+
J∑

j=J ∗+1

∑
i :ϕij |� �=0

IJj {V ij ; �ij }

∼= IJJ ∗{VJ ∗; �J ∗} +
22J∗∑
m=1

( J∑
j=J ∗+1

∑
i : suppϕij⊂�̃m

IJj {V ij , �ij }
)

+
J∑

j=J ∗+1

IJj Ej {V �j ; ��j }.

The stability constants of these splittings are uniformly bounded, independently of J ∗ and
J . The replacement of the last group of components is admissible due to the properties
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of the extension operators Ej as discussed above. This last group (considered together
with the coarse grid problem) is the exact counterpart of the splitting (B.5.9). The groups
of components associated with the subdomains �̃m represent a replacement of {Ṽm; �̃m}
by a local multigrid splitting. If the AS method associated with the above splitting are
considered then this results in a replacement of L̃−1

m by the corresponding local multilevel
preconditioner based on an application of Theorem B.4.1 on �̃m. Analogously,P�S

−1
� PT� is

replaced by some multilevel preconditioner associated with the values on� which is similar
in structure to the above preconditioner for S� but also involves the extension operators
Ej and their transposes ETj . As a result, the exact solution of subproblems with L̃m, i.e.
the multiplication by L̃−1

m , is avoided by replacing it with one iteration step of a multilevel
preconditioned iterative method for the subproblem on �̃. The reader is encouraged to work
out the details.

After this discussion of the nonoverlapping case, we will present the standard result for
the overlapping case in an analogous setting. In addition to 1 ≤ J ∗ < J , let us fix another
integer Ĵ such that J ∗ ≤ Ĵ ≤ J . Set δ = 2−Ĵ , and define the �̃m, m = 1, . . . , 22j∗

, by
extending the dyadic squares of side lengthH = 2−J ∗

used above by a corridor of width δ
in both coordinate directions in the interior of�. Thus, any two neighboring �̃m overlap in
a small strip of width 2δ. All other specifications are the same as in the nonoverlapping case.

Theorem B.5.2 For the overlapping decomposition {�m} just defined, the stability con-
stants and condition of the space splitting

{V ; �} ∼= IJJ ∗{VJ ∗; �J ∗} +
22J∗∑
m=1

Pm{Ṽm; �̃m} (B.5.12)

behave like

0 < c ≤ η ≤ η̄ ≤ C2Ĵ−J ∗ = C
H

δ
, κ ≈ 2Ĵ−J ∗ = H

δ
. (B.5.13)

The constants in these estimates are independent of J ∗, Ĵ , and J .

Before we sketch the proof of Theorem B.5.2, we will comment on its practical conse-
quences. From (B.5.13) we see that only sufficient overlap, i.e. when the overlap parameter
δ becomes proportional toH , and the inclusion of the coarse grid problem lead to the opti-
mal preconditioning effect (κ = O(1)). Clearly, this means more work per local problem (if
δ = H then a local problem is up to nine times larger, and the solution of all subproblems
would take at least tenfold the time needed for the subproblems associated with a com-
parable nonoverlapping domain partition). However, as a practical observation, already a
small overlap δ ≈ 2h . . . 4h often leads to reasonably good convergence rates, at little extra
cost. For the splitting (B.5.6) which does not contain a coarse grid problem, the condition
number may further increase, at most by a factor ≈ H−2. In an overlapping environment,
the replacement of the direct solves (involving L̃−1

m ) by inexact solves on the subdomains is
not an obstacle. Any spectral equivalent replacementBm ≈ L̂−1

m would suffice. A drawback
is the increased amount of data communication between neighboring subdomains.
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To avoid unnecessary technicalities, let us sketch the argument for the finite element
version of Theorem B.5.2. We will again omit the mappings IJj . The proof of (B.5.13) relies
on two essential observations. First,

{Ṽm; �̃m} ∼=
J∑

j=J ∗

∑
i : suppϕij⊂�̃m

{V ij ; �ij } (B.5.14)

is stable with 0 < c ≤ η ≤ η̄ ≤ C < ∞ with c, C independent of all parameters. For
the domains �̃m under consideration, this is a rather standard consequence of the basic
results of Theorem B.4.1 which gives the same result for the domain �. The reduction is
by observing that (B.5.14) can be viewed as the trivial localization of the splitting

{VJ ; �J } ∼=
J∑
j=1

∑
i

{V ij ; �ij } (B.5.15)

to the subdomain �̃m, where trivial means that all components of the splitting with support
at least partially outside �̃m are omitted. One should be aware that trivial localization of
multilevel splittings to a general subdomain may lead to very poorly conditioned splittings
(the above subdomains are among the “nice” ones in this respect). Since, by the same
Theorem B.4.1,

{VJ ∗; �J ∗} ∼=
J ∗∑
j=1

∑
i

{V ij ; �ij } (B.5.16)

with uniform bounds for the stability constants, we can substitute these splittings for the
components of the splitting (B.5.12). This results in the splitting

{V ; �} ∼=
J ∗∑
j=1

∑
i

{V ij ; �ij } +
J∑

j=J ∗

∑
i : suppϕij⊂�̃m

{V ij ; �ij }, (B.5.17)

which should have essentially the same stability constants and condition number as (B.5.12).
These simple manipulations with stable splittings have been introduced and analyzed in
[298, p. 82–83] under the names refinement and clustering of stable splittings.

Thus, it suffices to find estimates for the stability constants of (B.5.17). This can be done
by comparing the triple bar norms of the splittings (B.5.17) and (B.5.15) with each other. Let
us denote them by ‖|u‖|mod and ‖|u‖|, respectively. Analogous notation is introduced for
the stability constants. The differences between the two splittings are as follows. On the one
hand, some of the components {V ij ; �ij } occur several times (but no more than five times) in
(B.5.17). On the other, (B.5.17) represents a subsplitting of (B.5.15), i.e. all components in
(B.5.17) are also contained in (B.5.15), the latter splitting contains some more components
for J ∗ < j < Ĵ associated with the interface � which is defined as in the nonoverlapping
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case. This immediately gives

5‖|u‖|2mod ≥ ‖|u‖|2 ≥ η�(u, u) =⇒ ηmod ≥ η

5
.

However, in the other direction, we can only prove

‖|u‖|2mod ≤ C2Ĵ−J ∗‖|u‖|2 ≤ C2Ĵ−J ∗
η̄�(u, u).

Although this is technically involved, we will try to convey the idea. Take any close-to-
optimal decomposition of u ∈ V with respect to the splitting (B.5.15),

u =
J∑
j=1

vj ≡
J∑
j=1

∑
i

cij ϕ
i
j :

J∑
j=1

∑
i

22j‖vj‖2
0 ≤ C‖|u‖|2,

and modify it such that it matches the decompositions admissible in the splitting (B.5.17).
The only problematic terms are those for which ϕij |� �= 0 and J∗ < j < Ĵ (there is nothing

to prove in the cases of sufficient overlap Ĵ = J ∗ or Ĵ = J ∗ + 1). Summing all these terms
with the same j , we define functions v̂j ∈ V̂j , J ∗ < j < Ĵ , associated with � (see the
definition before (B.5.8)). Obviously,

‖v̂j‖2
0, ‖vj − v̂j‖2

0 ≤ C‖vj‖2
0.

Setting ûJ ∗+1 = 0, we will recursively define

ŵj = v̂j + ûj , ûj+1 = Ej+1(ŵj )|�, uj+1 = ŵj − ûj+1,

j = J ∗ + 1, . . . , Ĵ − 1.

Note that the functions uj ∈ Vj as well as û
Ĵ

∈ V
Ĵ

are linear combinations of terms
admissible in (B.5.17), and that v̂J ∗+1 + · · · + v̂

Ĵ−1 = uJ ∗+2 + · · · + u
Ĵ

+ û
Ĵ

. Thus,

u =
J ∗∑
j=1

vj +
Ĵ−1∑
j=J ∗

(vj − v̂j + uj )+ (v
Ĵ

+ u
Ĵ

+ û
Ĵ
)+

J∑
j=Ĵ

vj ≡
J∑
j=1

wj

is an admissible decomposition in the definition of the triple bar norm associated with
(B.5.17) which yields

‖|u‖|2mod ≤
J∑
j=1

22j‖wj‖2
0 ≤ C

J∑
j=1

22j‖vj‖2
0 +

Ĵ∑
j=J ∗+1

22j‖uj‖2
0 + 22Ĵ ‖û

Ĵ
‖2

0.

If we can show that

Ĵ∑
j=J ∗+2

22j‖uj‖2
0 + 22Ĵ ‖u

Ĵ
‖2

0 ≤ C2Ĵ−J ∗‖|u‖|2,
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then things fall into place. By definition of the recursion we have

‖uj+1‖2
0 = ‖ŵj − Ej+1ŵj |�‖2

0 ≈ ‖ŵj‖2
0 ≈ 2−j‖ŵj |�‖2

0,�

= 2−j‖(v̂J ∗+1 + · · · + v̂j )|�‖2
0,�

≤ 2−j
( j∑
l=J ∗+1

‖v̂l |�‖0,�

)2

≤ C2−j
( j∑
l=J ∗+1

2l/2‖v̂l‖0

)2

≤ C2−j
( j∑
l=J ∗+1

2−l/2(2l‖v̂l‖0)

)2

≤ C2−J ∗−j
j∑

l=J ∗+1

22l‖v̂l‖2
0.

This yields

Ĵ∑
j=J ∗+2

22j‖uj‖2
0 ≤ C2−J ∗ Ĵ−1∑

l=J ∗+1

22l‖v̂l‖2
0

Ĵ−1∑
j=l

2j ≤ C2Ĵ−J ∗ Ĵ−1∑
l=J ∗+1

22l‖v̂l‖2
0

≤ C2Ĵ−J ∗ J∑
l=1

22l‖vl‖2
0 ≤ C2Ĵ−J ∗‖|u‖|2.

Since û
Ĵ

= E
Ĵ
(ŵ
Ĵ−1|�) and, thus, ‖û

Ĵ
‖2

0 ≤ C‖ŵ
Ĵ−1‖2

0, the estimate for the last term is
the same. This finishes the derivation of the upper bound

η̄mod ≤ C2Ĵ−J ∗
η̄,

and Theorem B.5.2, (B.5.13), follows from the uniform bounds for η, η̄ obtained in
Theorem B.4.1.
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Very high efficiency has been attained by multigrid solvers for some types of problems,
such as general uniformly elliptic problems. Our objective is to attain such an optimal
performance for general fluid dynamics problems. A set of obstacles to achieving that goal
is tabled below, along with a list of possible ways for overcoming each obstacle, their current
state of development and references.

The table includes staggered and nonstaggered, conservative and nonconservative dis-
cretizations of viscous and inviscid, incompressible and compressibleflows at various Mach
numbers, as well as a simple (algebraic) turbulence model and comments on chemically
reacting flows. The listing of associated computational barriers involves: nonalignment of
streamlines or sonic characteristics with the grids; recirculating flows; stagnation points;
discretization and relaxation on and near shocks and boundaries; far-field artificial boundary
conditions; small-scale features not visible on some of the coarse grids; large grid aspect
ratios; boundary layer resolution; and grid adaption.

C.1 INTRODUCTION

The table below does not refer to a vast literature on multigrid methods in CFD (see for
example [203]), in which enormous improvements over previous (single-grid) techniques
have been achieved, but without adopting the systematic top multigrid efficiency (TME)
approach. This approach insists on obtaining basically the same ideal efficiency to every
problem, by a very systematic study of each type of difficulty, through a carefully chosen
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sequence of model problems. Several fundamental techniques are typically absent in the
multigrid codes that have not adopted the TME strategy. Most important, those codes fail to
decompose the solution process into separate treatments of each factor of the PDE principal
determinant, and therefore do not identify, let alone treat, the separate obstacles associated
with each such factor. Indeed, depending on flow conditions, each of those factors may have
different ellipticity measures (some are uniformly elliptic, others are nonelliptic at some or
all of the relevant scales) and/or different set of characteristic surfaces, requiring different
combinations of relaxation and coarsening procedures.

The table deals only with steady-state flows and their direct multigrid solvers, i.e.
not through pseudotime marching. Time-accurate solvers for genuine time-dependent flow
problems are in principle simpler to develop than their steady-state counterparts. Using
semi-implicit or fully implicit discretizations, large and adaptable time steps can be used,
and parallel processing across space and time is feasible. The resulting system of equations
(i.e. the system to be solved at each time step) is much easier than the steady-state system
because it has better ellipticity measures (due to the time term; cf. Section 2.8.2), it does
not involve the difficulties associated with recirculations, and it comes with a good first
approximation (from the previous time step). A simple multigrid “F-cycle” at each time
step can solve the equations much below the discretization errors of that step [78]. It is thus
believed that fully efficient multigrid methods for the steady-state equations will also yield
fully efficient and highly parallelizable methods for time-accurate integrations.

C.2 TABLE OF DIFFICULTIES AND POSSIBLE SOLUTIONS

Throughout the table, wherever appropriate, pointers to the subject and sections in the body
of the book are provided.

When no comment is made in the “Status” column of the table it usually means that the
discussed “Possible Solution” is not known to have been tried.
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Difficulty Possible Solutions Status⊙

Uniformly elliptic scalar equa-
tion on uniform grids in general
domains

Multigrid cycles, guided by local mode analysis +
FMG (see Chapters 2 and 4)

TME demonstrated 1971 [56, 58] and
rigorously proved [68, 69]

⊙
Nonlinearity (1) FAS cycles (Section 5.3)

(2) Continuation processes (to obtain good initial
approximations), integrated into one-shot FMG
algorithm (Section 10.2)

(1) Demonstrated 1975 [58, 369].
(2) Described in Sec. 8.3.2 of [66]

⊙
Fluid dynamics: general Basic ideas are reviewed in Sec. 2 of [500]; see also

Sections 8.6–8.9 above.⊙
Nonscalar PDE systems
(see Chapter 8)

(1) General rules for the order of the intergrid transfer
operators are given in Sec. 4.3 of [66] with some
more details in Sec. 3.3 [69]

(2) A general approach to the design of relaxation is
based on the operator principal matrixL and on the
factors of detL Secs. 3.4 and 3.7 in [66]. In this
approach a distribution matrix M and a weighting
(or “preconditioning”) matrix P are constructed so
that PLM is triangular, containing the factors of
detL on the main diagonal (separated from each
other as much as possible, to avoid the complication
with “product operators” discussed next). This (if
necessary—together with the technique described
next), leads to decomposing relaxation into sim-
ple schemes for the (scalar) factors of detL. Many
specific examples are given below

TME demonstrated in a number of
cases (see many details below). TME
proved for uniformly elliptic sys-
tems [68, 69]

(3) For systems of PDE which are of mixed type
(elliptic–hyperbolic) another possibility is to some-
times introduce new unknowns in terms of which
elliptic and hyperbolic parts are separated

TME demonstrated for incompressible
and compressible cases [381–384]
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• Product operator: an equationLU =
f , whereL = L2L1. Assume a relax-
ation process for Lj is given, with
the amplification factorμj (θ) and the
smoothing factor μ̄j , (j = 1, 2)

Two alternative approaches:
(1) Throughout the multigrid algorithm (not just in

the relaxation sweeps), introduce an explicit new
unknown function V , replacing the equation with
the pair of equations L1U − V = 0 and
L2V = f . The resulting smoothing factor is μ̄ =
max(μ̄1, μ̄2). See Section 8.3

(1) TME demonstrated for L = �2

[77, 239]

(2) Use V only as an auxiliary function in relax-
ation. That is: starting with v = L1u, where
u is the current approximation to U , perform
ν2 sweeps on the equation L2V = f , yield-
ing a new value ṽ. Then perform ν1 sweeps
on the equation L1u = ṽ. The resulting ampli-
fication factor is μ(θ) = μ1(θ)

ν1 + [1 −
μ1(θ)

ν1 ]L̂1(θ)
−1μ2(θ)

ν2 L̂1(θ), where the Fourier
symbols are defined by L̂j (θ) = e−iθ ·x/hLje

iθ ·x/h.
Hence in scalar cases μ̄ < μ̄

ν1
1 + μ̄ν22⊙

Smoothing for specialCFDsystems M = distribution operator
P = preconditioner (see discussion above)

• Cauchy–Riemann on staggered grid

L =
(
∂x ∂y
∂y −∂x

) Two alternatives:
(1)M = L, P = I

(2) P = L, M = I

(1) TME demonstrated [72, 130]
(2) TME validated

• Stokes on staggered grid

L =
⎛⎝−� 0 ∂x

0 −� ∂y
∂x ∂y 0

⎞⎠
(1) See Section 8.7

M =
⎛⎝1 0 −∂x

0 1 −∂y
0 0 −�

⎞⎠ , P = I

(2)

P =
⎛⎝ 1 0 0

0 1 0
−

⎞⎠ , M = I

(1) TME demonstrated [72, 130]

(2) TME validated
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• Stokes, nonstaggered

(1) Quasi-elliptic discretization

L =

⎛⎜⎝−� 0 ∂2h
x

0 −� ∂2h
y

∂2h
x ∂2h

y 0

⎞⎟⎠
with averaging of the resulting pressure

(2) h-elliptic discretization, e.g.

L =

⎛⎜⎝−� 0 ∂2h
x

0 −� ∂2h
y

∂2h
x ∂2h

y −ωh2�

⎞⎟⎠

Analogous to the staggered case; e.g.

M =

⎛⎜⎝1 0 −∂2h
x

0 1 −∂2h
y

0 0 −�

⎞⎟⎠
No modifications of the FMG algorithm is
required, even in the quasi-elliptic case (as
explained in Sec. 18.6 of [66]). In general-
ization to Navier–Stokes, pressure averaging
is required of coarse-level results before their
interpolation to the next finer level (when-
ever the coarse-level employs the quasi-elliptic
discretization)

(1) In a quasi-elliptic ap-
proach, TME demon-
strated (Sec. 18.6 of [66],
and [83]

(2) TME demonstrated (see
Section 8.8)

• Nonconservative incompressible Euler, whose principal
operator in 2D is

L =
⎛⎝u · � 0 ∂x

0 u · � ∂y
∂x ∂y 0

⎞⎠
(similarly 3D), on staggered grid, second- (or higher) order
discretization

(1) Employ cycle index γ = 2p , where p is the
order of discretization, with

M =
⎛⎝1 0 −∂x

0 1 −∂y
0 0 u · �

⎞⎠
(2) With the same M , for each of the momen-

tum equations employ a relaxation scheme
which is fast converging for the advection
operator u · � (i.e. converging fast not only
for high frequency, but also for smooth
characteristic components; see discussion of
advection below)

(3) Use canonical variable (u, v, P ) on stag-
gered grid, where P = (u2 + v2)/2 + p.
Upwind only P , use central discretization
for (u, v). Relaxation is marching forP , and
weighted (preconditioning) for (u, v)

(1) TME for first-order dis-
cretization using W-cycles
shown in [72, 130]

(2) TME demonstrated for
2D entering flows with
second-order discretiza-
tion [86] and for recirculat-
ing flows with first-order
discretization [87]

(3) TME in [381–383]

• Low-Reynolds incompressible Navier–Stokes, staggered
or not

Fully analogous to Stokes solvers: just replace
� in L byQ = −R−1�+ u · �. See also
Sec. 8.7

TME demonstrated 1978 [72,
130]
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• High-Reynolds incompressible Navier–Stokes, staggered Fully analogous to incompressible Euler (out-
side boundary layers: see discussion on such
layers below): just replace u · � everywhere
withQ. See also Sec. 8.8

TME demonstrated for first-
order discretization on stag-
gered [72, 130] and nonstag-
gered grids (Sec. 19.5 in [66]),
and for second-order stag-
gered discretization [86]

• Compressible Euler, nonconservative, on staggered grid:
the subprincipal operator on (u1, u2, u3, ρ, ε, p) is

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρu · � 0 0 0 0 ∂1

0 ρu · � 0 0 0 ∂2

0 0 ρu · � 0 0 ∂3

ρ2∂1 ρ2∂2 ρ2∂3 ρu · � 0 0

p∂1 p∂2 p∂3 0 ρu · � 0

0 0 0
−∂p
∂ρ

−∂p
∂ε

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
detL = ρ5(u · �)3((u · �)2 − a2�),
a = (∂p/∂ρ + (p/ρ2)(∂p/∂ε))1/2 is the sound speed,
ρ, ε, p defined at cell centers,
ui – at center of cell faces perpendicular to the ith coordinate

M =

⎛⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −ρ(u · �)∂1

0 1 0 0 0 −ρ(u · �)∂2

0 0 1 0 0 −ρ(u · �)∂3

0 0 0 1 0 −ρ2�

0 0 0 0 1 −p�
0 0 0 0 0 ρ2(u · �)2

⎞⎟⎟⎟⎟⎟⎟⎠
The advection and full potential operators are
each relaxed by one of the approaches described
for them below (in the section on nonelliptic
operators. The semicoarsening described there
would then be used as an inner multigrid cycle
for relaxing one factor of the determinant, to be
distinguished from the outer multigrid cycle,
which can use full coarsening)

• 2D Compressible Euler, nonconservative and conserva-
tive, staggered grid, using canonical variables (u, v, S,H).
Structured and unstructured grids

Use (u, v) at cell edges, H at middle of cell,
S at vertices. Upwind only S at momentum
equations. Relax S, H by marching. (u, v) by
a weighting relaxation. Crocco’s form is used
here to define relaxation

TME in [382–384]

• 2D/3D incompressible and compressible Euler: canonical
variables in which velocities are replaced by vector poten-
tial representation. Nonstaggered structured and unstruc-
tured grid

All variables at cell nodes. Relax hyperbolic
quantities using marching. Relax vector poten-
tial using point Gauss–Seidel

TME achieved (unpublished)
for interior and exterior flows
in 2D, interior in 3D



M
U

LT
IG

R
ID

EFFIC
IEN

C
Y

(T
M

E)
IN

C
FD

579
• Compressible Navier–Stokes, nonconservative. The

subprincipal operator on (u1, u2, u3, ρ, ε, p) is

Ls =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Qμ − λ̄∂11 −λ̄∂12 −λ̄∂13 0 0 ∂1

−λ̄∂21 Qμ − λ̄∂22 −λ̄∂23 0 0 ∂2

−λ̄∂31 −λ̄∂32 Qμ − λ̄∂33 0 0 ∂3

ρ2∂1 ρ2∂2 ρ2∂3 Q0 0 0

p∂1 p∂2 p∂3 0 Qκ 0

0 0 0 − ∂p
∂ρ

− ∂p
∂ε

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where Qα = −α� + ρu · �, λ̄ = λ + μ, λ =
(2/3)μ, κ = k/cv (coefficient of thermal conductiv-
ity divided by the specific heat at constant volume),
detLs = Q2

μ detLc, where Lc is the “core operator”

Lc =

⎛⎜⎜⎝
Q0 0 −ρ2�

0 Qκ −p�
−∂p
∂ρ

−∂p
∂ε

Qμ+λ̄

⎞⎟⎟⎠
At standard conditions of laminar air flow the Prandtl
number γμ/κ ≈ 0.72; for turbulence γμ/κ ≈ 0.9,
with γ = cp/cv = 1.4

(1) Where λ̄, μ, κ � ρh|u| relax as in Euler above
(2) Otherwise use

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 −∂1

0 1 0 0 0 −∂2

0 0 1 0 0 −∂3

0 0 0 1 0 0

0 0 0 0 1 0

λ̄∂1 λ̄∂2 λ̄∂3 0 0 Qμ+λ̄

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
relaxing each Qμ by one of the approaches
described for the advection–diffusion below,
and Lc by procedures discussed for it below
(in the section on nonelliptic operators)

• Nonconservative nonstaggered Euler and NS (1) Probably similar to the staggered (cf. transition
from staggered to nonstaggered in Stokes)

(2) In the 2D incompressible case: premultiply L
by a projection operator P , obtaining a Poisson
equation for the pressure. Solve pressure equa-
tion with multigrid and the advection equation
by marching downstream

TME demonstrated for
2D incompressible Euler
[325] in the cases of
channel (with bump) and
airfoil flows
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• Conservative discretization of any of the above systems Apply a prefactor P such that PL has principally
the above nonconservative form. See, however,
the difficulty associated with FDA factorizability
(discussed in the section on nonelliptic operators),
which may arise with such PL operators. See also
Section 8.9

Mentioned in Sec. 3.4 of
[66], but not tested

⊙
Nonelliptic operators
More precisely: small ellipticity measures at some (e.g.
large) scales. The main operators of interest here are
(1) The advection operator (or, similarly, the

convection–diffusion operator at large Reynolds
numbers)

(2) The near-sonic full potential operator or more gen-
erally the core operator Lc

(3) The supersonic full potential operator or Lc. (See
below a separate discussion of anisotropies caused
by the discretization)

The distributive Gauss–Seidel (DGS) relaxation
of the full flow equations allows a specific indi-
vidual treatment for each of these cases, taking
into account its particular set of characteristics, as
detailed below

• Grid aligned with the characteristics: pointwise relax-
ation has only semismoothing capability

Block (e.g. line or plane) relaxation schemes and/or
semicoarsening, possibly in alternating directions,
guided by mode analyses [58, 61] (see Sections 5.1
and 5.2); or ILU relaxation [211, 366] (see Sec-
tion 7.5)

TME demonstrated in
many cases

• Distinguishing different regimes (open vs. closed char-
acteristics)

Running separately the relaxation subroutine of a
given nonelliptic factor can
(1) Separately check its convergence properties
(2) Produce a scalar σ ≈ 1 at regions of open char-

acteristics and σ � 1 on closed characteristics
(as in separated flow zones)
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• Nonaligned grids, with open char-

acteristics (e.g. entering flow): The
main difficulty is the shorter distance
(along the characteristics) for which a
coarser grid still approximates some
smooth solution components (char-
acteristic components with interme-
diate cross-characteristic smoothness)
[63, 85]

Three possible approaches, all guided by half-space
two-level FMG mode analysis, using for simplicity the
first differential approximation (FDA) to the discrete
operator (see [63] and Sec. 7.5 in [66])
(1) Downstream-ordered relaxation marching: suit-

able only for the advection factor; sometimes still
requires W-cycles, and not very good for mas-
sively parallel processing. In the case of anO(hp)
discretization which is not purely upstreamed,
relaxation should involve a predictor–corrector
downstream marching. If the predictor order is q,
the corrector should be applied at least p/q times.
See also Section 7.2

(2) Similarly, with downstream-ordered ILU relax-
ation: suitable for the advection operator (in 2D
and 3D) and for the nearsonic full potential opera-
tor in 2D (not in 3D). See also Section 7.5

(3) Semicoarsening with controlled artificial dissipa-
tion at coarse levels (to match the target-grid
numerical dissipation): suitable for all operators in
2D and 3D, and for massively parallel processing.
See also Section 5.1

(4) Cycle index = 2p/m, where p is the order of dis-
cretization and m is the order of the differential
factor. (Only suitable for the advection operator,
for which m = 1; especially attractive for p = 2
in 3D; not requiring ordered relaxation, but still
disadvantageous for massively parallel processing
because of the high cycle index)

(1) TME demonstrated in [86] and in
recent calculations, both for the
advection operator by itself and as
part of the incompressible Euler
system

(3) TME has been shown for the sonic
full potential operator [74–75]

(4) For p = 1, TME has been shown
on various occasions. Should be
tried for p = 2
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• The mixed convection–diffusion opera-
tor with orderp approximation, having
natural viscosity ν and artificial viscos-
ity αhp

Treatment as elliptic operator on levels where ν �
(2p ·4−5)αhp and as the nonelliptic advection operator
otherwise

Not precisely tried

• Closed characteristics (recirculating
flows). Here uniformity of viscos-
ity (including numerical viscosity) is
important for accuracy, while the vis-
cosity size is less important (except
at resolved boundary layers, discussed
below). In fact, a uniform (h) artifi-
cial viscosity can yield higher order
approximations. Full convergence may
also be less important here (since
in reality, too, steady state may take
exceedingly long to establish)

Using the above-mentioned scalar σ , form a σ -
dependent convergence test, to distinguish between
slowness of open and closed characteristics (and pos-
sibly ignore the latter). Also based on σ , at recircu-
lation regions use uniform (explicit) O(h) numerical
viscosity, with continuation from large to small vis-
cosity integrated into the FMG algorithm. The cycles
can employ one of the following three options. (See
also Sections 7.2–7.3).
(1) DCW method (using defect corrections within W-

cycles), with suitable over-weighting of residu-
als [87]. Suitable only for O(h) discretizations

(2) Effectively downstream relaxation ordering
(using alternate direction sweeps) and doubling
of transferred residuals (for O(h) discretiza-
tion) [430]

(3) Semicoarsening, generally similar to [74]

TME cycles by methods (1) and (2)
were shown in [87] and [430] respec-
tively. Method (3), which should be
best for massive parallelization, has
not been implemented

• Full potential operator (u ·�)2 −a2�,
M0 = |u|/a ≤ 0.7 (uniformly elliptic)

Any classical algorithm is suitable (see for example
Section 5.3.6), but the algorithm of the next case is
also adequate

TME well established

• Full potential 0.7 ≤ M0 ≤ 1.4 Relaxation marching downstream (for transition to the
supersonic case below) together with semicoarsening
in the characteristic (cross-stream) direction

TME shown for the case M =
1 [74]. Other cases have not yet been
implemented

• Full potential 1.4 ≤ M0 (uniformly
hyperbolic, with the stream as the time-
like direction, and withO(1) “Courant
number”)

Marching in the stream direction, possibly with a
predictor–corrector procedure. For full massive paral-
lelization, however, wave methods (extending stand-
ing wave methods [76, 246] should be used



M
U

LT
IG

R
ID

EFFIC
IEN

C
Y

(T
M

E)
IN

C
FD

583
• The “core operator”

Lc =
⎡⎣ Q0 0 −ρ2�

0 Qκ −p�
−∂p/∂ρ −∂p/∂ε Qμ+λ̄

⎤⎦
should be relaxed as part of relaxing
the compressible NS system, in the
case that ρ|u|h ≤ max(λ̄, μ, κ). In the
case of alignment between the grid and
the flow, with mesh size h1 and h2

in the stream and cross-stream direc-
tions, respectively, and h2 ≤ h1 (e.g.
in boundary layers), the case where Lc
need be relaxed is when ρ|u|h2

2 ≤
h1 max(λ̄, μ, κ). In aerodynamics, λ̄,
μ and κ are comparable, so the case
of interest is |u|h2

2 ≤ νh1, where
ν = μ/ρ

Best relaxation scheme depends on the flow parame-
ters. For example:
(1) If κ � ρ|u|h, then Qκ ≈ Q0 (in principal terms)

and one can use DGS with

M =
⎛⎝1 0 ρ2�

0 1 p�

0 0 Q0

⎞⎠
resulting in the need to relax the first two equations
each on an advection operator (see methods above),
and the third equation on the operator Q0Qμ+λ̄ −
ρ2a2�. In the case of interest the principal part
of the latter is ((μ + λ̄)Q0 + ρ2a2)�, so it can
be relaxed by the general method for relaxing a
product operator (see L = L2L1 above)

(2) In the aerodynamics and aligned case of interest,
the term Qμ+λ̄ in Lc is not the principal term.
Therefore relaxation can easily be conducted with
the weighting (preconditioning) matrix

P =
⎛⎝ 1 0 0

−p ρ2 0
0 0 1

⎞⎠
and the distribution matrix

M =
⎛⎝0 1 0

0 −pρ/pε 1
1 0 0

⎞⎠
yielding PLM whose principal part is its main
diagonal, on which separately appear the Laplace
operator �, the convection–diffusion operator Qκ̄

where κ̄ = pρρ
2/(2ppε) = 1.25κ (for air), and a

free function
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• FDA factorizability question: the
decomposition of a system relaxation
into its scalar factors depends on the
equality of the different occurrences
of the advection–diffusion operator
Q (or Qμ+λ̄) appearing in PL, the
prefactoring by P of a conservative
discretizationL. However, for smooth-
characteristic convergence in relaxing
a nonelliptic discrete operator, impor-
tant is not only the differential operator
it approximates, but also its FDA terms
in noncharacteristic directions; e.g.
the cross-stream numerical viscosity
of Q. These may not be the same in
the different occurrences ofQ, putting
the factorization into question

(1) Examining several examples of conservative dis-
cretization of transonic flows, the FDA terms in
various occurrences of Qμ+λ̄ turn out to be suffi-
ciently close to each other (e.g. only 4% discrep-
ancy) to allow full efficiency of the proposed relax-
ation schemes

(2) Conservative schemes may be designed so that the
various FDAs ofQμ+λ̄ are identical, or at least suf-
ficiently close so that the scheme is still factorizable

(3) A general practical approach is a defect correc-
tion relaxation: the residuals are calculated by the
given PL system and fed into a DGS relaxation
scheme whose driving factors may have different
discretizations (as long as their numerical viscosi-
ties are not larger than those in the PL system)

(1) Further examination is needed

(2) Some “genuinely multidimensional
upwind” schemes yield factorizable
schemes, e.g. in the subsonic case in
the control-volume structured-grid
context [358]. Further studies are in
progress

• High-order discretization (away from
shocks)

(1) “Double discretization” schemes: use high-order
only in calculating residuals transferred to the
coarse grid, not in relaxation (unless the high-
order scheme is preferable also for high frequency
modes). See also Section 7.8

(2) However, in relaxing nonelliptic factors (e.g.
downstream relaxation marching for convection
operator) the high-order must be used (e.g. by a
predictor–corrector downstream relaxation). See
also Section 7.4

Introduced 1978 [72]. Successfully
implemented in various elliptic cases
(see description and refs in Sec. 10.2
of [66]). Methods for nonelliptic have
not been tested beyond second-order
Comment: high-order approximations
on unstructured grids are very expen-
sive
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⊙
Algebraic turbulence models
These employ the (compressible or incompress-
ible) Navier–Stokes equations, adding to the lam-
inar viscosity μ� (and similarly to λ� and κ�) a
turbulent viscosity μt (similarly λt , κt ), which is
defined in terms of geometric functions (such as
the distance to the wall),flow-dependent boundary-
layer-wide (BLW) parameters (such as the bound-
ary layer thickness, the maximum and minimum
total velocity across the layer, and the flow wall
friction) and in terms of the local total vorticity
ω = |curlu|. E.g., the two-layer Baldwin–Lomax
model [17], is defined in two regions as follows:
(1) Outer layer Here μt is defined only in terms

of distance from the boundary and BLW param-
eters.

(2) Inner layer Closer to the wall, μt = ρ�2ω,
where � depends on the distance to the wall
and on BLW parameters. In the 2D incompress-
ible case, and neglecting the laminar viscosity,
the resulting principal operator, on the vector of
unknowns (ω, u, v, p), is

L =

⎛⎜⎜⎝
−ω (uy − vx)∂y −(uy − vx)∂x 0
−A Qμ 0 ∂x
−B 0 Qμ ∂y

0 ∂x ∂y 0

⎞⎟⎟⎠
where A = ρ�2[2ux∂x + (uy + vx)∂y],
B = ρ�2[2vy∂y + (uy + vx)∂x], so that
detL = �{ω∂s − 2ρ�2(uy − vx)

× [vx∂xx − uy∂yy + (vy − ux)∂xy]}

In the outer layer the principal operator, hence also
relaxation, are exactly as for the laminar case, with
μ = μt +μ�. The BLW parameters are held unchanged
during relaxation at scales finer than the boundary-
layer width. Only at a suitable coarser level, where the
cross-layer mesh size approaches the layer width, is the
dependence of the BLW parameters on the flow relaxed,
together with the flow equations themselves, by apply-
ing box relaxation near the boundary (cf. the section on
boundary relaxation)
In the inner layer, suppose for example that the coordi-
nate along the wall is x, and uy � max{|ux |, |vx |, |vy |}.
Then the principal operator takes the form

L =

⎛⎜⎜⎝
−μ μ∂y −μ∂x 0

−μ∂y Qμ 0 ∂x
−μ∂x 0 Qμ ∂y

0 ∂x ∂y 0

⎞⎟⎟⎠
A suitable distribution operator then is

M =

⎛⎜⎜⎝
1 ∂y −∂x 0
0 1 0 −∂x
0 0 1 −∂y
0 μ∂x −μ∂y Qμ

⎞⎟⎟⎠
yieldingLM with principal terms only on the main diag-
onal, where there appear the operators� (for the conti-
nuity equation ghost function) and u · � − 2μ∂yy (for
each of the momentum equations). The latter is nonel-
liptic, and its characteristics would often be aligned with
the grid (cf. the section on nonelliptic operators)

TME should first be
demonstrated for a simple
turbulence model, such as
the one described here
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Chemically reacting flows
These feature three types of difficulty
(1) A set of N continuity equations, where N , the

number of chemical species, may be quite large.
(2) The nonlinear source terms in these equations

may be very stiff
(3) Some densities at some (few) points may

become negative upon the coarse-to-fine FAS
interpolation

At any grid point where any source term is princi-
pal (meaning: its production rate of species i per unit
volume is large compared with max

(
h−2Di, h

−1ρi |u|),
where Di is the local diffusion coefficient of species i)
it should be included in the principal matrix operator L.
As a result, at each grid point the weighted-distributive
relaxation step (local inversion of the principal terms of
PLM) may involve the inversion of a matrix of size up
toN×N . This would correspond to the (relaxation part
of the) point-implicit method [94]. Fortunately, this will
usually happen only on some coarser multigrid levels
and/or at some restricted zones, thus requiring only a
relatively small amount of work

Nonlinearity is treated by an FAS in which,
instead of the fine-to-coarse transfers of densi-
ties ρ1, . . . , ρN and the coarse-to-fine interpolation
of the changes δρ1, . . . , δρN , transferred are the
functions f1(ρ1), . . . , fN (ρN ) and interpolated are
δf1(ρ1), . . . , δfN (ρN ), where fi(ρi) are properly cho-
sen functions; e.g. fi(ρi) = log ρi , so that after inter-

polation ρi = exp
(
fi(ρ

OLD

i )+ δfi(ρi)
)
> 0. Further-

more, the continuity-equation residual restriction should
be conservative (strictly full weighting)

TME should first be
demonstrated for a simple
model case; e.g. a 2D
incompressible inviscid
flow with two reacting
species

⊙
Shocks

• Shock displacement question: a (small) displace-
ment should result from global solution changes
that occur on coarse levels of the cycle. How can
one obtain an accurate displacement, when those
levels are too coarse to resolve it?

An accurate shock displacement is obtained if the fine-
to-coarse residual transfer is conservative (e.g. “FW”)
and the coarse-to-fine correction interpolation is fol-
lowed by local relaxation passes near the shock

Full efficiency shown
[356]

• Relaxation near strong shocks Add extra relaxation passes, using general robust schemes TME shown in a quasi-1D
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• Poor h-ellipticity of high-resolution

schemes
Construction of new, genuinely multidimensional upwind
schemes

Developed in the context of unstruc-
tured triangular grids [357]⊙

Boundary related difficulties
• Discretization near boundaries For best multigrid efficiency, use Cartesian coordinates

throughout the domain, with boundary-fitted local grid
patches, regarded as finer multigrid local levels [58, 66].
Only crude (e.g. first-order) discretization is then needed
near the boundaries on the Cartesian grids

Ruge and Brandt have devised a near-
general-boundary discretization for
incompressible Euler on staggered
Cartesian grid (unpublished)

• Relaxation at and near boundaries:
Difficulties:
(1) There is no smoothing analysis

when the boundaries are not aligned
with the grid

(2) The fine-to-coarse residual weight-
ing near boundaries is generally
very imprecise, hence the residuals
should be reduced there more than
in the interior

(3) Larger residuals are created near
boundaries upon coarse-to-fine
interpolations (of solution or
corrections)

A general-type robust relaxation scheme, e.g. box Kac-
marz, throughout a zone that is the width of several meshes
and is near the boundary. The box size in each direction
should be several mesh sizes and the boxes should have
substantial overlap. One can afford several passes of such
a relaxation for each full interior sweep since the zone
width is O(h1−ε), with 0 ≤ ε < 1. In particular, add
near-boundary relaxation passes after the FMG interpo-
lation (allowing the latter to be of lower order near the
boundary). The local relaxation passes should continue
until all local residuals have dropped well below their
global average magnitude. See examples and discussions
in Sections 5.5, 5.6, 8.2.6 and 8.4.2

For uniformly elliptic equations it has
been proved [68, 69] and demon-
strated computationally (for cases of
reentrant corners [14]) that the inte-
rior efficiency as predicted by mode
analysis (implying TME) can always
be obtained. TME has been demon-
strated for incompressible Euler on
staggered Cartesian grids for a vari-
ety of boundary conditions [501]

• Boundary layers (if they need be
resolved. See also section on grid adap-
tation below)

Resolved by boundary-fitted local grid patches, with
local semirefinements: finer levels, in narrower layers
near the boundary, have smaller cross-layer mesh sizes,
allowing the physical cross-stream viscosity to domi-
nate over the numerical one (cf. Section 9.4). Addi-
tional terms in the governing equations (Navier–Stokes
instead of Euler, or turbulent modelling etc.) may be used
in these patches. Downstream marching relaxation and
cross-stream semicoarsening should feature in the multi-
grid cycles. A “λ-FMG” type of algorithm (see Sec. 9.6

The local refinement techniques for
Poisson’s equation, with TME, are
demonstrated in [14]
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in [66] and also Section 9.4 above) should be employed,
so that coarse FMG stages already include local semire-
finements at the boundary, thus effectively incorporating
into the FMG stages a process of continuation in Re

• Far-field artificial boundary condi-
tions: requiring in some cases non-
local absorbing boundary conditions
(ABC) for some wave factor or radi-
ation boundary conditions (RBC)

Increasingly coarser grids covering increasingly larger
domains. The size of each domain is based on accuracy-
to-work optimization criteria (similar to those in [58, §8,
66, §9.5]), implying also a natural criterion for the largest
domain needed. On interior boundaries (boundaries of a
grid residing in the interior of the next coarser grid) the
solution is interpolated from the coarser grid. On such
boundaries, if ABC is needed, only high-frequency com-
ponents need be absorbed, for which the ABC are local,
and can be enforced as part of the relaxation process (of
the corresponding wave factor)

Details of the algorithm have been
worked out, and TME (or its
equivalent accuracy-to-work rela-
tion) has recently been demonstrated
for the 2D Poisson equation in the
unbounded plane (cf. [70, §4]). Tech-
niques for nonelliptic cases have
not been systematically studied. For
indefinite cases with RBC, TME has
been obtained [79]

• Small-scale singularities invisible on
the next coarser grid, such as small
“islands” or “holes” in the domain (e.g.
an airplane smaller than the mesh size
of some coarser grid) or small bound-
ary conditions (BC) features (e.g. small
regions of Neumann BC and otherwise
Dirichlet BC)

Local relaxation passes around the singularities after
return from the next coarser grid, together with either one
of the following three devices:
(a) Enlarging the singularity on the coarser grid
(b) Modifying the interior coarse-grid equation near the

singularity
(c) If the coarse grid equations are not modified, then the

convergence is slow, but slow to converge are just
few very special components. Hence slowness can
be eliminated by recombining iterants (see below)

TME shown in elliptic cases [82]

⊙
Grid-induced slow convergence One can avoid many of the following maladies by using

suitable multigrid structures (described below under
“grid adaptation”)

• Large aspect ratios Either of the following:
(1) Block (part-line or part-plane) relaxation, analyzed

by mode analysis (see [58] and Sections 5.1–5.2)

TME has been shown in a variety of
elliptic cases
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(2) Semicoarsening [5] (often natural, since the large

aspect ratio is created in the first place by
semirefinements) with relaxation “semismooth-
ing” analysis (see Sections 5.1–5.2; Secs. 2.1 and
3.2 in [61]; and Sec. 3.3 in [66])

(3) Combinations of block relaxation in some direc-
tions and semicoarsening in others (cf. Sec-
tion 5.2.3)

• Expanding grids Relaxation marching in the direction of increasing
mesh size [412]; or distributive relaxation (Sec. 6 in
[60])⊙

Grid adaptation Use local patches of multigrid levels in creating any
desired local refinement, aspect ratio, boundary fit-
ting or even flow fitting. Base refinement criteria on
the fine-to-coarse multigrid correction (τ ). Adaptation
can be integrated into the λ-FMG algorithm together
with proper (e.g. Reynolds number) continuations. See
Section 9.4

Introduced in Secs. 7–9 of [58]
and Sec. 9 of [66], but tried only
for Poisson equation near singu-
larities [14]

⊙
Stagnation point causing an instabil-
ity in the coarse-grid correction and
problems with some of the relaxation
methods described above

Coarse-grid numerical viscosity depending on the
average (e.g. “FW”) of the fine-grid numerical viscos-
ity, not on its injected value (Sec. 4.5 in [87]). Relax-
ation near stagnation should be based on full Newton
linearization, not on the operator principal matrix L
generally used elsewhere

TME shown in an example [87]

⊙
A small number of slowly converg-
ing components may arise in many
situations, especially when the “Pos-
sible Solutions” described in many of
the sections above are not fully imple-
mented. That “small number” would
often slowly but unboundedly increase
with decreasing mesh size

A general method to expel a few slow components
is by recombining iterants, or equivalently, using the
multigrid cycle as a preconditioner for Krylov sub-
space acceleration [410]. To inexpensively expel a
larger number of slow components (without execut-
ing many multigrid cycles and storing many fine-grid
iterants), iterants may also be recombined at various
coarse levels of the multigrid cycle [82, 410, 294]; see
Section 7.8
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[145] Frohn-Schauf, C., Flux-Splitting-Methoden und Mehrgitterverfahren für hyperbolische Sys-
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Elsevier Science, Amsterdam, 1993.

[327] Rodi, W., Majumdar, S. and Schönung, B., Finite volume methods for two-dimensional incom-
pressibleflow problems with complex boundaries. Comp. Meth. Appl. Mech. Eng. 75, 369–392,
1989.

[328] Roe, P.L., Approximate Riemann solvers, parameter vectors and difference schemes.
J. Comput. Phys. 43, 357–372, 1981.

[329] Rood, R.B., Numerical advection algorithms and their role in atmospheric transport and chem-
istry models. Rev. Geophys. 25, 71–100, 1987.

[330] Rosenfeld, M., Kwak, D. and Vinokur, M., A fractional step solution method for the unsteady
incompressible Navier–Stokes equations in generalized coordinate systems. J. Comp. Phys.
94, 102–137, 1991.

[331] Rosenfeld, M. and Kwak, D., Multigrid acceleration of a fractional-step solver in generalized
curvilinear coordinate systems. AIAA Paper 92-0185, 1992.
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[374] Stiefel, E., Über einige Methoden der Relaxationsrechnung. Z. Angew. Math. Phys. 3, 1–33,
1952.
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fluid dynamics problems 269, 289, 367
fluid-structure coupling 410–411
fluids, viscous and heat-conducting 354
flux difference splitting 337, 338–343, 387
flux splitting concepts 333–338
flux splitting discretizations 327, 342, 347
flux vector, components of 346
FMG see full multigrid
four direction point GS smoother 241
four-color pointwise Gauss–Seidel relaxation

(GS-FC) 173

four-color relaxations 115
four-direction CGS-LEX 348
four-direction GS-LEX 238
Fourier analysis 24, 75, 86, 91, 98
Fourier expansion of errors 16
frequency components 16, 18, 101, 102, 104,

114, 169, 171
Fromm’s discretizations 252, 282, 338
Fromm’s scheme 244, 250, 251, 279
full approximation scheme (FAS) 23, 147–166,

155–159, 163, 178, 211, 294, 361, 362,
396, 399, 401

algorithm 160, 332
cycles 575
full potential equation 160–162
global linearization vs 161
iteration 165
multigrid cycle 156, 157
multigrid method 251, 398

full multigrid (FMG) 14, 56–60, 118, 144, 175,
177, 185, 194, 197, 211, 212, 215, 361, 379

discretization accuracy and 120
effects on uniform global grids 175
error estimates 75
FAS and 158, 396
λ-full multigrid strategy 379
interpolation 58, 80, 81, 85, 176, 295, 365
method 20, 74, 80, 84
nested iteration and 23
parallel complexity of 220
structure of 57–59
theoretical estimate 79–81

full potential equations 121, 165
full potential operators 582
full weighting (FW) 63, 68, 83, 84, 118, 133,

158, 162, 165, 210, 241, 265, 268, 277,
330, 332, 338, 561

bilinear interpolation and 87, 88, 89, 117,
153, 237, 251, 266, 274, 305

fine-to-coarse transfers 94
injection and 111
linear interpolation and 167, 172, 185
trilinear interpolation and 144, 145, 146

full weighting (FW) operators 43, 61, 72, 113,
173, 181, 392, 558

application of 382
modified 183
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Galerkin coarse grid approximations 355
Galerkin coarse grid discretizations 94, 268,

276, 277
Galerkin coarse grid matrices 561
Galerkin coarse grid operators 43, 268–278,

273–277
Galerkin formulations 539, 546
Galerkin matrices 429, 476
Galerkin methods 536, 537
Galerkin operators 242, 274, 277, 414, 415,

416, 423, 427, 428, 429, 430, 432, 445,
464, 466, 467, 476, 480, 481, 484, 488,
489, 503, 505, 517, 525, 526, 527

coarse-level 453, 472, 523, 524
rescaling of 524–526

Galerkin principle 423
Galerkin problems, coarse level 429
Galerkin projection 538, 561
Galerkin schemes 539
Galerkin stencils 488, 501
Gauss algorithms, parallel efficiency of

218–219
Gauss-Lobatto-Legendre (GLL) points

140–141
Gauss–Seidel 16, 423

convergence 32
iterations 14, 19, 20, 28, 36, 534
methods 555
smoothing properties 32, 436

Gauss–Seidel iterations, nonlinear 151
Gauss–Seidel red-black (GS-RB) method 31,

32
Gauss–Seidel relaxation, symmetric 519, 526
Gauss–Seidel relaxation scheme, scalar

lexicographic point 295
Gauss–Seidel relaxations 33, 94, 137, 152, 401,

431, 433, 434, 436, 437, 438, 439, 441,
462, 472, 482, 521

multicolor 173, 195
plain 423
smoothing by 486, 488

Gauss–Seidel smoothers 237, 279
Gauss–Seidel smoothing 339, 528

properties 32
Gauss–Seidel-Newton relaxations 152
Gauss–Seidel-Picard relaxations 152
Gaussian elimination 14, 486

Gauss’s theorem 187, 334
generalized minimal residual method see

GMRES
geometric multigrid 413, 414–415, 416, 418,

421, 432, 459, 486, 488, 514, 515, 516, 528
AMG and 417
convergence behavior 518
operator-dependent interpolation in 505
smoothness in 432

ghost points 180, 370, 371
global constraint minimization problem 531
global grids 22, 359, 361, 365

hierarchy of 360
global linearization 147, 149, 151, 152, 153,

158
GMRES (generalized minimal residual method)

279, 283, 284, 285, 484
Godunov upwind approach 344, 348
Godunov’s order barrier theorem 246
Gram–Schmidt process 281, 285
Green’s formula 537, 549
Green’s function 359
grid functions 7, 8, 9, 10, 17, 112, 282, 296,

382, 564
edge spaces for 568
linear space 9
oriented notation 15

grid partitioning 22, 193, 194, 197–208, 217,
221, 224, 379, 406

cyclic reduction and 218–220
for Jacobi and red-black relaxation 199–204
static 238

grid points 9, 20, 33, 66, 194, 196, 197, 200,
201, 207, 212, 263, 368, 410, 413

ordering of 12, 13, 28, 31, 32, 237, 258
grid sizes 31, 60, 166, 410
fixed coarse 79

grid-induced slow convergence 589
grids 3–7, 412, 413

adaptation 589
adaptively refined around an airfoil 6
anisotropic 409
arrangement of unknowns 7
block-structured 3, 4, 5, 6, 7, 191, 340–342,

375, 380, 405, 407, 408
boundary-fitted 3, 4, 400–404
with curvatures 189
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discretization and 3–7
expanding 589
general structures 190–192
generation 401–404, 406
hierarchy of 360–361, 363, 417
infinite 8, 10, 120
locally refined 407
logically rectangular 6, 10, 405
nonstaggered 328, 330
self-adaptive 5
semicoarsened 432
sequences of 19–20
square 8, 11, 304, 396
staggered 7, 318, 330
standard coarsened 432
stretched 131, 139, 140, 141
unstructured 5, 6, 191, 192, 288

grids and operators, sequences of 46
GS line smoother, symmetric alternating 240
GS-LEX 33, 34, 36, 69, 94, 103, 104
ω-GS-LEX 105, 106
GS-LEX 106, 117, 132, 133, 134, 167, 173,

213, 237, 260, 265, 266, 267, 284, 301,
361, 406, 535

parallel modification of 203
parallel properties 195, 202
smoothing behavior of 102
standard coarsening and 105

GS-LEX (Gauss–Seidel lexicographic) method
15

GS-LEX point smoothers 189
ω-GS-LEX relaxations 105
GS-LEX relaxations 302

collective 305, 332
GS-LEX smoothers 73, 119, 203
GS-LEX smoothing 117, 302–303
GS-LEX smoothing factors 128
GS-LEX smoothing operators 119
GS-LEX smoothing schemes 173
ω-GS-RB 116, 212, 393
GS-RB 33, 34, 69, 84, 85, 90, 121, 132, 141,

153, 173, 185, 201, 202, 203, 207, 208,
212, 214, 216, 237, 265, 266, 267, 276,
296, 299, 361, 364, 392, 406, 535

ω-GS-RB, 3D Poisson equation and 74
GS-RB operators 89
GS-RB parallel properties 195

GS-RB relaxation 52, 61, 113, 212
GS-RB smoothers 73, 83, 94, 115, 119, 189
ω-GS-RB smoothers 189
GS-RB smoothing operators 86, 92
GS-RB smoothing schemes 173
GS-RB smoothing steps 209

Hackbusch’s nonlinear multigrid method
(NLMG) 158

half weighting (HW) 63, 68, 72, 83, 84, 85, 88,
94, 158, 208, 209, 210, 558

restriction operator 43
harmonic averaging, weighted 271, 275
harmonics 109

coefficients of 88
coupling of 119, 265
four-dimensional space of 107
spaces of 86, 121
for standard coarsening 107

heart valves, design of artificial 411
heat equations 2
Helmholtz constant 65, 397
Helmholtz equation, efficient solution of 522
Helmholtz equations 62, 66, 94, 397, 400, 520,

534
Helmholtz operators 150, 450
hierarchial basis multigrid method (HBMG)

373
high-Reynolds incompressible Navier–Stokes

578
Hilbert spaces 535, 536, 539, 540
hyperbolic equations 1, 2, 228
hyperbolic potential equation 161
hyperbolic problems, time-dependent 66
hyperbolic shells 307, 309, 310
hyperbolic systems of PDEs 346
hyperbolic time-like problems 65

icosahedral grids 394–395
ILU 191, 239, 264, 284

alternating modified 262
decompositions 257, 258, 260, 263
five-point decompositions 261
preconditioned conjugate gradients 485, 498
smoothing 256–263, 267–268

ILU decompositions
parallelization of 263
seven-point 259, 261
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ILU iterations 259, 260, 261
smoothing properties by LFA 259

ILU smoothers 256, 263, 415
alternating modified 267
robust 257
seven-point 267

IMPES approach 509
incompressible flow problems 333
incompressible Navier–Stokes

discretization of 338
linearized 322
nonconservative form of 313
nonstaggered discretizations 326–343
staggered discretizations 316–326

incompressible Navier–Stokes equations 292,
299, 312–316, 325, 326, 328, 331, 346,
347, 348, 382, 385–388, 405

2D 321
indefinite problems 520–522
h-independent convergence 21, 51, 77–79, 144
h-independent error reduction 197
h-independent realistic bounds 75
industrial aerodynamic flow problems 405
industrial test cases 497–501
inflow-outflow problems 243
injection operators 38, 43, 163

transfer 173
inner products 9, 426, 433
interpolation 293, 364, 370, 374, 420, 421, 423,

425, 428, 432, 438, 445, 453, 454, 455,
456, 457, 459, 464, 466, 468, 473, 478,
479–483, 489, 490, 503, 505, 531

accuracy of 451
algebraically defined 451
along negative couplings 459
direct 447–459, 479–480, 481, 482, 491
effect of relaxation on 469
error 421, 449, 456, 464
extended 481
formulas 69, 211, 319, 371, 448, 450, 451,

459, 482, 483, 505
full 431, 458
full multigrid (FMG) 295
indirect 447, 459–460
negative coefficients and 454
operator-dependent 272–273, 274, 277, 447

operators 43, 45, 112, 276, 431, 461, 464,
484

orders of restriciton and 295
piecewise constant 470, 471, 480, 526
positive 454
second-order 451, 471
smoothing and 453, 461
transfer operators 43–45
transpose of 429, 472
trilinear 72, 94, 144, 145, 146
truncation of 483–484, 486
type of 485, 486

interpolation operators
coarse-to-fine 40
finite element 548

isotropic model problems, discrete 138
isotropic problems 134, 415, 482, 507, 517
iteration operators 35, 38, 555
iteration steps 46, 99, 147, 429
iterative multigrid (MGI), efficiency of 56
iterative solvers 24–27, 223, 225, 226
iterative subspace correction methods 533
iterative substructuring methods 224

ω-JAC 34, 69, 90, 115, 128, 132, 160, 173, 201,
202, 203, 207, 214, 255, 284, 296

iterative solver for Model Problem 1 204
parallel properties 195
smoothers 73, 119, 127
smoothing factor for 105
smoothing operators 89
smoothing properties 33–34
smoothing schemes 173

ω-JAC relaxations 208, 255
operator eigenvalues 73

JAC-RB 173, 195
ω-JAC-RB relaxations 301
Jacobi, three-stage 255, 256
Jacobi F-relaxations 489, 493, 526
Jacobi interpolations 464, 468, 476, 477, 479,

483
F-smoothing and 493–494

Jacobi iterations, nonlinear 151
ω-Jacobi operators 33
Jacobi preconditioning and semicoarsening 355
ω-Jacobi relaxations 85, 195, 423, 431, 433,

434, 526, 535, 559
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Jacobi relaxations 31, 461, 462, 463, 464, 468,
483, 490, 505, 526

ω-Jacobi relaxations, smoothing properties
30–31, 438

Jacobi relaxations, smoothing properties of 436
Jacobi steps 448, 483, 493
ω-Jacobi steps 527
ω-Jacobi–Kaczmarz relaxations 128
Jacobi–Newton ω-relaxations 159, 160
Jacobi–Newton relaxations 152
Jacobi–Picard relaxations 152, 159, 160
Jacobian 149, 150, 158
Jacobian matrices 347, 348
James–Schmidt–Turkel scheme 354

Kacmarz line relaxation method 277
Kaczmarz relaxations 128, 296, 397, 399
KAPPA smoothers 251, 252, 253, 256, 279,

338, 339, 340, 342, 349, 350, 388
alternating symmetric line 350

Krylov acceleration methods 285
Krylov method, preconditioned 144
Krylov space iterations 561
Krylov space methods 555
Krylov subspace acceleration 97, 243, 253,

278, 287, 589
Krylov subspace iterations 282, 283, 285

L-shaped domains 359, 542
laminar flow, over a backward-facing step 342
Laplace equation 160, 541
Laplace operator 64, 101, 153, 162, 228, 274,

434
discrete 102, 264, 450, 520
discretization of 180
five-point 274

Laplacian 183, 191, 299, 334
Laplacian on the sphere, discretization of the

389
level-dependent smoothing 311–312
lexicographic collective Gauss–Seidel

smoothers 348
lexicographic Gauss–Seidel method (GS-LEX)

15
lexicographic Gauss–Seidel relaxations 134
lexicographic line Gauss–Seidel smoothers

136, 137

lexicographic ordering 12, 13
lexicographic relaxations 94, 250

point Gauss–Seidel 146
y-line Gauss–Seidel 308

LFA see local Fourier analysis
line Gauss–Seidel relaxations 236
line Jacobi relaxations 137
line ω-Jacobi smoothers 136
line relaxation 129, 134, 137, 144, 145, 147,

162, 228, 251, 296, 354, 390, 393, 395,
402, 505, 514, 515

for anisotropic problems 191
tridiagonal solver 216

line smoothers 134–137, 144, 194, 227, 361
line smoothing 137, 541
line-Jacobi iteration, collective 355
linear elasticity problems 530
linear interpolation 43, 45, 113, 133, 158, 172,

185, 363, 368, 471, 480, 483, 488, 527,
538

linear multigrid 148, 153, 396
global linearization of 153–155

linear operators 9, 47, 84, 156, 163, 546
linear problems 148, 153, 168, 246, 542
linear shell problem 290, 307–312
LiSS (generic multigrid software package) 389,

404–407
load balancing 379, 380, 381
load imbalance 199, 200, 201, 380
local discretization error 22, 163
local Fourier analysis 23, 61, 75, 76, 77, 93,

94–95, 98–129, 130, 135, 144, 235, 242,
243, 250, 254, 262, 263, 295, 306, 321,
322, 328, 338, 392, 393, 394

for GS-RB 115–116
nature of 99
objective of 40
results 267
smoothing 261, 305
smoothing analysis 251, 297–300, 306, 325,

353
smoothing factors 117, 256, 299
for systems of PDEs 297–301
two-grid analysis 117, 240, 305
two-grid factors 252, 267

local linearization 151–153
local refinement 359, 375, 379, 388
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locally refined grids 361, 364, 380, 381–382
Dirichlet boundary points 370
hierarchy of 366
setting up of 373–379

low frequency error components 19, 242, 267,
298, 397

low frequency errors 241, 264
low-accuracy approximations 498, 501–503
low-Reynolds incompressible Navier–Stokes

578

Mach numbers 160, 161, 162, 166, 346, 382
mass conservation 292, 312, 508
matrices 7, 116, 185, 257, 422, 446, 469, 562

block 13, 89, 541
coarse-level 469, 470
complexity of 429
essentially positive 454–455
M-matrices 125, 231, 421, 426, 438–439,

440, 448–453, 457, 469, 481, 515
symmetric 437, 439, 448, 449, 450
weakly diagonally dominant 452, 453, 470
notation 7, 534
off-diagonally nonpositive 454
positive type 440, 441, 469
sparse 288, 422
symmetric 428, 431, 439
symmetric and positive definite 27, 530
terminology 12–14
tridiagonal 23, 143
weakly diagonally dominant 458, 459

Maxwell’s equation (Ampere’s Law) 511
Mehrstellen discretizations 94, 166, 172, 174
mesh refinement techniques 163
mesh sizes 17, 19, 23, 31, 37, 41, 47, 50, 59,

79, 82, 132, 134, 166, 229, 294, 309, 332,
360, 450, 589

mesh-Péclet number 243
message-passing interface (MPI) 406
MGNET web page 277
mixed derivatives 227, 417

multigrid and 263
MLAT (multilevel adaptive technique) 23, 357,

363, 364, 366, 373
model, simple communication 206–207
Model Problem 1 3, 17, 28, 29, 32, 34, 39, 41,

62, 84, 91, 94, 117, 130, 134, 137, 194,

195, 196, 208, 212, 213, 214, 254, 255,
260, 541

convergence of different multigrid cycles 53,
54, 55

discretization accuracy 79
full multigrid (FMG) estimates for 85
GS-RB 82
Poisson’s equation and 10–15
relaxation schemes 33
smoothing factor 30
two-grid convergence factors 83

Model Problem 2 71, 73, 226
Model Problem 3 131, 132, 136, 138, 263
Model Problem 4 142, 145

two-grid factors 146
Model Problem 5 148, 150, 151, 152
Model Problem 6 228, 235, 239, 251
momentum equations 292, 312, 313, 314, 318,

320, 323, 328, 331, 496
motor, synchronous line-start excited with

permanent magnets 511
MpCCI coupling interface 411
MS iterations 553, 559
MS methods 554, 555, 557, 558

defect iteration 560
error iteration matrix for 535

multigrid
3D 71–74
acceleration by iterant recombination

280–282
adaptivity of 22, 356–388
adaptivity and parallelism combination 412
in the aerodynamic industry 407–411
applications 389–412, 556–561
basic 28–74, 130–192
boundary conditions in 178–179
convergence properties 41, 52
development of robust and efficient 412
developments and conclusions 528–532
efficiency of 52, 224
features of 20–23
future research 411–412
grid partitioning and 208–216
history of 23–24
modifications of 221–226
optimization of 22
parallel 22, 193–226
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problems with jumping coefficients 271–272
real-life problems 412
solver vs preconditioner 287–288
systems of equations 289–355

multigrid algorithms 14, 28, 34, 52, 197, 208,
211, 266, 277, 280, 344, 371, 556

designing ideal parallel 198
local Fourier analysis and design of 76

multigrid components 41–45, 71–74, 197,
293–297

parallelism of 194–197
multigrid convergence 63, 96, 138, 251, 253,

285, 299, 304–306, 338, 340, 342, 349, 393
multigrid convergence factors 75, 133, 162,

177, 224, 240, 241
with local Fourier analysis 311

multigrid convergence problems 272, 397
multigrid correction schemes 178, 362
multigrid cycles 45–52, 58, 153, 197, 339, 410,

420, 484, 560, 575
coarse levels in 57
error reduction factor 240
optimality of 78

multigrid features 20
multigrid iteration (MGI) 47, 83, 165, 194, 196,

322
asymptotic convergence behavior 54
operator 48, 284

multigrid iterations (MGI) 54
h-independent fast convergence 75

multigrid methods 2, 40, 46, 51, 125, 194, 220,
267, 271, 272, 404, 494

advanced 227–288
components of 21–22, 41–45
efficient 69, 98, 574
generality of 21

multigrid operators 76
multigrid preconditioners, symmetric 561
multigrid preconditioning 280, 282

Krylov subspace iteration and 282–287
multigrid related parallel approaches 225–226
multigrid solvers

direct 574
efficiency in 52–56, 573
robust geometric 417
table of difficulties 574–589

multigrid subspace correction theory 97

multigrid theory 40, 55
applications of 544
elementary 40, 75–97
subspace correction methods and 533–574

multilevel adaptive technique see MLAT
multilevel preconditioned iterative method 569
multilevel splittings 565

trivial localization of 570
multipass interpolation 460, 482–483, 490
multiplicative algorithm 555

subspace correction methods 554
multiplicative methods, real-life applications

380
multiplicative preconditioner 555
multiplicative subspace correction method

535–536, 553, 556, 557

Navier–Stokes equations 7, 121, 228, 296, 314,
320, 328, 332, 409, 414, 496, 497, 585

incompressible 290, 314
stationary incompressible 312, 326, 331

Navier–Stokes operator, stencil of the discrete
337

Navier–Stokes system, discrete 327
nested iteration 23, 56, 169, 400
Neumann boundary conditions 93, 94, 109,

162, 179–183, 186, 242, 276, 314, 343,
562, 588

discrete 181
discretization of 181
eliminated 182
for Poisson’s equation 303

Neumann–Neumann iterative substructuring
algorithms 225

Newton linearization 278, 348
Newton steps 150, 153, 396
Newton-SOR 151
Newton’s iterations 147, 149, 150, 151,

154–155, 402
Newton’s method 23, 149–150, 151, 153, 154,

512
nonelliptic problems 2
nonlinear equations 199, 496
nonlinear line relaxations, Newton type 338
nonlinear multigrid 23, 159, 162

recombination and 282
nonlinear PDEs 312, 405

classical numerical methods for 148–151
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nonlinear problems 20, 24, 147–159, 168, 397
nonlinear relaxation methods 158, 406

smoothing properties 159–160
nonstaggered discretizations 290, 573

stabilization for 327
nonstaggered grids, finite volume discretization

on the 385
nonsymmetric problems 97, 276, 472, 518
norms 9, 433

inner products and 9–10, 445
two-grid convergence factors and 75

notation 7–10, 290–293

odd–even ordering 32
oil reservoir simulation 508–511
operator

choice of coarse grid 41
coarse grid 40, 88, 99, 242

operator norm 9, 84
operator-dependent interpolation 273, 415, 416,

446, 505
operators

difference 8, 139, 274
nearsonic full potential 580
nonelliptic 580, 584
sequences of grids and 46
symmetric 105, 445

ordinary differential equations (ODEs) 23, 254,
353

Osher’s flux difference splitting 344, 382, 405
overlap width 203–204
overlapping decomposition 569

parabolic equations 1, 2
parabolic multigrid methods 3
parabolic operators 124, 125
parabolic problems, time-dependent 66
parabolic shells 307, 309
parallel 3D semicoarsening 220
parallel adaptive methods 375
parallel adaptive multigrid 379–382
parallel adaptive refinements 382
parallel complexities 196–197
parallel computers 197, 198, 206, 221, 379, 409
parallel efficiency 193, 204–206, 208, 212

speed-up and 204–206
parallel line smoothers 216–220

parallel multigrid 22, 193–226, 407, 409
parallel multigrid software package, LiSS 389
parallel plane relaxations 220
parallel solvers, fast iterative 216
parallel superconvergence multigrid method

(PSMG) 226
parallel systems

programming 215–216
rules for parallelization 198–199

parallel tridiagonal solvers 217, 219, 220
parallelization 172, 217, 379–380
parallelization overhead, minimizing 197
parameters, flow-dependent boundary layer

wide (BLW) 585
PCG (preconditioned conjugate gradient)

methods 552, 555, 558
PDEs (partial differential equations) 7, 8, 97,

118, 179, 199, 254, 261, 269, 275, 296,
331, 337, 401, 406

anisotropic 162
coarse grid direct discretizations 275
discrete analog systems 292
discretizations 12, 103, 405
efficiency of numerical methods for solving

356
elliptic 225, 378
hyperbolic system of 346
multigrid algorithm systems 293
nonlinear scalar 293
nonlinear systems 293, 408
operator smoothing factors 299
parallel treatment 194
properties of 121
system operator determinant 408
systems 289, 295, 307, 313, 327, 333, 343,

354, 377, 409, 414, 469, 530
types of 1–3

Péclet condition 229, 230, 231, 232, 233, 243
periodic boundary conditions 93, 94, 95, 119,

125, 183–185, 512
Picard iterations 150, 402
Picard relaxations 159
piecewise constant interpolations 523, 524,

526, 527
piecewise linear interpolations 525, 538
plane relaxations 143, 144, 216, 217, 228
plane smoothers 216, 220
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PLTMG (software package) 192
point relaxations 144, 145, 147, 220, 300, 419,

514, 515
point smoothers 139, 144, 189, 191, 216, 266
pointwise Gauss–Seidel relaxations 230, 236,

295
pointwise ω-JAC smoothers 235
pointwise relaxations 132–133, 137, 147, 254,

300, 395, 415, 580
failure of 131–133, 260, 392, 397

pointwise smoothers 129, 139, 354
pointwise smoothing 220, 227
Poisson problems 549, 562
Poisson solvers 14–15, 62, 82
Poisson stencils, five-point 483
Poisson’s equation 1, 2, 3, 15, 28, 60, 65, 69,

70, 94, 130, 139, 167, 174, 176, 181, 189,
190, 204, 212, 226, 228, 255, 260, 301,
313, 366, 390, 391, 405, 435, 526, 533,
535, 561

in 2D and 3D 525
in an L-shaped domain 357–359
discrete 52, 93, 121, 139, 181, 182
full multigrid (FMG) for 59–60
grid generation based on 401
Mehrstellen discretization for 172–174
on nonrectangular domains 66
parallel components for 195
in a square 24
on stretched grids 138
on the surface of the unit sphere 390
transformed systems of 400

positive definite problems, variational principle
for 430–432

positive semi-definite problems 414
postsmoothing 39, 48, 157, 372, 424, 427, 428,

445, 447, 461, 468, 486, 558
convergence of two-level methods using 421

preconditioned conjugate gradient method see
PCG method

preconditioners 24–27, 223, 258, 323, 354, 417,
453, 487, 491, 508, 526, 528, 535, 565, 568

additive multigrid and 226
AMG as 484
local multilevel 569
symmetric multigrid and 561

preconditioning 26–27, 541, 566

presmoothing 39, 47, 84, 157, 372, 421, 424,
427, 428, 461, 468, 486, 558

pressure equations 315
pressure-correction equations 497, 498
pressure-correction schemes 325, 326
problems

isotropic Poisson-like 433
with mixed derivatives 263–268
non-symmetric 421, 474
symmetric positive definite 561
on unstructured grids 191

quasi-elliptic discretizations 577
quasi-interpolant operators 548
quasi-linear elliptic systems of PDEs 400
quasi-linear systems 403
QUICK (quadratic upwind interpolation for

convective kinematics) scheme 244

radiation boundary conditions (RBC) 588
RAMG05 418, 421, 472, 501, 518

performance of 528
strength of 485

RANS (Reynolds-averaged Navier–Stokes
equations) 407, 409

RBMPS (red–black multigrid Poisson solver)
52, 62, 63, 75, 77, 82, 85, 87, 92, 169, 196,
214, 272

adapted to Poisson’s equation 186
convergence of 55
multigrid efficiency 190

recirculating flow problems 243, 253, 322, 340
red–black

coarsened grids 41, 476
coarsenings 42, 51, 94, 121, 429, 488, 489,

491
Gauss–Seidel 106
grid point ordering 13
ordering 31, 32, 34, 263, 541
relaxations 146, 468, 486
semicoarsening 51

red–black multigrid Poisson solver see RBMPS
red–black smoothers 98
relaxations

algebraic smoothing by 432
convergence of 433
decoupled 296
local 306, 588
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relaxations (contd.)
methods 29, 423
multicolor 113
nine-point ILU 268
operator 463
parameters 28, 29, 30, 32, 152, 437, 463,

535, 557
schemes 296, 311, 402, 406, 439, 446, 583
smoothing properties of 433, 434–438
steps 52, 399, 466
x-line 143, 144
x-line zebra 147
y-line decoupled (DEC) 308
z-line zebra 147

restriction 68, 140, 293–294
orders of interpolation and 295

restriction operators 38, 39, 42, 43, 54, 63, 69,
110, 156, 164, 274, 276, 296, 322, 392,
423, 552

order of 60
scaling of the 470

Reynolds numbers 313, 314, 343, 385, 387,
496, 580

high 299, 314, 322, 326, 328, 333, 338, 340,
346

influence of 342
low 328, 331, 332, 340
mesh 321

Reynolds-averaged Navier–Stokes equations
(RANS) 407, 409

Richardson iterations 25, 26, 27, 223, 283
Richardson method, extapolated 552
ω-Richardson relaxation 552, 554
Riemann problems 335, 348
Riemann solver 337, 348
rigorous Fourier analysis 77, 93, 98, 102, 105,

112, 116, 118, 119, 130, 137, 144, 171,
255, 260, 265

applications of 91, 93–94
two-grid 82–91, 144

Robin boundary conditions 562
robust ILU smoother 262–263
robust smoother 251, 504
robustness, of alternating line smoothers 138
rotated anisotropic diffusion 285, 514
Runge–Kutta, multistage 345, 353, 409

scalability 193, 208, 214, 215

scalar equations 8, 21, 211, 374, 375, 496, 497
scalar PDEs (partial differential equations) 437,

469
vertex-centered discretization of 69

scaling factor 9, 123
Schur complement 428, 462, 532, 563, 566
Schwarz inequality 433, 446, 449, 458
Schwarz methods 221, 223, 532, 533
second-order discretizations 264, 328, 338,

339, 340, 348, 349
of Euler equations 350

second-order elliptic problems, higher order
difference approximations 441

second-order upwind discretizations 338, 353
second-order upwind scheme 244, 245
segment relaxation 138, 390, 393–395
segregated solution methods 496–497
semi-h-ellipticity 129, 301

in 2D 42
multiple 139
semicoarsening 94, 123, 129, 133–134, 139,

146, 147, 256, 264, 354, 376, 402, 589
semicoarsening 146, 147, 216, 228
sequential complexities 196
shared memory computers 193, 199
shock displacement question 586
shock waves 376, 378
shocks 347, 586
shocks and boundaries, relaxation on or near

573
Shortley–Weller 67, 153, 174
SIMPLE algorithm 315, 325, 327, 497
SIMPLEC 497
SIMPLER 497
singular perturbations 289, 528
singular systems, boundary conditions and

177–187
singularities

adaptive refinements for 357
local effects of 356
small-scale 588

Smith–Hutton problem 246–248, 251, 252
SMOOTH 156, 225
smoothed aggregation 453, 526–528
smoothers 29, 69, 94, 119, 144, 152, 191, 250,

265, 295–296, 347–348, 406, 409, 415,
417, 504
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multigrid 94
multistage 253–256, 348, 353, 354, 355
multistage in CFD applications 352–354
parallel features 33–34
parallel properties of 33–34
quality of 134
Runge–Kutta 254
smoothing property of 432
symmetric positive definite 561
x-line 138, 144
y-line 138

smoothing 34, 67, 101, 293, 415, 432, 461,
468, 486, 526, 528

collective relaxation 289
of errors 143
F-relaxation for 450
transfer operators and 427

smoothing analysis 31, 102–106, 113–116,
117, 118, 119, 159–160, 237, 239,
297–300, 326, 587

smoothing factors 31, 34, 73, 75, 98, 99, 102,
104, 106, 114, 115, 116, 117, 130, 133,
147, 159, 167, 235, 266, 300, 301, 305, 311

of y-line relaxation 136
smoothing half-step 210
smoothing methods 29, 194
smoothing operators 89–91, 99, 108, 113, 115,

119, 142, 314, 423, 427, 429, 445, 463
smoothing principle 16
smoothing procedures 21, 28, 40, 106, 114,

115, 138, 178, 195, 211, 239, 298, 364,
373, 392, 402, 415, 416, 423, 427, 428, 526

smoothing properties 31, 77, 96–97, 102, 145,
158, 160, 235, 237, 259, 263, 267, 309,
353, 390, 434, 439, 461, 463, 468, 521

smoothing schemes 140, 143, 168, 172, 361
smoothing steps 40, 51, 55, 90, 145, 156, 225,

399, 445, 463
SMS (symmetric multiplicative subspace

correction) methods 555, 561
Sobolev spaces 537
software packages 5, 21, 198, 215, 418

multigrid-based 192, 404
parallel multigrid 215

solutions, table of difficulties and 574–589
space method meshes, fictitious 542
space splittings 76, 533, 536–551, 554, 566

condition of 569
design of 552
stable 546

sparse grids, combination method 226
spectral norm 9, 84
spectral radius 25, 36, 91
sphere, multigrid components on surface of

391–393
SSOR-method 555
stagnation points 573, 589
standard coarsening 17, 42, 71, 94, 129, 143,

144, 146, 195, 239, 242, 254, 256, 264,
266, 285, 374, 376, 392, 409, 410,
473–476, 478, 480, 489, 493, 500, 517

different smoothing methods 147
failure of 131–133
frequencies and 102

standard five-point stencil 149, 191
standard geometric multigrid 420
standard interpolation 414, 480–482, 483, 493,

517
standard multigrid coarsening 134
steady-state computations 501
steady-state flows 347, 574
steady-state problems 352, 353
steady-state solutions 345
stencil notation 10
finite element restriction operators 558

stencils
21-point 429
27-point coarse grid 278
compact 216
compact nine-point 10, 172, 203, 561
difference 7, 249
five point 172
five-point 10, 125, 203, 257, 261, 358, 487,

488, 491, 504, 520, 559
nine-point 167, 216, 264, 265, 273, 285, 429,

474
nineteen-point 489
seven-point 264, 266, 267, 418, 489
seven-point left-oriented 514

Stokes equations 290, 292, 313, 315–316, 323,
325, 326, 327, 328, 330, 576

checker-board instability 314
Stokes operator 327, 329
stream-function-vorticity formulation 333
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structural mechanics problems 414
subgrids, logically rectangular 381
subsonic flow 161, 349, 350
subspace correction methods 76, 534, 535, 537,

551, 554, 555, 557, 561
successive overrelaxation (SOR) 14, 32, 105,

528, 555
supersonic flow 161, 247
supersonic full potential operator 580
symmetric multiplicative subspace correction

method (SMS) 555
symmetric positive definite systems 535
symmetric problems 97, 414, 518

two-level convergence for positive and 444

Taylor expansion 125, 167, 244, 265
thermodynamic equation of state for a perfect

gas 346
time discretizations 63
time-dependent applications 373
time-dependent problems 63–66
Toeplitz matrices 555
top multigrid efficiency (TME) 573–574
total variation diminishing (TVD) concepts

245
transfer operators 21, 42, 43–45, 60–62, 70, 72,

87–88, 120, 144, 145, 146, 162, 172, 173,
241, 265, 266, 268, 274, 318–319, 392,
413, 424, 428, 429, 444

parallelism of 61
seven-point 266, 274

transonic flow 161, 247, 349, 353
triangulation of the finite element space 561
tridiagonal cyclic reduction 218
tridiagonal solver 137, 250
two grids, multigrid and 19–20, 363–364
two-grid algorithm 361–363
two-grid analysis 85, 101, 106–113, 118, 239,

299, 306, 325
two-grid convergence 76, 77, 82, 117, 133, 138,

147, 175, 242, 265
two-grid cycles 34–40, 40, 155, 361
two-grid iteration operator 424
two-grid local Fourier analysis 98, 120, 252,

253, 299
two-grid method 79, 84, 155, 214
two-grid operator 76, 99, 106, 107, 445

norms of 83–85
structure of 39–40

two-grid reduction factor 79
two-level convergence

postsmoothing and 444–460
presmoothing and 461–469

two-level corrections 424, 431
two-level methods, slow convergence

452

U-variables 474, 475
unknowns

arrangement of 69, 205
location of within grids 7
strong coupling in two directions 137–139

upwind discretizations 230, 244–248, 333
line smoothers for higher order 249–253

V-cycles 46, 55, 213, 560, 566
convergence 77, 349, 524, 526, 535

boundary treatment and 305–306
convergence histories for standard 498
efficiency of 432
error propagation matrix 560
h-dependent for complete 453
h-dependent convergence behavior of

452
multigrid convergence 77, 190, 191, 305
multigrid method 556, 557, 558
parallel 196–197
simplified multigrid 559
theory 421, 530

van Albada limiters 246, 247, 251
van Leer limiters 246, 349, 352, 376
van Leer’s K-scheme 348, 349, 385
variational principle 424, 475
velocity-pressure dependence 508
vertex-centered discretizations 406
vertex-centered location of unknowns 270
Vieta, theorem of 255
viscosity

artificial 122, 233–234, 239, 241, 243, 314,
330, 354, 582

coarse grid numerical 589
laminar 585
natural 582
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W-cycles 46
algorithms 560
convergence factors 82, 190, 191, 322
parallel 196
truncated 213

wave equations 2, 65
weather forecast models 395
wing structure and aerodynamics, dynamic

interaction of 411

zebra line Gauss–Seidel 136, 137,
241

θ -zebra line relaxations 392
zebra line relaxations 162, 216
zebra line smoothers 94, 137
zebra line smoothing 216
zebra plane smoothers 94
zebra relaxations 261, 392
zebra smoothers 141, 216
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