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ABSTRACT 

Bioreactors are applied in the production of various products and the analysis 

of parameters that describe the production/consumption kinetics of the 

species becomes important to be able to design the bioreactors, as well as 

through mathematical models to be able to carry out simulations that make it 

possible to infer the concentration of species in scenarios where there is no 

experimental data. In this context, this article shows the application of 

Bayesian techniques (Monte Carlo Via Markov Chain-MCMC) to estimate 

both parameters and state variables in which there are no experimental 

measurements. The application was carried out using a model that has as state 

variables substrate (S), product (P) and biomass (X) using the Monod model 

as the kinetic model. The estimates obtained had good accuracy and precision 

in the evaluated scenario. 
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NOMENCLATURE 

X Biomass 

S Substrate 

P Product 

F feed rate 

V volume of reactor  

KS Half of maximum Substrate concentration 

J reduced sensibility coefficient 

w search step 

Greek symbols 

p perturbação 

 random variable N(0,1) 

 vector of parameters
2

measσ variânce of synthetic measurement 

α probability of acceptance of Metropolis-

Hastings 

θ* candidate vector vetor 

Subscripts 

t time 

j counter of parameters parâmetros 

NP total of parameter 

Tend final time 

T transpose 

1. INTRODUCTION

The evaluation of the kinetics of biomass, 

product and substrate dynamics involves analyzing the 

concentration evolution of one or more components of 

a bioreactor. It comprises components: 

Microorganism (biomass), nutrients (substrate), 

metabolites (product). Which are generally 

represented by X, S and P in mathematical models 

(Andrews 1968; Miller and Block, 2020; Pradhan et 

al., 2016 Himmi et al., 2000; Stowers et al. 2014). 

Mathematical models are useful for simulating 

scenarios in which experimental data is not available. 

In this sense, in addition to estimating in different 

experimental conditions, the model can also assist in 

research related to scaling up. 

In the model explored in this article, Monod 

kinetics was used, which is widely used (Wang and 

Wan, 2009; Zhao et al., 2003; Monod, 1949). The 

mailto:dcestumano@ufpa.br
mailto:ecr@ufpa.br
mailto:deibsonsc@yahoo.com.br


Technology Junior, et al. Estimation of Parameters ... 

35RETERM - Thermal Engineering, Vol. 22 • No. 4 • December 2023 • p. 34-38

mathematical models are composed of the initial 

biomass value (X), substrate-to-product conversion 

factor (Yp/s), substrate-to-cell conversion factor (Yx/s 

and specific cell growth rate (µx). However, for 

Before having the complete model, it is still necessary 

to have a function for µx (kinetic model). Kinetic 

models are generally represented by a system of 

ordinary and coupled differential equations that 

describe the reactions and interactions between the 

elements of the reaction (Miller and Block, 2020). 

One difficulty encountered is determining the 

parameters relating to the mathematical model. One 

way to make inferences about unknown parameters is 

to apply statistical techniques to estimates. In this 

article, the Bayesian Monte Carlo technique via 

Markov Chain was used with the Metropolis-Hastings 

acceptance/rejection algorithm. 

2. DIRECT MODEL

Mathematical modeling in bioreactors 

depends on the configuration in which such modeling 

will be applied. In this article, a model that can be 

applied in both batch and continuous feeding (F) will 

be discussed. The direct model is represented by a 

system of four coupled differential equations 

(Equations 1.a-d) obtained from the mass balances 

applied to determine the biomass, substrate and 

product state variables (X, S and P). In batch 

fermentations, the must feed flow rate (F) was equal to 

zero (Marinho et al. 2018). E.D.O system from mass 

balance: 

dX

dt
= (μ −

F

V
) X  (1.a) 

dS

dt
= (CSM − S) ∗

F

V
−

1

YVX_S
μX            (1.b) 

dP

dt
=

YE_S

YVX_S
μX −

F

V
P          (1.c) 

dV

dt
= F           (1.d) 

Although there are several models for 

describing growth kinetics, this article adopted the 

classic Monod model presented in equation 1.e 

(Monod, 1949). 

μ = μmax 
S

Ks + S
 (1.e) 

where μmax represents half speed and KS  corresponds

when the variable S is equal to half of its maximum.  

3 INVERSE PROBLEM 

3.1 SENSITIVITY ANALYSIS 

Before solving the inverse problem, it is 

necessary to analyze the reduced sensitivity 

coefficients of the model parameters. This analysis 

allows evaluating which parameters can be 

successfully estimated since the low magnitude of 

sensitivity or the presence of linear dependence 

between the parameters points to the existence of 

several solutions for the same problem (Orlande et al, 

2011, Naveira-Cotta, 2009). This would directly 

interfere with the estimate, as the problem is classified 

as ill-conditioned. Therefore, it is desirable that the 

parameters present high sensitivity and are not linearly 

dependent on each other in order to obtain an accurate 

estimate of them.  

The partial derivatives of the state variable that 

have measures YT= (S,X,P), measured over time 𝐭 =
{1, … . , tend}, relative to known parameters θj for 𝐣 =
{1, … . , NP} calculated by centered finite differences

can be used to determine the reduced sensitivity 

coefficients through the following equation with NP 

parameters and perturbation ɛp (Orlande et al, 2011, 

Estumano, 2016). 

Jθj =
Y(θ1,..θj+εPθj,..θNP)−Y(θ1,…θj−εPθj,…θNP)

2εP
  (2) 

3.3 MARKOV CHAIN MONTE CARLO 

In this work, to obtain an approximation of the 

posterior distribution, the Monte Carlo method with 

Markov Chain (MCMC) was used, simulating samples 

of  πposterior(𝛉|𝐘). The idea is to obtain a sample from

the posterior distribution and calculate sample 

estimates of characteristics of this distribution. 

To this end, the Metropolis-Hastings algorithm 

will be used. This algorithm is based on the 

acceptance-rejection method, where candidate values 

are generated *
θ  belonging to a proposal distribution

( )( )1* |
t

p
−

θ θ . In this work, Gaussian distributions 

were used. The Metropolis-Hastings algorithm is 

described below (Metropolis et al, 1953; Hastings, 

1970; Kaipio e Somersalo, 2004; Gamerman e Lopes, 

2006; Orlande et al, 2011; Ehlers, 2018 ; Oliveira et 

al., 2018; Van Ravenzwaaij, 2018): 

1. The chain iteration counter is initialized 1i =  

e arbitra-se um valor inicial θ(0); 

2. Generate a candidate θ* from distribution
( )( )1* |
i

p
−

θ θ  : 

( ) ( )1* 1
i

w
−

= +θ θ (3) 

where ɛ a random number coming from a normal 

distribution, N(0,1) and w is the search step. 

3. Calculate the probability of acceptance
( )( )1 *|
i


−

θ θ of the candidate value in the form: 

( )( )
( )
( )( )

*

1 *

1

|
| min 1,

|

i

i

f

f


−

−

 
 =
 
 

0

0

θ C / C
θ θ

θ C / C

(4) 
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4. A random number is generated u from uniform

distribution, like ( )~ 0,1u U . 

5. If 
( )( )1 *|
i

u 
−

 θ θ , the new parameter vector is 

accepted and ( )1 *i+
=θ θ . Otherwise, do ( ) ( )1i i+

=θ θ . 

6. The counter is increased from i to i+1 and

returns to step 2. 

As the experiments were not carried out, 

synthetic measurements obtained were used, adding 

uncertainty to the solution obtained with the reference 

parameters according to equation 5. 

𝐘meas = 𝐘exact + σmedϵ (5) 

where 𝐘meas represents the synthetic measure

generated and this can be (X,P, S), σmed is the

standard deviation of the measurements and is a 

random variable N(0,1) 

4. RESULTS AND DISCUSSION

The application of the Bayesian approach to the 

problem of estimating parameters of the model applied 

in bioreactors has as reference data the parameters 

presented in Table 1 (Marinho et al., 2018). Subject to 

the following initial conditions: X(0) = 180; S(0)= 12 

;P(0) = 0. The solution of the system of equations was 

carried out using the 4th order Runge-kutta method. 

Table 1: Reference Parameters. 

Parameter Value 

µmax (h-1) 0.157 

Ks (g.L-1)  19.98 

YE/S 0.446 

YVXS 0.0622 

F (Batch) 0 

Initially, the analysis of the reduced sensitivity 

coefficients is evaluated to verify which parameters 

can be estimated and which state variable (X, S and P) 

the reduced sensitivity coefficients have the greatest 

magnitude. These analyzes are presented in Figures 1-

3. 

Figure 1: Reduced sensitivity coefficients in 

relation to P (product). 

Figure 2: Reduced sensitivity coefficients in 

relation to X (Biomass). 

Figure 3: Reduced sensitivity coefficients in 

relation to S (substrate).  

 Analysis of the sensitivity coefficients reveals 

that the parameters µmax and Ks have considerable 

magnitude in relation to all the model state variables 

(X,S and P). Regarding linear dependence, it is 

observed that these parameters are linearly dependent. 

The sensitivity analysis reveals that one can choose 

one of the state variables to consider the 

measurements. In this article, only measurements of 

the substrate S were considered with the objective of 

estimating the parameters and inferring the other state 

variables P and X. The Markov chains in Figures 4-5 

are presented below for estimating the parameters. 

Figure 4: Markov Chain for parameter  KS. 
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Figure 5: Markov Chain for the parameter µmax. 

When observing Figures 4-5, it can be seen 

that 5000 states were needed for the Markov chains to 

reach equilibrium. Therefore, the heating was 

considered 5000 and the states from the heating states 

are samples of the posterior probability distribution of 

the parameters, that is, the estimates. Below, Figure 6 

shows samples of estimates for both parameters. It can 

be seen in Figure 6 that such samples are correlated (ρ 

= 0.8) and the mean and 99% credibility interval are 

presented in Table 2.  

Figure 6: Samples from thr posterior distribution of 

both parameters. 

Table 2:  Mean and credible interval of 99% for the 

parameters estimations. 
Parameter Reference Initial 

Estimation 

Mean 

(C.I 99%) 

µmax (h-1) 0.157 0.34 
0.157 

(0.15;0.16) 

Ks (g.L-1)  19.98 39.96 
20.57 

(18.5;22.5) 

After determining the parameter estimates, 

the direct model was solved for each posterior sample 

of the parameters and the average of the solutions 

obtained was evaluated to be able to compare with the 

state variables in which the experimental 

measurements were not considered. Such comparisons 

between estimates and exact values (solution obtained 

with reference parameter) are presented in Figures 7-

9. 

Figure 7: Comparison between simulated and exact 

measurements for substrate concentration. 

Figure 8: Comparison between simulated and exact 

measurements for biomass concentration. 

Figure 9: Comparison between simulated and exact 

measurements for Product concentration. 

When comparing the simulated and exact 

measurements in Figures 7-9, it was observed that 

there was excellent agreement. Therefore, the strategy 

used to consider only substrate measurements for 

parameter estimation and inference of substrate, 

product and biomass is valid. Therefore, the technique 

applied to estimate parameters appears to be promising 

and useful so that it is not necessary to spend 

investments to obtain measurements of biomass and 

products.  
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5. CONCLUSION

This article showed the application of Bayesian 

techniques in mathematical models applied to 

bioreactors. 

The results presented show that the parameters 

Ks and µmax are correlated when evaluating the 

reduced sensitivity coefficient and subsequently 

proven with the analysis of samples of the posterior 

probability distribution obtained from the parameters, 

in which a correlation of 0.8 (ρ = 0.8) was verified. 

The estimates were reported with good accuracy 

and precision, since when comparing the estimates of 

the parameters and state variables with the reference 

values in all evaluations, excellent agreements were 

obtained. Therefore, with the results obtained, it can 

be seen that the monta carlo technique via Markov 

chain is robust enough to estimate parameters of the 

model studied considering only measurements of the 

substrate (S) and estimate the dynamics of the 

variables P and X (product and biomass). 
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